94 research outputs found

    Generation of two isogenic knockout PKD2 iPS cell lines, IRFMNi003-A-1 and IRFMNi003-A-2, using CRISPR/Cas9 technology.

    Get PDF
    Autosomal dominant polycystic kidney disease (ADPKD) is the most prevalent inherited renal disease, characterized by multiple cysts that can lead to kidney failure resulting in end-stage renal disease. ADPKD is mainly caused by mutations in either the PKD1 and PKD2 genes, encoding for polycystin-1 and polycystin-2, respectively. In order to clarify the disease mechanisms, here we describe the generation of two isogenic induced pluripotent stem cell (iPSC) lines in which the PKD2 gene was deleted using CRISPR/Cas9 technology. The PKD2−/− iPSCs expressed the main pluripotency markers, were able to differentiate into the three germ layers and had a normal karyotype

    Generation of PKD1 mono-allelic and bi-allelic knockout iPS cell lines using CRISPR-Cas9 system.

    Get PDF
    Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary kidney disease, characterised by the development of multiple fluid-filled cysts in the kidneys and other organs. PKD1 and PKD2 are the two major causative genes encoding for polycystin-1 and polycystin-2, respectively. Here, we report the generation of two isogenic induced pluripotent stem cell (iPSC) lines with either heterozygous or compound heterozygous mutations in the PKD1 gene using CRISPR-Cas9 technology. The PKD1+/- and PKD1-/- iPSCs maintain stem cell-like morphology, normal karyotype, pluripotency and differentiation capacity in the three germ layers

    Inhibition of the chemokine receptor CXCR2 prevents kidney graft function deterioration due to ischemia/reperfusion

    Get PDF
    Inhibition of the chemokine receptor CXCR2 prevents kidney graft function deterioration due to ischemia/reperfusion.BackgroundIschemia/reperfusion (I/R) injury after organ transplantation is a major cause of delayed graft function. Following I/R, locally produced CXC chemokines attract and activate granulocytes, which in turn promote graft damage.MethodsWe examined the involvement of granulocyte recruitment via the CXCR2 pathway in a rat model of 4 hours cold ischemia followed by kidney transplantation. Serum creatinine and intragraft granulocyte infiltration were monitored in the early phase posttransplant. A CXCR2 inhibitor, repertaxin, was given to recipients before transplantation (at -24 hours or -8 hours or -2 hours), immediately before reperfusion and 2 hours later.ResultsAn increase of granulocyte chemoattractant CINC-1/interleukin-8 (IL-8) mRNA expression after I/R both in syngeneic and allogeneic transplantation was associated with a marked infiltration of granulocytes in renal tissue. In syngeneic transplantation, Lewis rats given 15 mg/kg repertaxin 24 hours before surgery had granulocyte graft infiltration and serum creatinine levels significantly reduced in respect to vehicle-treated animals. Intermediate effects were observed with 5 mg/kg, whereas the dose of 30 mg/kg had toxic effects. We found that reducing the pretreatment time to 8 hours before surgery was still effective. Prevention of granulocyte infiltration and serum creatinine increase was also obtained in allogeneic transplantation, when Brown Norway recipients of Lewis kidneys were given 15 mg/kg repertaxin starting 8 hours before surgery.ConclusionRepertaxin treatment of the recipient animal was effective in preventing granulocyte infiltration and renal function impairment both in syngeneic and in allogeneic settings. The possibility to modulate I/R injury in this rat model opens new perspectives for preventing posttransplant delayed graft function in humans

    ACE inhibition limits chronic injury of kidney transplant even with treatment started when lesions are established

    Get PDF
    ACE inhibition limits chronic injury of kidney transplant even with treatment started when lesions are established.BackgroundInhibition of the renin-angiotensin system (RAS) prevents development of chronic allograft dysfunction in experimental animals. Whether this therapeutic approach is effective even if started when signs of allograft nephropathy are already manifested has not been investigated.MethodsTo address this issue, we studied the effect of a late treatment with the angiotensin-convertine enzyme (ACE) inhibitor trandolapril in the Fisher 344 to Lewis rat kidney transplant model. Seven months after transplant a renal biopsy was done for graft histology examination. Thereafter rats received either no treatment (allograft-none) or trandolapril until sacrifice at month 13.ResultsAll animals were alive at the end of the study with the exception of a rat in the untreated group that died of renal insufficiency at day 292. Despite the fact that the grafts had already signs of structural injury and function impairment at the time treatment was stated, trandolapril completely restored renal function to baseline pretransplant values. Trandolapril also halted the progression of glomerular damage and suppressed intragraft T-lymphocyte infiltration and reduced the expression of the chemokine monocyte chemoattractant protein-1 (MCP-1). However, trandolapril had no direct effect on T cell function, since in vivo treatment did not modify recipient T-cell alloreactivity against donor antigens.ConclusionThese findings provide the basis for a novel treatment intervention with RAS blockade that, together with pharmacologic inhibition of the immune response, could interrupt progression of chronic allograft dysfunction and injury

    CFH and CFHR Copy Number Variations in C3 Glomerulopathy and Immune Complex-Mediated Membranoproliferative Glomerulonephritis

    Get PDF
    C3 Glomerulopathy (C3G) and Immune Complex-Mediated Membranoproliferative glomerulonephritis (IC-MPGN) are rare diseases characterized by glomerular deposition of C3 caused by dysregulation of the alternative pathway (AP) of complement. In approximately 20% of affected patients, dysregulation is driven by pathogenic variants in the two components of the AP C3 convertase, complement C3 (C3) and Factor B (CFB), or in complement Factor H (CFH) and Factor I (CFI), two genes that encode complement regulators. Copy number variations (CNVs) involving the CFH-related genes (CFHRs) that give rise to hybrid FHR proteins also have been described in a few C3G patients but not in IC-MPGN patients. In this study, we used multiplex ligation-dependent probe amplification (MLPA) to study the genomic architecture of the CFH-CFHR region and characterize CNVs in a large cohort of patients with C3G (n = 103) and IC-MPGN (n = 96) compared to healthy controls (n = 100). We identified new/rare CNVs resulting in structural variants (SVs) in 5 C3G and 2 IC-MPGN patients. Using long-read single molecule real-time sequencing (SMRT), we detected the breakpoints of three SVs. The identified SVs included: 1) a deletion of the entire CFH in one patient with IC-MPGN; 2) an increased number of CFHR4 copies in one IC-MPGN and three C3G patients; 3) a deletion from CFHR3-intron 3 to CFHR3-3′UTR (CFHR34–6Δ) that results in a FHR3-FHR1 hybrid protein in a C3G patient; and 4) a CFHR31–5-CFHR410 hybrid gene in a C3G patient. This work highlights the contribution of CFH-CFHR CNVs to the pathogenesis of both C3G and IC-MPGN

    Rare Functional Variants in Complement Genes and Anti-FH Autoantibodies-Associated aHUS

    Get PDF
    Atypical hemolytic uremic syndrome (aHUS) is a rare disease characterized by microangiopathic hemolytic anemia, thrombocytopenia and renal failure. It is caused by genetic or acquired defects of the complement alternative pathway. Factor H autoantibodies (anti-FHs) have been reported in 10% of aHUS patients and are associated with the deficiency of factor H-related 1 (FHR1). However, FHR1 deficiency is not enough to cause aHUS, since it is also present in about 5% of Caucasian healthy subjects. In this study we evaluated the prevalence of genetic variants in CFH, CD46, CFI, CFB, C3, and THBD in aHUS patients with anti-FHs, using healthy subjects with FHR1 deficiency, here defined “supercontrols,” as a reference group. “Supercontrols” are more informative than general population because they share at least one risk factor (FHR1 deficiency) with aHUS patients. We analyzed anti-FHs in 305 patients and 30 were positive. The large majority were children (median age: 7.7 [IQR, 6.6–9.9] years) and 83% lacked FHR1 (n = 25, cases) due to the homozygous CFHR3-CFHR1 deletion (n = 20), or the compound heterozygous CFHR3-CFHR1 and CFHR1-CFHR4 deletions (n = 4), or the heterozygous CFHR3-CFHR1 deletion combined with a frameshift mutation in CFHR1 that generates a premature stop codon (n = 1). Of the 960 healthy adult subjects 48 had the FHR1 deficiency (“supercontrols”). Rare likely pathogenetic variants in CFH, THBD, and C3 were found in 24% of cases (n = 6) compared to 2.1% of the “supercontrols” (P-value = 0.005). We also found that the CFH H3 and the CD46GGAAC haplotypes are not associated with anti-FHs aHUS, whereas these haplotypes are enriched in aHUS patients without anti-FHs, which highlights the differences in the genetic basis of the two forms of the disease. Finally, we confirm that common infections are environmental factors that contribute to the development of anti-FHs aHUS in genetically predisposed individuals, which fits with the sharp peak of incidence during scholar-age. Further studies are needed to fully elucidate the complex genetic and environmental factors underlying anti-FHs aHUS and to establish whether the combination of anti-FHs with likely pathogenetic variants or other risk factors influences disease outcome and response to therapies

    In silico toxicology protocols

    Get PDF
    The present publication surveys several applications of in silico (i.e., computational) toxicology approaches across different industries and institutions. It highlights the need to develop standardized protocols when conducting toxicity-related predictions. This contribution articulates the information needed for protocols to support in silico predictions for major toxicological endpoints of concern (e.g., genetic toxicity, carcinogenicity, acute toxicity, reproductive toxicity, developmental toxicity) across several industries and regulatory bodies. Such novel in silico toxicology (IST) protocols, when fully developed and implemented, will ensure in silico toxicological assessments are performed and evaluated in a consistent, reproducible, and well-documented manner across industries and regulatory bodies to support wider uptake and acceptance of the approaches. The development of IST protocols is an initiative developed through a collaboration among an international consortium to reflect the state-of-the-art in in silico toxicology for hazard identification and characterization. A general outline for describing the development of such protocols is included and it is based on in silico predictions and/or available experimental data for a defined series of relevant toxicological effects or mechanisms. The publication presents a novel approach for determining the reliability of in silico predictions alongside experimental data. In addition, we discuss how to determine the level of confidence in the assessment based on the relevance and reliability of the information

    Aggiornamento art. 829 c.p.c.

    No full text
    corecore