133 research outputs found

    Interim Report of the Working Group on Ecosystem Assessment of Western European Shelf Seas

    Get PDF
    The ICES Working Group on Ecosystem Assessment of Western European Shelf Seas (WGEAWESS) meeting was held in Lisbon (Portugal), on 24–28 April 2017. The meeting was attended by 8 participants from 4 countries and chaired by Steven Beggs, Northern Ireland (UK). This was the first year of the new 3-year Terms of Reference (ToR) for WGEAWESS. The main activities for the group at the 2017 meeting were to discuss progress and further development of work towards the ToRs a) Continue metadata compilation for all ecosystem components available for IEA development, b) Continue evaluation of data and trends for a regional Integrated Ecosystem Assessment (IEA). Identify ecosystem trends relevant to stock assessment and management. As an outcome of specific objectives to integrate the activities of WGEAWESS with sister IEA groups, the meeting was held back to back with both the ICES/HELCOM Working Group on Integrated Assessments of the Baltic Sea (WGIAB) and the Working Group on Comparative Analyses between European Atlantic and Mediterranean marine ecosystems to move towards an Ecosystem-based Approach to Fisheries (WGCOMEDA). This back to back meeting had many advantages and provided much opportunity for group integration and future collaboration

    Altered splicing of the BIN1 muscle-specific exon in humans and dogs with highly progressive centronuclear myopathy

    Get PDF
    Amphiphysin 2, encoded by BIN1, is a key factor for membrane sensing and remodelling in different cell types. Homozygous BIN1 mutations in ubiquitously expressed exons are associated with autosomal recessive centronuclear myopathy (CNM), a mildly progressive muscle disorder typically showing abnormal nuclear centralization on biopsies. In addition, misregulation of BIN1 splicing partially accounts for the muscle defects in myotonic dystrophy (DM). However, the muscle-specific function of amphiphysin 2 and its pathogenicity in both muscle disorders are not well understood. In this study we identified and characterized the first mutation affecting the splicing of the muscle-specific BIN1 exon 11 in a consanguineous family with rapidly progressive and ultimately fatal centronuclear myopathy. In parallel, we discovered a mutation in the same BIN1 exon 11 acceptor splice site as the genetic cause of the canine Inherited Myopathy of Great Danes (IMGD). Analysis of RNA from patient muscle demonstrated complete skipping of exon 11 and BIN1 constructs without exon 11 were unable to promote membrane tubulation in differentiated myotubes. Comparative immunofluorescence and ultrastructural analyses of patient and canine biopsies revealed common structural defects, emphasizing the importance of amphiphysin 2 in membrane remodelling and maintenance of the skeletal muscle triad. Our data demonstrate that the alteration of the muscle-specific function of amphiphysin 2 is a common pathomechanism for centronuclear myopathy, myotonic dystrophy, and IMGD. The IMGD dog is the first faithful model for human BIN1-related CNM and represents a mammalian model available for preclinical trials of potential therapies

    Acinetobacter baumannii in intensive care unit: A novel system to study clonal relationship among the isolates

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The nosocomial infections surveillance system must be strongly effective especially in highly critic areas, such as Intensive Care Units (ICU). These areas are frequently an epidemiological epicentre for transmission of multi-resistant pathogens, like <it>Acinetobacter baumannii</it>. As an epidemic outbreak occurs it is very important to confirm or exclude the genetic relationship among the isolates in a short time. There are several molecular typing systems used with this aim. The Repetitive sequence-based PCR (REP-PCR) has been recognized as an effective method and it was recently adapted to an automated format known as the DiversiLab system.</p> <p>Methods</p> <p>In the present study we have evaluated the combination of a newly introduced software package for the control of hospital infection (VIGI@ct) with the DiversiLab system. In order to evaluate the reliability of the DiversiLab its results were also compared with those obtained using f-AFLP.</p> <p>Results</p> <p>The combination of VIGI@ct and DiversiLab enabled an earlier identification of an <it>A. baumannii </it>epidemic cluster, through the confirmation of the genetic relationship among the isolates. This cluster regards 56 multi-drug-resistant <it>A. baumannii </it>isolates from several specimens collected from 13 different patients admitted to the ICU in a ten month period. The <it>A. baumannii </it>isolates were clonally related being their similarity included between 97 and 100%. The results of the DiversiLab were confirmed by f-AFLP analysis.</p> <p>Conclusion</p> <p>The early identification of the outbreak has led to the prompt application of operative procedures and precautions to avoid the spread of pathogen. To date, 6 months after the last <it>A. baumannii </it>isolate, no other related case has been identified.</p

    Unsuspected and extensive transmission of a drug-susceptible Mycobacterium tuberculosis strain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A large and unsuspected tuberculosis outbreak involving 18.7% of the total of the tuberculosis cases studied, was detected in a population-based molecular epidemiological study performed in Zaragoza (Spain) from 2001 to 2004.</p> <p>Methods</p> <p>The <it>Mycobacterium tuberculosis </it>drug-susceptible strain, named <it>MTZ </it>strain, was genetically characterized by IS<it>6110</it>-RFLP, Spoligotyping and by MIRU-VNTR typing and the genetic patterns obtained were compared with those included in international databases. The characteristics of the affected patients, in an attempt to understand why the <it>MTZ </it>strain was so highly transmitted among the population were also analyzed.</p> <p>Results</p> <p>The genetic profile of the <it>MTZ </it>strain was rare and not widely distributed in our area or elsewhere. The patients affected did not show any notable risk factor for TB.</p> <p>Conclusion</p> <p>The <it>M. tuberculosis </it>strain <it>MTZ</it>, might have particular transmissibility or virulence properties, and we believe that greater focus should be placed on stopping its widespread dissemination.</p

    Queen mandibular pheromone: questions that remain to be resolved

    No full text
    The discovery of ‘queen substance’, and the subsequent identification and synthesis of keycomponents of queen mandibular pheromone, has been of significant importance to beekeepers and to thebeekeeping industry. Fifty years on, there is greater appreciation of the importance and complexity of queenpheromones, but many mysteries remain about the mechanisms through which pheromones operate. Thediscovery of sex pheromone communication in moths occurred within the same time period, but in this case,intense pressure to find better means of pest management resulted in a remarkable focusing of research activityon understanding pheromone detection mechanisms and the central processing of pheromone signals in themoth. We can benefit from this work and here, studies on moths are used to highlight some of the gaps in ourknowledge of pheromone communication in bees. A better understanding of pheromone communication inhoney bees promises improved strategies for the successful management of these extraordinary animals

    Involvement of EphB1 Receptors Signalling in Models of Inflammatory and Neuropathic Pain

    Get PDF
    EphB receptors tyrosine kinases and ephrinB ligands were first identified as guidance molecules involved in the establishment of topographical mapping and connectivity in the nervous system during development. Later in development and into adulthood their primary role would switch from guidance to activity-dependent modulation of synaptic efficacy. In sensory systems, they play a role in both the onset of inflammatory and neuropathic pain, and in the establishment of central sensitisation, an NMDA-mediated form of synaptic plasticity thought to underlie most forms of chronic pain. We studied wild type and EphB1 knockout mice in a range of inflammatory and neuropathic pain models to determine 1), whether EphB1 expression is necessary for the onset and/or maintenance of persistent pain, regardless of origin; 2), whether in these models cellular and molecular changes, e.g. phosphorylation of the NR2B subunit of the NMDA receptor, increased c-fos expression or microglial activation, associated with the onset of pain, are affected by the lack of functional EphB1 receptors. Differences in phenotype were examined behaviourally, anatomically, biochemically and electrophysiologically. Our results establish firstly, that functional EphB1 receptors are not essential for the development of normal nociception, thermal or mechanical sensitivity. Secondly, they demonstrate a widespread involvement of EphB1 receptors in chronic pain. NR2B phosphorylation, c-fos expression and microglial activation are all reduced in EphB1 knockout mice. This last finding is intriguing, since microglial activation is supposedly triggered directly by primary afferents, therefore it was not expected to be affected. Interestingly, in some models of long-term pain (days), mechanical and thermal hyperalgesia develop both in wild type and EphB1 knockout mice, but recovery is faster in the latter, indicating that in particular models these receptors are required for the maintenance, rather than the onset of, thermal and mechanical hypersensitivity. This potentially makes them an attractive target for analgesic strategies

    Synapse Clusters Are Preferentially Formed by Synapses with Large Recycling Pool Sizes

    Get PDF
    Synapses are distributed heterogeneously in neural networks. The relationship between the spatial arrangement of synapses and an individual synapse's structural and functional features remains to be elucidated. Here, we examined the influence of the number of adjacent synapses on individual synaptic recycling pool sizes. When measuring the discharge of the styryl dye FM1–43 from electrically stimulated synapses in rat hippocampal tissue cultures, a strong positive correlation between the number of neighbouring synapses and recycling vesicle pool sizes was observed. Accordingly, vesicle-rich synapses were found to preferentially reside next to neighbours with large recycling pool sizes. Although these synapses with large recycling pool sizes were rare, they were densely arranged and thus exhibited a high amount of release per volume. To consolidate these findings, functional terminals were marked by live-cell antibody staining with anti-synaptotagmin-1-cypHer or overexpression of synaptopHluorin. Analysis of synapse distributions in these systems confirmed the results obtained with FM 1–43. Our findings support the idea that clustering of synapses with large recycling pool sizes is a distinct developmental feature of newly formed neural networks and may contribute to functional plasticity

    Division of labor in honeybees: form, function, and proximate mechanisms

    Get PDF
    Honeybees exhibit two patterns of organization of work. In the spring and summer, division of labor is used to maximize growth rate and resource accumulation, while during the winter, worker survivorship through the poor season is paramount, and bees become generalists. This work proposes new organismal and proximate level conceptual models for these phenomena. The first half of the paper presents a push–pull model for temporal polyethism. Members of the nursing caste are proposed to be pushed from their caste by the development of workers behind them in the temporal caste sequence, while middle-aged bees are pulled from their caste via interactions with the caste ahead of them. The model is, hence, an amalgamation of previous models, in particular, the social inhibition and foraging for work models. The second half of the paper presents a model for the proximate basis of temporal polyethism. Temporal castes exhibit specialized physiology and switch caste when it is adaptive at the colony level. The model proposes that caste-specific physiology is dependent on mutually reinforcing positive feedback mechanisms that lock a bee into a particular behavioral phase. Releasing mechanisms that relate colony level information are then hypothesized to disrupt particular components of the priming mechanisms to trigger endocrinological cascades that lead to the next temporal caste. Priming and releasing mechanisms for the nursing caste are mapped out that are consistent with current experimental results. Less information-rich, but plausible, mechanisms for the middle-aged and foraging castes are also presented
    corecore