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The 12C(α,γ)16O reaction plays an important role in helium burning in massive stars and

their evolution. However, despite many experimental studies, the low-energy cross section of
12C(α,γ)16O remains highly uncertain. The extrapolation of the measured cross sections to stel-

lar energies (E=300 keV) is made difficult by the presence of the two sub-threshold states at 6.92

(2+) and 7.12 (1−) MeV of 16O. In order to further investigate the contribution of thesetwo-

subthreshold resonances to the12C(α,γ)16O cross section, we performed a new determination of

theα-reduced widths of the 6.92 and 7.12 MeV of16O via a measurement of the transfer reaction
12C(7Li,t)16O at two incident energies, 34 and 28 MeV. The measured and calculated differen-

tial cross sections are presented as well as the obtained spectroscopic factors and theα-reduced

widths for the 2+ and 1− sub-threshold states and their effect on the R-matrix calculations of
12C(α,γ)16O.
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1. Introduction

The most uncertain reaction rate which plays an important role in helium burning in massive
stars is12C(α ,γ)16O reaction rate. This reaction follows the production of12C by triple alpha-
process and the ratio of the yields of these two reactions is crucial in determining the mass fraction
of carbon relative to oxygen in stars like red giants at the end of helium burning phase [1] . The12C
to 16O abundance ratio has important consequences for the nucleosynthesis of elements heavier
than carbon which are almost exclusively produced in this kind of stars [2]. It governs also the
subsequent stellar evolution of the massive stars and theirfinal fate (black hole, neutron star)[2, 3].
The rate of the triple alpha process is well determined (10-15% uncertainty), but it is not the case
of 12C(α ,γ)16O reaction which has an uncertainty of about 41% despite the various experiments
which studied it these last four decades.

The cross section of12C(α ,γ)16O reaction, which occurs at the temperature around 0.2 GK
corresponding to the Gamow peak of 300 keV, is expected to be 10−8 nbarn. This extremely
low cross section excludes any direct measurement at this energy with the existing techniques.
Even though direct measurements have been performed down to0.9 MeV (CM) [4], the R-matrix
extrapolation of the data to stellar energy is complicated by the vicinity of the two sub-threshold
resonances at 7.12 (1−) and 6.92 (2+) MeV states of16O which through their high energy tails
can enhance the alpha-capture cross section in the energy region of interest. Unfortunately, the
contribution of these two sub-threshold states to12C(α ,γ)16O cross section at 300 keV is badly
known since theirα-reduced width and so theirα-spectroscopic-factors are spread over a large
range of values [5]. Moreover, in the R-matrix calculation,one has to take also into account the
contribution of the non-resonant direct capture and all possible interference effects between the
different resonances [6].

In view of the importance of12C(α ,γ)16O reaction, it appeared highly desirable to perform a
new precise determination of the spectroscopic factors andtheα-reduced widths of the 2+ and 1−

sub-threshold states through a12C(7Li,t)16O transfer reaction measurement at two incident ener-
gies.

2. Experimental setup

The experiment was performed at the Orsay Alto facility using a 7Li3+ beam provided by
the high energy resolution tandem accelerator∆E

E ≈ 2×10−4. An 80 µg/cm2-thick self-supported
natural12C target was used. The reaction products were analysed with asplit-pole magnetic spec-
trometer and detected at the focal plane by a 50 cm long delayed-line gas counter for position
measurements and a∆E proportional gas-chamber. The particle identification was performed by a
∆ E versus position measurements. The tritons were detected at angles ranging from 0 to 31◦ in the
laboratory, corresponding to angles up to 44◦ in the center of mass. The beam and12C amount were
monitored continuously by using a∆E-E silicon telescope mounted inside the scattering chamber
at Θlab=35 ◦.

3. Results and discussions

The experimental12C(7Li, t)16O differential cross section measured for the 6.05, 6.13, 6.92,
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7.12 MeV populated states of16O at the two incident energies of 28 MeV and 34 MeV are dis-
played in figures 1.a and 1.b respectively. The error bars assigned to the measurements include
the uncertainties on the peak yield, the number of target atoms, the solid angle and the integrated
charge.
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Figure 1: Experimental differential cross section of12C(7Li, t)16O reaction obtained at 28MeV (fig1.a and
34 MeV (fig1.b), compared with finite range DWBA calculations.

We performed finite-range DWBA calculations, using Fresco code [7] in order to extract from
the normalisation of the calculated triton angular distributions to the measured ones, theα spec-
troscopic factors Sα corresponding to each populated state. Many combinations of entrance and
exit optical potentials parameters were investigated. Concerning the7Li channel, for all the mea-
surements at 34 MeV and at 28 MeV, several7Li optical potentials given by Schumacher [8] were
tested. For the exit triton channel, optical potential parameters from Garrett et al [9] were selected.
We also investigated the dependence of our calculation to the 12C-α interaction potential. Finally,
the selected optical and interaction parameters are those giving the best fit, using the maximum
likelihood function set at 3σ level, for all the studied states (6.05, 6.13, 6.92, 7.12 MeV) at both
incident energies (see fig.1.). A good agreement between theDWBA calculations and the measured
differential cross sections of the different excited states of 16O at the two bombarding energies of
28 MeV and 34 MeV respectively, can be observed in figure 1 and this gives strong evidence of the
direct nature of (7Li,t) transfer reaction.

An Sα mean value of 0.15±0.05 and 0.07±0.03 are deduced for the states of interest at 6.92
MeV and 7.12 MeV of16O respectively and both are in good agreement with those obtained by
Becchetti et al. [10] while only the value obtained for the 7.12 MeV state is in good agreement
with the one obtained in Belhout et al. [5] work. The uncertainty on the extractedα spectroscopic
factors were evaluated from the dispersion of the deduced Sα values at the two incident energies,
using the different sets of optical potentials in the entrance and exit channels and differentα-12C
interaction parameters selected as described above.

Note that a more detailed paper [11], that includes more information about the reaction mech-
anism, Hauser Feshbach calculations, error analysis and comparison with all previous transfer re-
action works is in preparation.

The α-reduced width of the two states of interest were determinedby using the expression,
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γ2
α = h̄2R

2µ Sα |ϕ(R)|2 [10] whereµ is the reduced mass andϕ(R) is the radial part of theα-12C wave
function calculated at the radius R=6.5 fm. This radius was chosen in order to reach the coulomb
asymptotic behavior of the radial part of theα-12C wave function. Theα-reduced widthγ2

α of
about 26.70±10.30 keV and 7.8±2.7 keV for the 6.92 MeV and 7.12 states respectively were <
obtained at the radius of 6.5 fm.

The present values ofγ2
α have been included in R-matrix fits of both12C(α ,γ)16O S-factors

obtained by direct measurements at high energies and the12C(α ,α) measured phase shifts, using
R-matrix code of Descouvemont and Baye [13]

The E1 and E2 contributions were fitted separately. The best fits were determined through aχ2

minimization. The l=2 Rmatrix fitting was performed using a four 2+ levels including a background
state, the phase shifts from [12] and the astrophysical S-factors data from [4, 14, 15, 16, 17, 18]
(see Figure 2, left ) . The four levels consist of the sub-threshold state at Ex=6.92 MeV, the states
at Ex=9.85 MeV and Ex=11.52 MeV and a higher 2+ background wich represent the tails of other
higher-lying 2+ states. For the E1 component, the l=1 Rmatrix fitting was performed using a three
1− levels including a background state, the phase shifts from [12] and the astrophysical S-factors
data from [14, 16, 18, 19] (see Figure 2, right ). The three levels consist of the subthreshold state
at Ex=7.12 MeV, the state at Ex=9.585 MeV and a higher 1− background state which illustrate the
tails of other higher-lying 1− states.
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Figure 2: Left: AstrophysicalS-factor for the12C(α,γ)16 reaction withR-matrix calculations of the E2
component. Right: AstrophysicalS-factor for the12C(α,γ)16 reaction withR-matrix calculations of the E1
component. The solid curves correspond to fits when using ourrecommendedγ2

α values, and the dashed
curves to the lower and upper limits (see text).

An E2-Sfactor of about 50±19 keV-b and an E1-Sfactor of about 100±28 keV-b were ob-
tained at the energy of interest Ecm∼300 keV with the best fits shown in Figure 2 left and right,
respectively. The solid curves are obtained when using our deducedγ2

α for the 6.92 and 7.12 MeV
states respectiveley and the dashed curves were obtained when using the upper and lower values of
our extractedγ2

α for the two states of interest.

Our value for the E1 component SE1=100±28 keV-b is in excellent agreement with the results
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obtained in various direct and indirect measurements [5, 6,15, 17, 18, 20] while our E2 component
SE2=52±19 keV-b is in good agreement within the error bars with the values obtained in [6, 12,
16, 17, 18] .

If we take for the cascade S-factor the value 25+16
−15 keV-b from [21], we obtain a total S-factor,

S(300 keV)=177±63 keV-b. This value is in good agreement with 170±50 keV-b deduced from
comparison of solar system abundances of all intermediate mass isotopes 16≤ A ≤32 with those
predicted by calculations [2] of nuclosynthesis in massivestars from 12 to 40 M⊙.

4. Conclusion

We determined the reducedα-widths of the sub-threshold 2+ and 1− states of16O from the
DWBA analysis of the transfer reaction12C(7Li,t)16O performed at two incident energies. The
obtained result for the 2+ and 1− sub-threshold resonances were introduced in the R-matrix fitting
of radiative capture and elastic-scattering data to determine the low-energy extrapolations of E2 and
E1 S-factor. The results confirm the values obtained in various direct and indirect measurements
[6, 5, 12, 15, 16, 17, 18, 20]
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