291 research outputs found

    Probing the pairing interaction through two-neutron transfer reactions

    Full text link
    Cross sections for (p,tp,t) two-neutron transfer reactions are calculated in the one-step zero-range distorted-wave Born approximation for the tin isotopes 124^{124}Sn and 136^{136}Sn and for incident proton energies from 15 to 35 MeV. Microscopic quasiparticle random-phase approximation form factors are provided for the reaction calculation and phenomenological optical potentials are used in both the entrance and the exit channels. Three different surface/volume mixings of a zero-range density-dependent pairing interaction are employed in the microscopic calculations and the sensitivity of the cross sections to the different mixings is analyzed. Since absolute cross sections cannot be obtained within our model, we compare the positions of the diffraction minima and the shapes of the angular distributions. No differences are found in the position of the diffraction minima for the reaction 124^{124}Sn(p,tp,t)122^{122}Sn. On the other side, the angular distributions obtained for the reaction 136^{136}Sn(p,tp,t)134^{134}Sn with surface and mixed interactions differ at large angles for some values of the incident proton energy. For this reaction, we compare the ratios of the cross sections associated to the ground state and the first excited state transitions. Differences among the three different theoretical predictions are found and they are more important at the incident proton energy of 15 MeV. As a conclusion, we indicate (p,tp,t) two-neutron transfer reactions with very neutron-rich Sn isotopes and at proton energies around 15 MeV as good experimental cases where the surface/volume mixing of the pairing interaction may be probed

    Many-body correlations in a multistep variational approach

    Get PDF
    We discuss a multistep variational approach for the study of many-body correlations. The approach is developed in a boson formalism (bosons representing particle-hole excitations) and based on an iterative sequence of diagonalizations in subspaces of the full boson space. Purpose of these diagonalizations is that of searching for the best approximation of the ground state of the system. The procedure also leads us to define a set of excited states and, at the same time, of operators which generate these states as a result of their action on the ground state. We examine the cases in which these operators carry one-particle one-hole and up to two-particle two-hole excitations. We also explore the possibility of associating bosons to Tamm-Dancoff excitations and of describing the spectrum in terms of only a selected group of these. Tests within an exactly solvable three-level model are provided.Comment: 24 pages, 6 figures, to appear in Phys. Rev.

    Probing pre-formed alpha particles in the ground state of nuclei

    Full text link
    In this Letter, we report on alpha particle emission through the nuclear break-up in the reaction 40Ca on a 40Ca target at 50A MeV. It is observed that, similarly to nucleons, alpha particles can be emitted to the continuum with very specific angular distribution during the reaction. The alpha particle properties can be understood as resulting from an alpha cluster in the daughter nucleus that is perturbed by the short range nuclear attraction of the collision partner and emitted. A time-dependent theory that describe the alpha particle wave-function evolution is able to reproduce qualitatively the observed angular distribution. This mechanism offers new possibilities to study alpha particle properties in the nuclear medium.Comment: 4 pages, 3 figure

    Theories for multiple resonances

    Get PDF
    Two microscopic theories for multiple resonances in nuclei are compared, n-particle-hole RPA and quantized Time-Dependent Hartree-Fock (TDHF). The Lipkin-Meshkov-Glick model is used as test case. We find that quantized TDHF is superior in many respects, except for very small systems.Comment: 14 Pages, 3 figures available upon request

    Structure of unbound neutron-rich 9^{9}He studied using single-neutron transfer

    Get PDF
    The 8He(d,p) reaction was studied in inverse kinematics at 15.4A MeV using the MUST2 Si-CsI array in order to shed light on the level structure of 9He. The well known 16O(d,p)17O reaction, performed here in reverse kinematics, was used as a test to validate the experimental methods. The 9He missing mass spectrum was deduced from the kinetic energies and emission angles of the recoiling protons. Several structures were observed above the neutron-emission threshold and the angular distributions were used to deduce the multipolarity of the transitions. This work confirms that the ground state of 9He is located very close to the neutron threshold of 8He and supports the occurrence of parity inversion in 9He.Comment: Exp\'erience GANIL/SPIRAL1/MUST

    Search for new resonant states in 10C and 11C and their impact on the cosmological lithium problem

    Full text link
    The observed primordial 7Li abundance in metal-poor halo stars is found to be lower than its Big-Bang nucleosynthesis (BBN) calculated value by a factor of approximately three. Some recent works suggested the possibility that this discrepancy originates from missing resonant reactions which would destroy the 7Be, parent of 7Li. The most promising candidate resonances which were found include a possibly missed 1- or 2- narrow state around 15 MeV in the compound nucleus 10C formed by 7Be+3He and a state close to 7.8 MeV in the compound nucleus 11C formed by 7Be+4He. In this work, we studied the high excitation energy region of 10C and the low excitation energy region in 11C via the reactions 10B(3He,t)10C and 11B(3He,t)11C, respectively, at the incident energy of 35 MeV. Our results for 10C do not support 7Be+3He as a possible solution for the 7Li problem. Concerning 11C results, the data show no new resonances in the excitation energy region of interest and this excludes 7Be+4He reaction channel as an explanation for the 7Li deficit.Comment: Accepted for publication in Phys. Rev. C (Rapid Communication

    A new experiment for the determination of the 18F(p,alpha) reaction rate at nova temperatures

    Get PDF
    The 18F(p,alpha) reaction was recognized as one of the most important for gamma ray astronomy in novae as it governs the early 511 keV emission. However, its rate remains largely uncertain at nova temperatures. A direct measurement of the cross section over the full range of nova energies is impossible because of its vanishing value at low energy and of the short 18F lifetime. Therefore, in order to better constrain this reaction rate, we have performed an indirect experiment taking advantage of the availability of a high purity and intense radioactive 18F beam at the Louvain La Neuve RIB facility. We present here the first results of the data analysis and discuss the consequences.Comment: Contribution to the Classical Novae Explosions conference, Sitges, Spain, 20-24 May 2002, 5 pages, 3 figure

    Study of 12C(α,γ)16O reaction via the transfer reaction 12C(7Li,t)16O

    Get PDF
    International audienceThe 12C(a,g )16O reaction plays an important role in helium burning in massive stars and their evolution. However, despite many experimental studies, the low-energy cross section of 12C(a,g )16O remains highly uncertain. The extrapolation of the measured cross sections to stellar energies (E=300 keV) is made difficult by the presence of the two sub-threshold states at 6.92 (2+) and 7.12 (1−) MeV of 16O. In order to further investigate the contribution of these twosubthreshold resonances to the 12C(a,g )16O cross section, we performed a new determination of the a-reduced widths of the 6.92 and 7.12 MeV of 16O via a measurement of the transfer reaction 12C(7Li,t)16O at two incident energies, 34 and 28 MeV. The measured and calculated differential cross sections are presented as well as the obtained spectroscopic factors and the a-reduced widths for the 2+ and 1− sub-threshold states and their effect on the R-matrix calculations of 12C(a,g )16O

    Search for low lying dipole strength in the neutron rich nucleus 26^{26}Ne

    Full text link
    Coulomb excitation of the exotic neutron-rich nucleus 26^{26}Ne on a nat^{nat}Pb target was measured at 58 A.MeV in order to search for low-lying E1 strength above the neutron emission threshold. Data were also taken on an nat^{nat}Al target to estimate the nuclear contribution. The radioactive beam was produced by fragmentation of a 95 A.MeV 40^{40}Ar beam delivered by the RIKEN Research Facility. The set-up included a NaI gamma-ray array, a charged fragment hodoscope and a neutron wall. Using the invariant mass method in the 25^{25}Ne+n channel, we observe a sizable amount of E1 strength between 6 and 10 MeV. The reconstructed 26^{26}Ne angular distribution confirms its E1 nature. A reduced dipole transition probability of B(E1)=0.49±\pm0.16 e2fm2e^2fm^2 is deduced. For the first time, the decay pattern of low-lying strength in a neutron-rich nucleus is obtained. The results are discussed in terms of a pygmy resonance centered around 9 MeV

    Indirect study of 19Ne states near the 18F+p threshold

    Get PDF
    The early E < 511 keV gamma-ray emission from novae depends critically on the 18F(p,a)15O reaction. Unfortunately the reaction rate of the 18F(p,a)15O reaction is still largely uncertain due to the unknown strengths of low-lying proton resonances near the 18F+p threshold which play an important role in the nova temperature regime. We report here our last results concerning the study of the d(18F,p)19F(alpha)15N transfer reaction. We show in particular that these two low-lying resonances cannot be neglected. These results are then used to perform a careful study of the remaining uncertainties associated to the 18F(p,a)15O and 18F(p,g)19Ne reaction rates.Comment: 18 pages, 8 figures. Accepted in Nuclear Physics
    corecore