3,624 research outputs found

    Dispersion processes

    Get PDF
    We study a synchronous dispersion process in which MM particles are initially placed at a distinguished origin vertex of a graph GG. At each time step, at each vertex vv occupied by more than one particle at the beginning of this step, each of these particles moves to a neighbour of vv chosen independently and uniformly at random. The dispersion process ends once the particles have all stopped moving, i.e. at the first step at which each vertex is occupied by at most one particle. For the complete graph KnK_n and star graph SnS_n, we show that for any constant ÎŽ>1\delta>1, with high probability, if M≀n/2(1−ή)M \le n/2(1-\delta), then the process finishes in O(log⁥n)O(\log n) steps, whereas if M≄n/2(1+ÎŽ)M \ge n/2(1+\delta), then the process needs eΩ(n)e^{\Omega(n)} steps to complete (if ever). We also show that an analogous lazy variant of the process exhibits the same behaviour but for higher thresholds, allowing faster dispersion of more particles. For paths, trees, grids, hypercubes and Cayley graphs of large enough sizes (in terms of MM) we give bounds on the time to finish and the maximum distance traveled from the origin as a function of the number of particles MM

    Examining The Impact Of Sarbanes-Oxley On Non-Profit Health Care Organizations

    Get PDF
    This paper presented a proposal for research on how the Sarbanes-Oxley Act of 2002 impacts a non-profit health care organization. The research study follows a qualitative research method of the case study. In this study, the researcher presented a brief introduction of the SOX act and discussed the research data collected in the case study. Qualitative case study method was used for analysis

    Data Mining to Uncover Heterogeneous Water Use Behaviors From Smart Meter Data

    Get PDF
    Knowledge on the determinants and patterns of water demand for different consumers supports the design of customized demand management strategies. Smart meters coupled with big data analytics tools create a unique opportunity to support such strategies. Yet, at present, the information content of smart meter data is not fully mined and usually needs to be complemented with water fixture inventory and survey data to achieve detailed customer segmentation based on end use water usage. In this paper, we developed a data‐driven approach that extracts information on heterogeneous water end use routines, main end use components, and temporal characteristics, only via data mining existing smart meter readings at the scale of individual households. We tested our approach on data from 327 households in Australia, each monitored with smart meters logging water use readings every 5 s. As part of the approach, we first disaggregated the household‐level water use time series into different end uses via Autoflow. We then adapted a customer segmentation based on eigenbehavior analysis to discriminate among heterogeneous water end use routines and identify clusters of consumers presenting similar routines. Results revealed three main water end use profile clusters, each characterized by a primary end use: shower, clothes washing, and irrigation. Time‐of‐use and intensity‐of‐use differences exist within each class, as well as different characteristics of regularity and periodicity over time. Our customer segmentation analysis approach provides utilities with a concise snapshot of recurrent water use routines from smart meter data and can be used to support customized demand management strategies.TU Berlin, Open-Access-Mittel - 201

    Low NO sub x heavy fuel combustor concept program

    Get PDF
    A gas turbine technology program to improve and optimize the staged rich lean low NOx combustor concept is described. Subscale combustor tests to develop the design information for optimization of the fuel preparation, rich burn, quick air quench, and lean burn steps of the combustion process were run. The program provides information for the design of high pressure full scale gas turbine combustors capable of providing environmentally clean combustion of minimally of minimally processed and synthetic fuels. It is concluded that liquid fuel atomization and mixing, rich zone stoichiometry, rich zone liner cooling, rich zone residence time, and quench zone stoichiometry are important considerations in the design and scale up of the rich lean combustor

    Design and Optimization of Meta-Ferrites for Antenna Applications

    Get PDF
    PhDThis thesis aims to study the design and optimization of Metamaterial Ferrite (metaferrite) structures for antenna applications. These techniques are primarily focused on various forms of the Genetic Algorithm methods. The motivation for this is to provide generic design tools that will be transformed to the industry for further development of the field, especially for the design of low profile antennas. Several possible applications of this technology have been investigated. Antenna size reduction on platforms with low radar cross sections (RCS) is essential for many practical applications and through metamaterials antennas and associated platforms can be co-designed and optimized. Metamaterials are artificially designed electromagnetic materials or structures which possess properties not existing in nature. Examples include left-handed materials with simultaneous negative permittivity and permeability and zero index media etc. In this project we are particularly interested in the development of two-dimensional metamaterials or “metasurfaces” with the same function as conventional magnetic or magneto-dielectric materials. Ferrites, often used in the design of non-reciprocal microwave devices such as isolators and circulators, are bulky, heavy and lossy for antenna applications. Impedance matched media have been widely used in the design of low-profile antennas and radar absorbers with losses added. Metamaterials and metasurfaces can mimic ferrites at microwave frequencies. These “metaferrites” have attracted interest from academic and industrial communities. In this thesis, a genetic algorithm (GA) is developed incorporated with commercial electromagnetic modelling tools, namely CST Microwave Studio. Antennas with ferrites have been characterized and unique functionalities have been explored. Sample structures have been made based on conventional printed circuit board (PCB) and ink-jet printing technologies. In addition, these structures have been used to augment U-slot patch antennae and the advantages of doing so have been measured. In addition, a new concept of hyperuniform randomness has been applied to the design of metasurfaces with the intention of comparing metaferrite performance with an alternate method aimed at similar goals. It has been demonstrated by numerical simulations that superior properties such as RCS reduction can be achieved with the consideration of trade-offs between the modelling complexity and the device performance.BAE systems and Engineering and Physical Sciences Research Council

    Active inference, evidence accumulation, and the urn task

    Get PDF
    Deciding how much evidence to accumulate before making a decision is a problem we and other animals often face, but one that is not completely understood. This issue is particularly important because a tendency to sample less information (often known as reflection impulsivity) is a feature in several psychopathologies, such as psychosis. A formal understanding of information sampling may therefore clarify the computational anatomy of psychopathology. In this theoretical letter, we consider evidence accumulation in terms of active (Bayesian) inference using a generic model of Markov decision processes. Here, agents are equipped with beliefs about their own behavior--in this case, that they will make informed decisions. Normative decision making is then modeled using variational Bayes to minimize surprise about choice outcomes. Under this scheme, different facets of belief updating map naturally onto the functional anatomy of the brain (at least at a heuristic level). Of particular interest is the key role played by the expected precision of beliefs about control, which we have previously suggested may be encoded by dopaminergic neurons in the midbrain. We show that manipulating expected precision strongly affects how much information an agent characteristically samples, and thus provides a possible link between impulsivity and dopaminergic dysfunction. Our study therefore represents a step toward understanding evidence accumulation in terms of neurobiologically plausible Bayesian inference and may cast light on why this process is disordered in psychopathology

    Registration of WS4U and WS8U Switchgrass Germplasms

    Get PDF
    Two upland switchgrass (Panicum virgatum L.) germplasm pools, WS4U (Reg. no. GP-92, PI 639191) and WS8U (Reg. no. GP-93, PI 639192), were released cooperatively on 18 July 2002 by the University of Wisconsin, University of Nebraska, and the USDA-ARS, Lincoln, NE. These germplasms were developed as source material to be used in developing cultivars with increased biomass yield and geographic adaptation for bioenergy production in USDA hardiness zones 3 and 4 in the northern USA and similar geographic regions of southern Canada. WS4U is a tetraploid (2n = 4x = 36) and WS8U is an octoploid (2n = 8x = 72)

    Recreation value of a new long-distance walking track

    Get PDF
    A large recreation value may be expected for a long-distance walking track which allows for hiking and camping in a tropical rainforest environment. When such a resource is new, sufficient data are not available for a primary study. A practical way to obtain a value estimate is by employing benefit transfer procedures. Using a travel cost analysis for the Thorsborne Trail as the transfer source, a consumer surplus estimate for the new Cannabullen Track was estimated at about Aus$300 per person per year. This value may contribute to management decisions about further development of facilities along the track and about user fees

    Executable Architectures and their Application to a Geographically Distributed Air Operations Center

    Get PDF
    Integrated Architectures and Network Centric Warfare represent two central concepts in the Department of Defense\u27s (DoD) on-going transformation. The true power of integrated architectures is brought to bear when they are combined with simulation to move beyond a static representation and create an executable architecture. This architecture can then be used to experiment with system configurations and parameter values to guide employment decisions. The process of developing and utilizing an executable architecture will be employed to assess an Air Operations Center (AOC). This thesis applies and expands upon the methodology of Dr. Alexander Levis, former Chief Scientist of the Air Force, to the static architecture representing the Aerospace Operations Center (AOC). Using Colored Petri Nets and other simulation tools, an executable architecture for the AOC\u27s Air Tasking Order (ATO) production thread was developed. These models were then used to compare the performance of a current, forward-deployed AOC configuration to three other potential configurations that utilize a network centric environment to deploy a portion of the AOC and provide reach-back capabilities to the non-deployed units. Performance was measured by the amount of time required to execute the ATO cycle under each configuration. Communication requirements were analyzed for each configuration and stochastic delays were modeled for all transactions in which requirements could not be met due to the physical configuration of the AOC elements. All four configurations were found to exhibit statistically different behavior with regard to ATO cycle time
    • 

    corecore