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Abstract 

This thesis aims to study the design and optimization of Metamaterial Ferrite 

(metaferrite) structures for antenna applications. These techniques are primarily focused on 

various forms of the Genetic Algorithm methods. The motivation for this is to provide 

generic design tools that will be transformed to the industry for further development of the 

field, especially for the design of low profile antennas. Several possible applications of this 

technology have been investigated. 

Antenna size reduction on platforms with low radar cross sections (RCS) is essential 

for many practical applications and through metamaterials antennas and associated platforms 

can be co-designed and optimized. Metamaterials are artificially designed electromagnetic 

materials or structures which possess properties not existing in nature. Examples include left-

handed materials with simultaneous negative permittivity and permeability and zero index 

media etc. In this project we are particularly interested in the development of two-

dimensional metamaterials or “metasurfaces” with the same function as conventional 

magnetic or magneto-dielectric materials. Ferrites, often used in the design of non-reciprocal 

microwave devices such as isolators and circulators, are bulky, heavy and lossy for antenna 

applications. Impedance matched media have been widely used in the design of low-profile 

antennas and radar absorbers with losses added. Metamaterials and metasurfaces can mimic 

ferrites at microwave frequencies. These “metaferrites” have attracted interest from academic 

and industrial communities. In this thesis, a genetic algorithm (GA) is developed incorporated 

with commercial electromagnetic modelling tools, namely CST Microwave Studio. Antennas 

with ferrites have been characterized and unique functionalities have been explored. Sample 

structures have been made based on conventional printed circuit board (PCB) and ink-jet 

printing technologies. In addition, these structures have been used to augment U-slot patch 

antennae and the advantages of doing so have been measured.  

In addition, a new concept of hyperuniform randomness has been applied to the 

design of metasurfaces with the intention of comparing metaferrite performance with an 

alternate method aimed at similar goals. It has been demonstrated by numerical simulations 

that superior properties such as RCS reduction can be achieved with the consideration of 

trade-offs between the modelling complexity and the device performance.  
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Chapter 1: Introduction 

1.1: Background 

Magnetic materials are a class of material that display the unusual property being able 

to hold a permanent magnetic field. The origin of this force is the same process that causes 

electromagnetic phenomena, namely moving electrical currents. In this case it is the orbiting 

electrons of their atoms that produce small magnetic dipoles. This occurs in all materials, but 

in most the dipoles are randomly oriented and thus cancel each other out when observed at 

macroscopic scales. In a magnetic material these dipoles can become aligned, greatly 

magnifying the effect. These aligned dipoles can do more than simply exert a force, and so 

magnetic materials have seen their use in electronics for many years in a variety of forms. 

The most overt uses typically rely either on the forces magnets can exert or their ability to 

induce currents in metals when in motion. These effects are exploited by motors, generators 

(essentially a motor run in reverse) and electromagnets. There are also a multitude of less 

obvious applications, such as transformers, sensors, speakers and various other circuit 

components. It is this latter category of use that is of interest to this thesis.  

Since they were first synthesised in the 1930s by Yogoro Kato and Takeshi Takei of 

the Tokyo Institute of Technology [1], magnetic materials used for electrical components 

have most commonly been in the form of ferrites. A ferrite is a ceramic compound of iron 

oxide and one or more metallic elements [2]. They are so called because they display 

ferrimagnetic properties, which mean that they possess the properties required to become 

permanently magnetised. Unlike purely metallic magnetic materials, however, ferrites are 

electrically non-conductive, and since they can be made to be either low-loss or as good 

absorbers, this has led to a wide range of applications. The tasks for which a ferrite will be 

suitable are determined by its composition. Adding nickel, zinc and manganese results in low 

coercivity compounds known as soft ferrites. Soft ferrites are useful for making transformers 

or electromagnetic cores because their low coercivity means that their magnetisation can 

change direction with minimal dissipation of energy. Adding strontium and barium, by 

contrast, results in hard ferrites, which have high coercivity and high remanence after 

magnetisation, making such compounds useful in creating permanent magnets [3].Their low 

cost ensures such magnets are common, and widely used in household products. Ferrites are 

also used as inductors, and are used in circuits as low noise amplifiers, filters, and impedance 

matching networks. [4] 
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There are, however, a few drawbacks to ferrite materials. They tend to be brittle [5], 

and devices that use them tend to be rather large and cumbersome, often as a consequence of 

the gaps that need to be left between components for reasons of destructive interference or to 

address other concerns such as residual magnetism when the device is switched off, which 

could potentially interfere with its construction or functionality. For some applications, the 

persistent magnetic properties are not a problem, and in some they are exactly what you want. 

It is this property that allows for magnetic data storage, for example. In others devices, on the 

other hand, the ferrimagnets are used for other purposes that rely on their electronic 

properties alone. In cases such as this it is often more advantageous to have a ferrimagnet that 

does not display any actual magnetism, or one which you can switch off entirely. This is 

where metamaterial ferrites or “metaferrites”, the topic of this thesis, come in. 

Genetic algorithms were first proposed in 1950 by Alan Turing [6], and the technique 

was first put into practice by Nils Aall Barricelli four years later [7]. There are, however, a 

few drawbacks to the technique. Repeatedly testing via a single fitness function can be 

limiting for multi-dimensional problems, and the function required may take a prohibitively 

long time to evaluate by itself. This is, of course, compounded by the repetitive nature of the 

algorithm. In some cases an exact solution must be forgone in favour of a more 

computationally efficient approximated function. Another issue is how Genetic Algorithms 

scale with complexity. Each possible variable investigated increases the design space 

exponentially, which has a corresponding effect on the computational load. It is for this 

reason that genetic algorithms commonly focus on designing individual components of items 

rather than the entire system. Genetic algorithms are also susceptible to an issue seen in real 

evolution, in that they can easily become trapped at local optima to a problem. They cannot 

backtrack; passing though the less optimal designs that would lead to a greater global 

optimum. This issue has a few solutions that can be implemented to combat it, often 

involving a periodic injection of more randomised solutions into the algorithm in order to 

promote a greater diversity in the population.  

1.2: State of the Art and Challenges 

Up to now, metaferrites have already emerged as a fairly well-established subject area 

of study. While they have been in vogue for a little over a decade and a half, there were a few 

papers detailing the design process but very few with experimental demonstrations [8] [9]. 

Most often, these have taken the form of rotationally symmetry such as those patterned high 
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impedance surfaces, both with and without multiple lines of symmetry. Some of these 

techniques will be explored with greater detail in Chapter 2.  

It is not uncommon for some sort of computational optimisation to be involved in the 

design of such structures. Computational optimisation can take a large number of different 

forms, but much of the work on metaferrites specifically has used a particular type of 

optimisation technique known as the Genetic Algorithm.  

At present, there have been several papers detailing the simulation of metaferrites, but 

very few, if any, that follow this line of thought through to actual fabrication. The most 

common method of designing these structures is by the use of the Genetic Algorithm 

technique, which allows for specific goals in regards to material responses to be focused 

upon. 

Ferrimagnetic metamaterials, also known as Metamaterial Ferrites, Metaferrites or 

Artificial Magnetic Conductors, are a moderately new technology. Their development came 

about as an attempt to mimic the electromagnetic properties of ferrimagnetic materials, i.e., 

ones that do not rely on their ability to actually exert forces on objects. Therefore, a key 

feature of metaferrites is that they are able to provide magnetic properties of materials while 

being “magnet free”.  

In practice, to design “metaferrites” typically involves producing periodic structures 

with similar permeability and permittivity profiles, so that their characteristic impedance can 

be matched to that of the free space. Metaferrites often take the form of high-impedance 

frequency selective surface structures [8] designed in such a way as to mimic the properties 

of a thin ferromagnetic slab backed by PEC, but there are many other forms they could 

potentially take. 

This thesis chronicles an attempt to design metamaterial ferrites, exploring various 

possible methods based on computational and optimisation techniques, novel material 

processing and manufacturing techniques. A particular focus was given to the genetic 

algorithm method. Once designed by this method, the structures were fabricated through 

several different techniques using various materials. The results of this fabrication were 

analysed and compared to those predicted by simulations in order to assess the quality of 

both, and this analysis informed the further development of the project.  
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Ultimately, of the various materials and substrates simulated, it was determined that 

copper on an FR4 substrate would be most optimal for the purposes. This was largely because 

it was the material whose manufacturing process proved easiest to employ consistently, 

which is vital for providing consistent results in the finished product. There were other 

materials, such as silver ink, which performed at a comparable level in simulation but whose 

application proved difficult and expensive.  

The motivation for this project is the range of applications to which metamaterial 

ferrite surface can be applied. From antennas to absorbers, metaferrites can provide solutions 

to many problems and their development could open the doors to new technologies in the 

future. 

Genetic Algorithms are a tried and tested optimisation method that, at its most basic, 

works in a manner not entirely dissimilar to the way a farmer might selectively breed 

livestock, hence the name. It begins by taking a large sample of possible solutions, and then 

determines which of them is the closest to a given trait that one hopes to maximise. It 

generally does this by referring to something called a Fitness Function, which is a function 

which has a minimum (or maximum, in some cases) at the desired value. Once it has ranked 

the solutions by quality it then forms a second generation by combining the best solutions 

together in a manner that will hopefully result in improved performance. This continues over 

the course of multiple generations, with each hopefully being closer to the goal than the last, 

until a solution that corresponds to the desired parameters is arrived upon.  

A similar nature-inspired optimisation technique is the Particle Swarm [10]. This 

technique is intended to replicate the behaviour of large groups of animals, such as a flock of 

birds seeking food. Each particle moves independently, but at the same time is programmed 

to slowly converge on the best solution any other particle has found in a given solution space. 

Metaheuristic algorithms such as particle swarms have several advantages and disadvantages. 

One advantage is that PSO makes very few assumptions about the problem it is presented 

with, which makes it an extremely versatile technique. It also has the capacity to search 

extremely large design spaces. The primary downside of the technique, and of metaheuristic 

algorithms in general, is that there is no way to guarantee that it will ever find the global 

optimum of the problem.  

An Artificial Bee Colony (ABC) algorithm [11] is somewhat similar to a particle 

swarm, but mimics the foraging techniques of bees specifically, which are somewhat more 
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organised than that of birds or other flocking animals. Within a real beehive’s society there 

are a number of “scout” bees, whose job it is to wander around more or less at random to find 

new potential food sources. If they find any they will return to the hive and communicate the 

location and quality to the other bees via a “waggle dance”, before returning to the food 

source with a small group of other bees in order to harvest it. An Artificial Bee Colony [11] 

works similarly. It consists of half “employed” bees and half “onlooker” bees, with a number 

of bees equal to the solutions being analysed. The onlooker bees take the role similar to that 

of the Fitness Function of genetic algorithms described earlier, evaluating the quality of 

solutions and directing employed bees to “gather” solutions around the best ones. A subset of 

employed bees are “scout” bees which, much like their real-world counterparts, move around 

solutions randomly in order to allow the algorithm to find solutions better than its current 

crop.  

This thesis will primarily focus on discussion of the Genetic Algorithm technique, as 

this was a technique that had previously been applied to the problem with a degree of 

success, and it was felt that this would provide a foundation on which to build a novel 

expansion of the topic. For this reason genetic algorithms were the technique ultimately used 

in the generation of metaferrite designs. Further details of these techniques, as well as a 

detailed recount of the process by which a bespoke algorithm was constructed, are presented 

in chapter 3. 

Genetic Algorithms and the various Particle Swarm techniques belong to a class of 

algorithms collectively known as Machine Learning [11]. In a more general sense, Machine 

Learning is a term that refers to a variety of computational techniques that have an ultimate 

goal in common: they are designed to allow computers to autonomously process information 

and make decisions that they were not explicitly programmed to make. In other words, it 

forms the basis of artificial intelligence.  

Aside from those already mentioned, machine learning techniques also include 

Cluster Analysis, Dimensionality Reduction, Support Vector Machines, Artificial Neural 

Networks and Decision Trees [12], [13], [14], [15]. Each of these techniques is further sub-

divided into several more specialised forms of machine learning designed to focus on a 

particular type of problem. When a single technique proves insufficient, multiple different 

methods can also be combined together. This technique is known as Ensemble Learning [16], 

and it has the advantage of providing a greater predictive accuracy much of the time.  
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Among the aforementioned alternate machine learning techniques, cluster analysis is 

most relevant here. Cluster analysis is a process by which the computer can sort data into 

smaller sets based on various traits. As a form of unsupervised learning these traits would be 

determined by the program itself through so-called “similarity measures” [17], which simply 

evaluate traits that certain members of the data population have in common. Cluster analysis 

can be used to increase the efficiency of a genetic algorithm by identifying key features of 

generated solutions and mapping them to the generated results. This would allow the 

computer to predict what result a given solution would give without analysing it directly, 

saving it from wasting time on non-viable candidates.  

Given the high-variable nature of the problem, employing dimensionality reduction 

would also be an option. Dimensionality reduction is a technique by which high-

dimensionality data (that is, data with a high quantity of interconnected variables) is 

simplified by identifying which of those variables is least relevant, and has least effect on the 

data, and systematically ignoring them [18]. This can lead to less precise results, but in some 

cases the approximation is necessary in order to render other techniques viable, such as the 

aforementioned genetic algorithms and cluster analysis. Both of these require low-

dimensionality problems, as too much complexity will increase the computational load at an 

exponential rate.  

The other forms of machine learning also have potential. Neural networks are most 

often used in data mining and search engines, compiling vast quantities of data and can reach 

such complexity that not even their creators can entirely explain how they work. This is a 

drawback of machine learning in general, of course, and one that is very much amplified as 

the complexity of the algorithms increases, but nonetheless applications of this technique 

could be explored in future work.  

1.3: Contributions 

This thesis deals with the construction of a genetic algorithm intended to design 

metamaterial ferrites for use with antennas and other similar devices.  

Several of the structures designed via genetic algorithm were fabricated using a 

variety of methods, in order to validate the results of simulation and to provide insights into 

how to improve it. It also served to guide the initial parameters of the simulation in matters 

such as materials. 



21 
 

Two different conducting materials were used for this fabrication: Silver and Copper. 

The silver took the form of silver ink, deposited on a PET substrate by the inkjet printing 

method. The copper structure was instead made by applying a thin layer of copper to an FR4 

substrate and carefully removing metal until only the desired design was left behind. 

In both cases, a new simulation had to be made to design the structure in question, as 

the differing materials involved meant that the same design was not guaranteed to have the 

same response for both materials. This also meant that a direct comparison of the two 

methods using the same structure was impossible.  

1.4 Structure of the Thesis 

The thesis is organised as follows: 

Following this first introductory chapter, Chapter Two deals with an overview of 

metaferrites and artificial magnetic conductors. This includes a review of several other papers 

that have previously covered the topic. A particular focus is given to those primarily dealing 

with the design similar to the High-Impedance Frequency Selective Surface, along with 

attempts to obtain optimized results involving other antenna parameters such as size 

reduction, bandwidth and gain enhancement.  

The third chapter concerns itself with various computational optimization techniques, 

including Genetic Algorithms. It also details an account of the development of a novel 

genetic algorithm design and several macros to integrate it with commercial software for the 

purposes of building and analyzing arbitrary electromagnetic structures. It presents a fairly 

comprehensive rundown of the programming process, as well as some design examples. This 

chapter also includes the procedure by which the genetic algorithm’s function was tested and 

evaluated. 

Chapter Four concerns the development of the particular design of metaferrite 

produced by the proposed design and optimisation techniques, along with the theoretical 

basis for the parameters chosen for the final demonstration. It also includes the detail of 

several measurements to validate the design and optimisation approach with several 

metaferrites samples.  

The fifth chapter deals with the design of hyperuniform metamaterial structures, 

focusing on a comparison of the performance of angular dipole antennae when arranged in a 
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periodic, random or hyperuniform distribution. There is particular attention given to the 

farfield response of these structures.  

The sixth chapter details the fabrication procedures used to build physical 

representations of those designs generated by the genetic algorithm that were deemed to be of 

sufficient quality, as well as the results derived from the analysis of these structures and the 

insights thereby gained.  

Finally, the seventh chapter provides a summary of the project, assessing what 

worked, what did not, and evaluating the results produced. It also concerns itself with a 

discussion of what possible directions that continuations of this project in the future. Several 

options for future topics of study are presented; along with what scenarios would likely drive 

projects down that particular road.  
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Chapter 2: Review of Metaferrites 

2.1: Overview 

Metamaterial ferrites or metaferrites, sometimes also referred as to artificial magnetic 

conductors, consist of periodically repeating structures that mimic the properties of magnetic 

materials, but do not actually contain any [1]. They are characterised by a frequency band 

over which surface waves cannot propagate and very high surface impedance within a limited 

frequency range where the tangential magnetic field is small [1]. Neither of these properties 

are typically found in nature, and it is for this reason that metaferrites are considered a class 

of metamaterials [2].  

Metaferrites have a number of uses in applications such as low profile, high gain 

antennas [3] and improved microwave cavities for use in atomic clocks [4]. They typically 

consist of periodic structures of two or more layers of metal sandwiching a dielectric 

substrate [2], [4], [5]. The exact pattern of the structure influences its electrical properties and 

it is this pattern design that is typically the subject of research for metaferrites. This thesis is 

no exception, and this aspect is elaborated in great detail throughout  

2.1.1: Metaferrites as High-Impedance Surfaces 

It is common for metaferrites to take the form of a high-impedance surface [6]. High-

impedance surfaces work by acting as a densely packed series of capacitors and inductors, 

forming parallel resonant LC circuits (as seen in figure 2.1). [7] These circuits act as 

electrical filters, forcing the current to repeatedly charge and discharge the capacitor 

components, thereby slowing the flow of current and creating the high surface impedance that 

the structure is named for [8]. This means that when used as the back plate of a one-

directional transmitter it will provide the benefit of preventing phase shift during radiative 

reflection, eliminating the destructive interference which normally occurs if  the antenna is 

placed less than half a wavelength away [9]. Since the antenna can be placed much closer to 

the back plate, the entire device can in turn be made with a much lower profile than is 

currently possible with conventional technologies [10]. 
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One of the simplest possible forms that a high impedance surface can take consists of 

a repeating pattern of squares connected through a dielectric substrate to a solid backing 

plate. [12] This structure is characterised by a high surface impedance at particular resonance 

frequency, which can be adjusted through the size and spacing of the square patches as seen 

in figure 2.2.   

The downside to such a simplistic design is the limited design space it grants. There 

are essentially just a few interconnected variables, such as the size and number of the square 

tiles and how far apart they are. A far greater range of material responses can be achieved 

with more complex high impedance structures [2], [4], [5].  

 

 

 

 

Figure 2.1: Simple diagram of an LC circuit [11] 

showing the capacitor (right) and inductor (left) 
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2.1.2: Theoretical Basis 

Mathematically speaking, a metaferrite should behave as a ferrite does in the context 

of the application it is being used for. This means that different structures may be considered 

metaferrites in different contexts. The ones designed in this thesis aimed to enhance the 

performance of antennas placed in front of them by enhancing bandwith and reducing radar 

cross section.  

The reflection of a ferrite of this type is related to its surface impedance by the 

equation  

𝑍 = 𝑍0 ×
1 + 𝑆11

1 − 𝑆11
                                                                     (2.1) 

Figure 2.2: Typical example of a simple high impedance surface structure 
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and so the key to producing a structure that mimics the ferrite in performance is to 

manipulate the surface impedance in such a way that the two match. This can be done by 

manipulating the permeability of the structure via its surface resistance and reactance [2], 

which is given by:  

𝜇′𝑟 =
𝑋𝑆1

𝜂0𝛽0𝑑
                                                                             (2.2) 

𝜇′′𝑟 =
𝑅𝑆1

𝜂0𝛽0𝑑
                                                                            (2.3) 

 

where 𝜇′
𝑟

 is the real permeability of the structure and 𝜇′′
𝑟
  is the imaginary 

permeability. These are in turn derived from the surface impedance via 

 

𝑍𝑆1 = 𝑅𝑆1 + 𝑗𝑋𝑆1                                                                          (2.4) 

 

One method by which metaferrites are commonly designed is through the use of 

computational optimisation [13]. This is useful due to the increased complexity of the 

structures that may be required to produce certain material responses [2], [4], [5], [14]. In 

some cases the amount of potential variables explodes to such a degree that analytical 

solutions become all but impossible, and there are many cases where human creativity cannot 

match the brute force trial and error approach a computer can muster. 

Computational optimisation was the approach used in a paper by Douglas Kern, 

Douglas Werner and Mikhail Lisovich. [2] In it, the three outline a method by which they 

designed a metaferrite structure of high impedance types via the Genetic Algorithm method.  

Their objective was to minimise the loss of the system whilst setting the permeability 

to a pre-defined value of 10. To this end, they determined a fitness function to drive this goal 

such that 

𝐹𝐹 = − [(𝜇′
𝑟

− 10)
2

+ 𝜇′′
𝑟
]                                                        (2.5) 

As with any Genetic Algorithm, the objective is to find the global minimum of this 

function. This will correspond to the design with the desired parameters. 
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Assuming that this equivalent circuit model holds, RS1 and XS1 can be calculated using 

the equations  

𝑅𝑆1 =
𝜔𝐿𝐴

𝐴2 + 𝐵2
                                                                           (2.6) 

𝑋𝑆1 =
𝜔𝐿𝐵

𝐴2 + 𝐵2
                                                                           (2.7) 

where 

𝐴 =
𝜔𝐿

𝑅
                                                                                  (2.8) 

𝐵 = 1 − (
𝜔

𝜔0
)

2

                                                                          (2.9) 

𝜔0 =
1

√𝐿𝐶
                                                                               (2.10) 

Here R, L and C are the resistance, inductance and capacitance of the structure.  

By comparison, the surface impedance for the structure which Kern et al was 

attempting to emulate is given by  

𝑍𝑆2 = 𝑍𝑡𝑎𝑛ℎ(𝛾𝑑)                                                                     (2.11) 

Where 

𝑍 = 𝜂0√𝜇𝑟                                                                          (2.12) 

𝛾 = 𝑗𝛽0√𝜇𝑟                                                                       (2.13)  

Since having the latter emulate the former is the goal here, the next step is to set these 

two equations to the same value of surface impedance, so the characteristic equation becomes 

𝑅𝑆1 + 𝑗𝑋𝑆1 = 𝜂0√𝜇′𝑟 − 𝑗𝜇′′𝑟 𝑡𝑎𝑛ℎ (𝑗𝛽0𝑑√𝜇′𝑟 − 𝑗𝜇′′𝑟)                                   (2.14) 

Taking the small angle approximation one can assume that   𝑡𝑎𝑛ℎ(𝑥) ≈ 𝑥 , which 

allows this equation to be split into equations (2) and (3).  

Kern et al’s Genetic Algorithm using these parameters has led to the design of such a 

structure with the unit cell depicted in figure 3. This structure has a characteristic eightfold 
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symmetry, brought about by the method of its construction. This is useful, as it reduces the 

computational load on the GA. As such, this feature was utilised in the designs created by the 

genetic algorithm developed in this project. 

Kern et al’s paper [2] was largely theoretical in nature. None of the structures were 

actually fabricated, and as such this project saw an opportunity to extend and validate this 

research by both simulating a metaferrite structure using similar methods and design 

parameters and also fabricating said structures for practical applications. 

 

 

 

 

 

 

 

Figure 2.3: Unit cell with size 1.403 x 1.403 cm, a dielectric constant of 12.79 – j 

0.0006 [1] and a substrate thickness of 4.65 mm. These parameters combine to 

give it the same electrical response of a slab of ferrite material about 1mm thick.  
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2.1.3: Alternative Designs 

This paper was also included as part of a dissertation [15] that went on to expand the 

idea into matched impedance metamaterials. This involves so-called magneto-dielectric 

substrates, which are defined as being those that have permeability and permittivity equal for 

a given frequency or narrow band thereof. The design procedure itself was similar to that 

used in standard metaferrites.  

Another avenue pursued in that particular dissertation [15] concerned reconfigurable 

Artificial Magnetic Conductors, which like the previous examples were based on Frequency 

Selective Surface (FSS) structures. The reconfigurable nature of the structures is achieved by 

building them in the form of a fixed 8x8 grid of metal crosses linked by a matrix of switches 

which can be used to change the filter response of the device. The genetic algorithm 

employed to design them was constrained by a fixed unit cell size, dielectric constant and 

substrate thickness, and cell geometry was only permitted to change based upon the 

configuration of the aforementioned binary switches.  

These parameters allowed the same structure to mimic the configuration derived for 

multiple mutually-exclusive parameters, switching between them at the touch of a button.  

The fitness function chosen for the metaferrite design was given by  

FF = − max(ϕTE, ϕTM)                                                                 (2.15) 

Where 𝜙𝑇𝐸  and 𝜙𝑇𝑀  are the reflection phases of the TE and TM response, respectively. 

Optimising the structure to act as an absorber, on the other hand, requires a different variant 

of the fitness function, this time given by equation 15 
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𝐹𝐹 =
1

∑ [0.2|Γ| + 0.8∠Γ]𝑓𝑟𝑒𝑞
                                                      (2.16) 

which, as one can see, requires an entirely different set of input parameters, this time 

based on the reflection coefficient directly. 

2.1.4: Other Designs 

Another variant of metaferrite were presented in Daniel Sievenpiper’s thesis on High-

Impedance Electromagnetic Surfaces. [4] An attempt was made to replicate the design 

presented in [4] using CST’s eigenmode solver, as at the time there was consideration 

towards using a solver of this nature throughout the project. This notion was ultimately put to 

Figure 2.4: Example of reconfigurable metaferrite structure showing fixed 

cross-shaped components (black) and adjustable switches (red) 
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one side once the GA program approached completion, as the frequency domain solver 

proved more in line with the project’s needs.  

The structure dubbed as “Sivenpiper’s Mushroom” is shown in figure 5. The 

hexagonal pattern of the structure meant that the standard square unit cell would be difficult 

to implement. It could theoretically be done by carefully selecting a square portion of the 

structure to copy, but the precision required to ensure proper tessellation would be 

impractical. 

 

 

As such, a modified approach was deemed to be necessary. To that end two 

competing solutions to that issue rose to prominence, and it was decided that it would be 

worthwhile to implement both in parallel in order to properly assess their respective merits 

and flaws.  

The first solution was to use a rhombic unit cell shape rather than a rectangular one. 

Doing this also required that unit cell structure be designed such that it would tessellate 

properly when repeated across the boundaries to form the full structure. This ultimately led to 

a three-hexagon structure carefully aligned with the edges of the rhombic boundary.  

Said structure is shown in figure 2.6, below.  

Figure 2.5: Perspective view of a hexagonal two –layer printed “mushroom” 

design, as seen in Sievenpiper’s thesis paper. [3] 
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Figure 2.7: The structure designed to ensure tessellation whilst 

keeping the hexagonal panels as single objects (below) 

Figure 2.6: Rhombic unit cell structure. 
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A unit-cell design is inherently not quite the same as the original, since it goes on 

infinitely instead of having a finite size, and in the rhombic unit cell specifically there are 

several points where the substrate overlaps with the substrate of adjacent cells. The results 

gathered by this simulation, shown in figure 2.11 and figure 2.12, seemed to indicate that 

these were not huge problems, but there was some evidence of an amplification of the results 

brought about by this compromise.  

The other solution involved preserving a more conventional rectangular cell design by 

slightly altering the structure itself. This took the form of strategically bisecting the 

hexagonal sections and vias such that the same pattern would be constructed when the unit 

cell was expanded to the full structure. This had the downside of introducing small 

discontinuities in the pattern at the edges of the unit cells.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8: Rectangular Unit cell structure  
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Both of the methods presented here rely on approximations that distort the design of 

the surface in some way. Naturally, these approximations could have a knock-on effect in the 

simulated results. One of the purposes of this exercise was to ascertain which method 

produced the greatest deviation from reality, and how large those deviations were.  

To this end, a dispersion diagram was constructed for each method. In both cases, this 

was compared to one theoretically-derived via the Effective Medium Model, as seen in figure 

2.10. In both cases, the dispersion bears a resemblance to that model, as shown in figures 

2.11 and 2.12, although only the rhombic unit cell could really be considered a strong match, 

with clearly identifiable analogous features. On a quantitative level, both predict a resonance 

frequency for their respective structure at around 3 to 4 GHz. This is consistent with other 

measurements taken of the two. Both diagrams also predict several more TE waves at higher 

frequencies. The rhombic unit cell response bears closer resemblance to the theoretical model 

than the rectangular one regarding the overall shape of these TE response diagrams, possibly 

as a result of the lack of discontinuities in the metallic sections.  

Figure 2.9: A demonstration of the continuity of hexagonal 

panels achieved using rectangular cell structure  
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Figure 2.10: Prediction of effective medium model [3] of the relationship between wave 

vector and frequency for a structure like that in Sievenpiper’s paper. 

Figure 2.11: Results of CST’s Eigenmode solver analysis of the 

rhombic unit cell hexagonal pattern structure. 
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2.2: Summary 

This chapter deals with the theory behind metaferrite structures, with a focus on high 

impedance surfaces which comprise the bulk of such structures attempted in the past. High 

impedance surfaces can be understood using the parallel LC circuit model, which casts them 

as an array of interconnected inductors and capacitors.  

The chapter then details several papers that focused on their design and manufacture, 

along with an attempt to replicate one such structure in CST, which took the form of an array 

of hexagonal tiles connected to a backplate with vias. Due to the shape of the structure 

impeding the use of a standard unit cell design, an exploration was made of two alternate 

methods of using an infinitely repeating unit cell structure, either with a conventional 

Figure 2.12: Results of CST’s Eigenmode solver analysis of the 

rectangular unit cell hexagonal pattern structure. 
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rectangular cell which bisected the surface and a rhombic unit cell that left it intact. These 

two methods were compared and evaluated.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



40 
 

2.3: References 

[1] H . Zhou, F.  Xu, “Artificial magnetic conductor and its application”, 2013 Proceedings of 

the International Symposium on Antennas & Propagation, October 2013 

 [2] D.J. Kern,. D. H. Werner, M. Lisovich, “Metaferrites: Using Electromagnetic Bandgap 

Structures to Synthesize Metamaterial Ferrites” IEEE Transactions on Antennas and 

Propagation Volume 53 Issue 4, April 2005  

[3] S.A. Attachi, C. Saleh, M Bouzouad, “Microstrip Antenna Gain Enhancement With 

Metamaterial Radome”, Applied Physics A 123(1) January 2017  

[4] D. F.  Sievenpiper, “High-Impedance Electromagnetic Surfaces: A dissertation in partial 

satisfaction of the requirements for the degree of Doctor of Philosophy in Electrical 

Engineering,” 1999.  

[5] O. Rybin, “Effective microwave magnetic response of two-component metaferrite” 

International Journal of Applied Electromagnetics and Mechanics, vol. 40, no. 3, November 

2012 

[6] F. Linot R. Cousin X. Begaud, “Design and measurement of High Impedance Surface” 

Proceedings of the Fourth European Conference on Antennas and Propagation, April 2010  

[7] G. Expósito, J.M. Fernández P. Padilla M. Sierra-Castaner, “EBG Size Reduction for Low 

Permittivity Substrates” International Journal of Antennas and Propagation 2012:1-8, 

December 2012 

[8]N. Friedrich,. "High-Impedance Electromagnetic Surface improves antenna performance". 

Microwaves & RF magazine. pp. 62, May 2007 

[9] D. Sievenpiper, L. Zhang, R.F.J Broas. N.G Alexopolous,. E Yablonovitch,.; et al. "High-

Impedance Electromagnetic Surfaces with a Forbidden Frequency Band" IEEE Transactions 

on Microwave Theory and Techniques. 47, November 1999 

[10] J. R Sohn, K. Y. Kim, H-S Tae, H. J Lee,. et al.. "Comparative study on various artificial 

magnetic conductors for low-profile antenna" Progress in Electromagnetics Research. 61: 

27–37, 2006 

[11] First Harmonic, https://commons.wikimedia.org/w/index.php?curid=21991221, October 

2012, accessed June 2018 

 [12] Z. Hao, S. Saadat, H. Mosallaei, “FDTD-SPICE for Characterizing Metamaterials 

Integrated with Electronic Circuits” International Journal of Antennas and Propagation 

2012(1687-5869), August 2012 

[13] X..S. Yang S. Koziel, "Computational Optimization: An Overview” Computational 

Optimization, Methods and Algorithms pp 1-11, June 2011 

https://commons.wikimedia.org/w/index.php?curid=21991221


41 
 

[14] Z.Bayraktar,  M. D. Gregory, X. Wang, D. H. Werner, “Matched Impedance Thin Planar 

Composite Magneto-Dielectric Metasurfaces”, IEEE Transactions on Antennas and 

Propagation,  Volume 60 Issue 4, April 2012.  

[15] D. Kern, “Advancements in Artificial Magnetic Conductor Design for Improved 

Performance and Antenna Applications”, Dissertation Abstracts International, Volume: 70-

11, 2009 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



42 
 

Chapter 3: Computational Optimisation Techniques 

3.1: Overview 

Computational optimisation is a powerful technique that allows researchers to design 

new and innovative solutions to problems by rapidly generating and testing potential 

solutions at a rate that no human could ever accomplish [1]. It essentially allows for 

automated “trial and error” exploration of problems at an industrial scale, potentially 

providing unique solutions that many would otherwise not even think to attempt [1].  

By and large, all computational optimisation techniques have two prominent features: 

a means of generating solutions, and a means of testing and improving those solutions in 

order to converge on a solution that generates the best possible results [2], [3]. The manner in 

which they perform these tasks can vary dramatically, and a few of the more common 

methods are detailed below.  

3.1.1: The Newton-Raphson Method 

One of the oldest methods used in computational optimisation is Newton’s method, 

which is also known as the Newton-Raphson method. Named after Isaac Newton and Joseph 

Raphson, the Newton-Raphson method can be regarded as a root-finding algorithm [4]. The 

Newton-Raphson method actually pre-dates computers; it was first published in 1865 by a 

mathematician named John Wallis. Wallis published it under the name of Newton’s method 

[5], as it was based on Newton’s work on polynomials. It was simplified and popularised by 

Raphson five years later [6], resulting in its alternate moniker.  

The Newton-Raphson method is efficient and effective, but it relies on the variables 

sought being a) real and b) the minima of a function capable of being differentiated at least 

twice [7]. Naturally, these requirements mean that it is not applicable to all problems, but for 

those that can make use of it, it can be quite simple to apply.  

The Newton-Raphson method works by taking information about the gradient of a 

function (generally derived by differentiation) and using that to identify the most direct route 

to the function’s stationary points, which characterise both maxima and minima. The formula 

takes the form  

𝑥𝑛+1 = 𝑥𝑛 −
𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)
                                                            (3.1) 
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where xn is the previously derived xn+1, and 𝑓  and  𝑓′  are the function and its 

derivative, respectively. 

To start the algorithm off an initial value is required, of course, and one is generally 

estimated based on where the user thinks the minima will be, setting the first xn to be 

somewhere near that point [5]. The resulting xn+1 is then re-inserted producing a new value, 

and the process is repeated until the minima is found [5]. The Newton-Raphson method does 

have one limitation: generally, only one solution will be found, even if the function has 

multiple minima. Which this is will depend heavily on the initial point chosen. [8] 

3.1.2: The Quasi-Newton Method 

If the derivative of the function is unavailable, or the Newton-Raphson method is 

inapplicable for some other reason, there are a number of other, similar methods that can be 

used instead.  These are collectively known as Quasi-Newton methods [9]. 

 One form of Quasi-Newton method is known as the secant method. [10] The secant 

method operates on the same principles as the Newton-Raphson, but replaces the exact 

Jacobian function with an approximation, calculated via the formula:  

𝑥𝑛 = 𝑥𝑛−1 − 𝑓(𝑥𝑛−1)
𝑥𝑛−1−𝑥𝑛−2

𝑓(𝑥𝑛−1)−𝑓(𝑥𝑛−2)
                                   (3.2) 

Which can also be written as: 

𝑥𝑛 =
𝑥𝑛−2𝑓(𝑥𝑛−1)−𝑥𝑛−1𝑓(𝑥𝑛−2)

𝑓(𝑥𝑛−1)−𝑓(𝑥𝑛−2)
                                     (3.3) 

This method requires the user to select two initial values rather than one [11], and 

with each successive step the previously calculated result and the one preceding it are used to 

calculate the new value [11].  The method’s main weakness is that it is somewhat slower than 

the Newton-Raphson, which is the primary reason it is generally only employed when that 

method will not work [12].  

Other quasi-Newton methods use different approximations, and naturally the exact 

parameters of said approximation can have a significant effect on the performance of a given 

technique [13].  
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3.1.3: Particle Swarm Technique 

Another commonly-used type of optimisation method is known as the Particle Swarm 

technique. This is a much younger technique than Newton’s method, being first used in 1995 

by Russel Eberhart and James Kennedy in [14]. The Particle swarm technique focuses on the 

optimisation of nonlinear functions. It is computationally inexpensive, requiring only simple 

mathematical operators [15], and works by creating a population of candidate solutions (the 

“swarm” that the technique’s name refers to) that explore an allotted space according to 

simple formulae, [15] somewhat like the way a flock of birds or school of fish will move. The 

particles are further guided by a combination of their own best position and the swarm’s best 

position. If a particle stumbles onto a better solution than those known it will take control of 

the swarm as a whole, and in this way the technique will theoretically converge on the global 

minima of the search space [15].  

The success of a particle swarm is heavily dependent of the parameters used to create 

it, such as the motions each individual member of the swarm takes and the various ways in 

which they can be linked [16], either with every member responding to every other member 

or merely responding to their nearest members or those of a smaller group [17]. In general, 

regardless of specifics, particle swarms are more computationally efficient than genetic 

algorithms [18]. Finding optimal parameters for a swarm has been subject to much research, 

including several attempts at what is known as Meta-Optimisation [19]. Convergence of a 

particle swarm can be defined as one of two different situations. Either it is the case where all 

particles have arrived at the same point, or it can instead be when all personal bests have 

achieved sufficient proximity to the local optimal value.  

A variant of Particle Swarm is the Artificial Bee Colony, or ABC. [20] Proposed in 

2005, it is based on the foraging behaviour of a honey bee swarm. Bees locate food in a 

manner for more organised than birds or other creatures after which conventional particle 

swarms are modelled. Instead, an ABC algorithm splits the particles into three groups; 

employed bees, onlookers and scouts [20]. The process begins by generating a potential 

solution or “food source” for each employed bee. The bee then goes to that solution, 

determines a neighbour source and then evaluates the “nectar amount”, which is essentially 

the fitness of the solution. They then return to the “hive” where the quality of the solutions 

that were investigated is compared. Onlooker bees then select one of the higher-quality 

solutions and find another neighbour source to evaluate. At this point, some food sources are 
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abandoned, and they are replaced by new sources by the scout bees. The best source is logged 

and the process repeats.  

The Artificial Bee Colony has a few advantages over the standard particle swarm 

model [21]. The dedicated “scout” bees provide a more reliable source of unexplored 

solutions, and the ability for the swarm to investigate multiple solutions with a high degree of 

difference simultaneously rather than having to slowly drift between them allows for greater 

efficiency [21].  

3.1.4: Genetic Algorithm Technique 

The technique used most prominently in this project, however, was the Genetic 

Algorithm method. In many ways, the Genetic Algorithm technique is the opposite of a 

Particle Swarm, since Genetic Algorithms are based on a competitive function, while Particle 

Swarms are based on a cooperative one [22].  

Genetic algorithms were first proposed in the early 1950s by Alan Turing. [23] The 

primary adopters of the technique were biologists, who would typically use GAs to model the 

evolutionary process that inspired them [24]. Over the course of the next couple of decades 

use expanded to other problems such as those found in engineering, with sufficient success 

that the technique is most commonly used in that area today [25].  

Genetic Algorithms work by mimicking the principles of natural selection. To begin 

with, one will typically create an initial population of solutions, either from approximations 

of what it is thought that the final design should resemble, or simply through random 

generation, and then run these potential solutions through a so-called fitness function to 

assess their quality.  

Those deemed successful enough are randomly recombined or “bred” to form the next 

generation [26], generally with a few random “mutations” thrown in to allow the GA to 

explore the design space, as it is quite possible for the initial population to have missed the 

best possible solution in such a way that simply recombining the ones that were generated 

will never arrive at it. Introducing a random element prevents the algorithm from getting 

stuck at a local minimum.  

Once a new population of solutions has been constructed from the old one, the entire 

process repeats, the new generation is tested, and the best are recombined [26]. The GA 
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continues on in this fashion until a solution that conforms to a goal set by the designers 

beforehand is reached. This can be very time consuming, with Genetic Algorithms running 

for dozens or even hundreds of generations before convergence. For this reason, efficiency is 

a common topic of study and innovation [27], and is something that this project could not go 

without addressing in at least some capacity.  

The goal of this project is to construct a method by which novel metamaterial ferrite 

structures can be designed using computational optimisation techniques. To this end, a 

genetic algorithm was designed that used both MATLAB and CST in conjunction to build 

and test various high-impedance surfaces for the desired properties. This algorithm’s 

structure and an account of its development process are detailed below. 

3.1.5 Other Optimisation techniques 

Occasionally, one finds that a single optimisation process is insufficient to the task at 

hand. When this happens, there are a few avenues of approach one can take. 

Meta-Optimisation is one such approach [28]. It is a technique where one uses one 

optimisation algorithm to determine the ideal parameters for another. Theoretically, one 

could continue stacking layers of optimisation in this manner, but the process would quickly 

hit the point of diminishing returns. One of the earliest known uses of meta-optimisation was 

applied to a genetic algorithm in the late 1970s by Mercer and Sampson [29] In their paper, 

they developed an adaptive procedure to modify the parameter values of the GA while it was 

running, which allows one to do things like reduce the tolerances of the GA as it approaches a 

solution, allowing for faster convergence upon the solution.  

Often, optimisation finds itself unable to completely define a problem it is attempting 

to find solutions for [30]. Sometimes this is because the data is incomplete, other times the 

number of variables is so large that it would be impossible to cover every combination in a 

reasonable amount of time no matter how powerful a computer was used. In these cases, a 

technique known as Surrogate Modelling can help by simplifying models and filling in the 

gaps [31]. There are multiple approaches to this, depending on what exactly needs to be 

tweaked to get the program in a usable state, and which method of simulation one is using in 

the first place. One example of such a technique applied to the subject of metamaterials is the 

Quasi-Newton Model-Trust Region Approach outlined in a paper by Patrick Bradley. [32] In 

it Bradley outlines a model-trust region optimisation approach employed to reduce 
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computational burden in a Visual Basic for applications-linked MATLAB/commercial solver 

software approach to metamaterial simulations. A model-trust region method is a heuristic 

procedure based on both the steepest-descent method and the quasi-Newton method [33]. The 

former is what pushes the solution toward a local minimum, while the latter will speed 

convergence when it is in sufficient proximity (as it would diverge or cycle when too far 

away on its own).  

One potential issue with Genetic Algorithms and other optimisation techniques is that 

attempting to solve for too many variables at once can cause the running time to become 

unmanageably large. As such, steps to reduce the number of variables the program has to deal 

with are common. One example of such a method was presented by Zikri Bayraktar in the 

form of a GA-designed metasurface that limited the algorithm’s parameters to the length of 

thin strips of metal that formed an almost key-like structure. [34] These structures were 

linked in a pinwheel pattern such that a single unit cell would consist of the central axle of the 

wheel surrounded by four unconnected key segments. This structure was compared directly 

with a near-identical set up that was not constrained in this manner. It proved far less likely to 

overwhelm the system, but this came at the cost of design flexibility, as one would naturally 

expect.  
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Figure 3.1: Diagram of Zikri’s constrained (above) and 

unconstrained (below) structures showing both unit cell 

(surrounded by dotted line) and connected pinwheel structure. [34] 
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3.1.6: Machine Learning 

Machine learning is a broader category under which genetic algorithms find 

themselves [35]. Generally speaking, a machine learning algorithm can be considered any 

technique by which a program can be taught to find solutions to problems by itself. [36] This 

is a useful feature, as there are some problems, such as Email spam filters, search engines and 

pictographic recognition systems, which are extremely difficult to simply program a machine 

to be able to do, but can be achieved via machine learning algorithms [37]. The technique is 

also used alongside datamining by financial companies and cyber-surveillance, and by 

marketing on websites such as Amazon to predict what customers may be interested in to 

provide better targeted advertising.   

Machine Learning has existed in some form since the 1950s, but in recent years and 

with the advent of the internet it has really taken off. This is because generally, the process 

begins with developers building a database of solutions which the program can access and 

compare to the problem at hand, which can be sourced through datamining or other methods, 

which the internet has dramatically facilitated. However it’s not enough for the system to 

simply check for answers it has already come across. True machine learning requires a more 

sophisticated approach [38]. A true machine learning program needs to be able to combine 

data in order to correctly predict results they have not previously encountered or solve 

problems with little or no input from humans [39]. This is generally achieved via 

optimisation algorithms such as GAs and other methods. In supervised learning, the most 

straightforward method, the algorithm is given data it has never seen before to process, and 

how well it does this is scored by the optimisation program, which has a “cheat sheet” of the 

expected results of the data [40]. This is commonly used for training machines for tasks such 

as photograph recognition. To give a somewhat simplified example, imagine that one has an 

algorithm that is required to identify pictures of bees. To test it a large database of images of 

bees and not-bees would be created, with a key identifying which were bees that the 

optimiser can see. This would then compare the real answers to those given by the algorithm, 

and a fairly objective score can be given. For other tasks, testing an algorithm’s quality is not 

as simple, but will still follow a similar process. Occasionally so-called semi-supervised 

learning is used for the same tasks that supervised learning can be used to tackle. Semi 

supervised learning uses both labelled and unlabelled data, typically a large amount of the 

latter supplemented by a small amount of the former. The advantage of this method is that 

unlabelled data is less expensive and far easier to acquire than labelled data due to nobody 
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needing to go through and apply said labels.  Unsupervised learning does not rely on labelled 

training data at all. Instead, the algorithm seeks patterns in whatever it is presented with. This 

has the same advantages in expense and data availability as semi supervised learning for 

largely the same reasons. A complete lack of labelled data means that it is often even cheaper. 

Unsupervised learning is better suited to organising data, sorting a large number of data 

points into manageable clusters. This can be used to aid things like marketing, identifying key 

demographics which can be targeted, or to tailor recommendations on streaming sites such as 

Netflix or Youtube.  

One such technique that combined machine learning with Genetic Algorithms and 

similar optimisation methods was addressed in a 2014 paper by Bo Liu [41]. In it, they and 

their team proposed an evolutionary algorithm incorporating both surrogate modelling and 

machine learning, intended to provide an efficient method of antenna synthesis. The surrogate 

modelling method chosen was Gaussian Process Machine Learning, which assumes a 

Gaussian character for the objective function of the program [42]. This means that the 

distribution of a new point can be predicted based on that of those already available to the 

program, which allows it to screen points for those most likely to produce good results for 

computationally expensive thorough analysis whilst discarding those less likely to produce 

fruitful results. The Evolutionary Algorithm used was the Differential Evolution or DE 

algorithm. A DE algorithm uses a differential operator create new candidates, along with a 

one-to-one competition scheme to select the best among them. The program combines these 

by first running the DE, then passing the results to the surrogate model before selecting the 

best result and running as rigorous calculation of its exact parameters before passing it to the 

database. At this point, if the stopping criterion has not been reached, the program loops back 

around and begins again. Otherwise, it terminates and delivers the best solution as the output.  
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Another common form of machine learning is known as Cluster Analysis [43]. 

Cluster Analysis is a form of Unsupervised Learning, which differs from the types of 

machine learning described above as the teaching program has no direct “answer key”. 

Instead, Cluster analysis deals with the classification of unlabelled data. It does this by using 

so-called “similarity measures” to group data into sets that share common properties [44]. 

There are two primary goals that cluster analysis is used to achieve: complexity reduction and 

exploratory analysis. In complexity reduction the algorithm seeks to divide the data into small 

groups that can then be assigned a representative data value, effectively reducing the number 

of data points to something more manageable [45]. With exploratory data analysis the aim is 

instead to present the data in a way that aids the analyst in seeing patterns and formulate 

hypotheses by themselves [46]. 

In either case, there are several methods that can be used to achieve this. A common 

method is Hierarchical Clustering, in which the clusters are slowly built up in stages. This 

can be done either with an agglomerative method, which takes a bottom-up approach and 

slowly merges the data into larger and larger groups, or with a divisive method, which is a 

Figure 3.2: Diagram of the Algorithm used in [11] 
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top-down approach where the data is taken first as a whole and then split into smaller groups 

as one descends the hierarchy. [43] 

Another method is known as K-means clustering [47], which uses the k-means or 

Lloyd’s algorithm to partition the data space into uniformly-sized Voroni cells as a method of 

vector quantisation. It does this by dividing observations among a set number of clusters, 

with each individual observation being assigned to the cluster with the nearest mean value. 

[48] A Voroni cell is defined a region in which no point is closer to this mean than any other, 

which means that this method can be quite slow, as much like genetic algorithms it involves 

an iterative process. In the case of this method, the “centroid” of each Voroni cell is 

computed, and then the site of each cell is moved be evenly distributed around its centroid 

and a new Voroni diagram is created, for which the centroid is again computed until an 

acceptably uniform distribution is achieved. Perfect convergence is often impossible with real 

data, so usually there is some defined point deemed “close enough”.  

In the case where one has a lot of high-dimensional data, which is to say data points 

with multiple independent parameters, a technique known as Dimensionality Reduction may 

be employed to simplify it [49]. Most commonly, Dimensionality Reduction works by 

identifying the parameter with the least variance and eliminating it, reducing the problem to 

its most relevant variable. This method is known as Latent Variable or Principle component 

Analysis. Another method, commonly used in image processing, is known as Feature 

Extraction, and instead works by building informative, non-redundant derived values from 

the initial set of data [50].  

Dimensionality Reduction is also useful to apply as a precursor to Cluster Analysis, 

since there are many possible clustering algorithms that work with low-dimensionality data 

but only a few that are effective with high-dimensionality data [51].  

Applications of Principle Component Analysis and K-means Clustering were 

explored by Chris Ding and Xiaofeng He in the appropriately titled “K-means Clustering via 

Principal Component Analysis” [52] In it, they outline methods for 2-way clustering, before 

generalising to K-way. They then demonstrated the technique with two examples: Gene 

expression and Internet Newsgroups.  

In 2-way clustering, they began by defining the sum of the square of the distances 

between two clusters, denoted Ck and Cl, as 
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𝑑(𝐶𝑘, 𝐶𝑙) ≡ ∑ ∑(𝑥𝑖 − 𝑥𝑗)
2

                                                          (3.4)

𝑗∈𝐶𝑙𝑖∈𝐶𝑘

 

Equation 16 can be rearranged to give  

𝐽𝐾 = ∑ ∑
(𝑥𝑖 − 𝑥𝑗)

2

2𝑛𝑘
= 𝑛𝑦2̅̅ ̅ −

1

2
𝐽𝐷                                                (3.5)

𝑗∈𝐶𝑘

𝐾

𝑘=1

 

and 

𝐽𝐷 =
𝑛1𝑛2

𝑛
[2

𝑑(𝐶1, 𝐶2)

𝑛1𝑛2
−

𝑑(𝐶1, 𝐶1)

𝑛1
2 −

𝑑(𝐶2, 𝐶2)

𝑛2
2 ]                                        (3.6) 

Since y2̅̅ ̅ is a constant, this means that the minimum value of JK is equivalent to the 

maximum value of JD. Since it can be also shown that   

𝑑(𝐶1, 𝐶2)

𝑛1𝑛2
=

𝑑(𝐶1, 𝐶1)

𝑛1
2 +

𝑑(𝐶2, 𝐶2)

𝑛2
2 + (𝑚1 − 𝑚2)2                                   (3.7) 

It is possible to show that JD is always positive by substituting equation 19 into equation 18.  

This all means that it is possible to maximise the distance objective JD by minimising 

the objective function JK, thereby separating the clusters as much as possible.  

Generalising to K-way clustering is a matter of first using (17) to write JK in the form 

𝐽𝐾 = ∑ 𝑥𝑖
2 − ∑

1

𝑛𝑘
𝑘

 ∑ 𝑥𝑖
𝑇

𝑖,𝑗∈𝐶𝑘

𝑥𝑗                                                                (3.8)

𝑖

 

Here, the first term is a constant, while the second is the sum of K diagonal block 

elements of an X
T
X matrix representing within-cluster similarities. Using K non-negative 

indicator vectors, this can be written in the form  

𝐽𝐾 = 𝑇𝑟(𝑋𝑇𝑋) − 𝑇𝑟(𝐻𝑘
𝑇𝑋𝑇𝑋𝐻𝑘)                                                              (3.9) 

This equation has several redundancies in Hk, which can be removed by a two-step 

process. Step one is to perform a linear transformation T such that Qk = HkT. The second step 

is to require that the last column of the matrix T is given by  

𝒕𝑛 = (√𝑛1 𝑛⁄ , … , √𝑛𝑘 𝑛⁄ )
𝑇

                                                     (3.10) 
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This means that 

𝒒𝑘 = √
𝑛1

𝑛
𝒉1 + ⋯ + √

𝑛𝑘

𝑛
𝒉𝑘 = √

1

𝑛
𝒆                                              (3.11) 

This linear transformation is always possible, which allows the 2-way case to be 

generalised to any value of K desired. The K=2 case itself becomes  

𝑇 = (
√𝑛2 𝑛⁄ −√𝑛1 𝑛⁄

√𝑛1 𝑛⁄ √𝑛2 𝑛⁄
)                                                              (3.12) 

3.2: Genetic Algorithm Outline 

To begin with, the general structure of the Genetic Algorithm itself had to be 

considered; how large a population to use, the parameters being tested, how stringent the cut 

off points should be. In addition, the tools used to build the algorithm can have a great effect 

on the structure of the algorithm. This was particularly notable in the case of this project, as 

the mechanism proposed involved the use of two different pieces of software running in 

parallel.  

With all these variables under consideration, the general outline of the Genetic Algorithm 

program for this project was initially designed in the form shown in figure 3.3. Ultimately, 

this design was modified slightly over the course of the project, albeit mostly due to the 

differences required in the initial loop to set the initial parameters. It was found that the 

easiest way to implement this was to make that first generation a separate sequence. By and 

large the procedure was nonetheless unchanged.  
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3.2.1: Generation of the Seed Population and Export to CST 

The Genetic Algorithm program begins by randomly generating a series of 

chromosomes that defines the “genetic code” of the structures. In this case, each consisted of 

a string nine of ones and zeroes, created by taking a series of random decimal numbers 

created using the random number generation function of MATLAB.  It converted the decimal 

fractions produced by this function into a binary 1 and 0 scheme by simply setting the 

chromosome to read 0 if the number was less than 0.5 and 1 if it was greater. However, the 

nine-bit chromosomes generated this way are far too short to form the basis of a usable high-

impedance surface as they are. Instead, once they have been generated they are immediately 

run through an L-system algorithm [53] whose purpose is to expand them into a larger string 

that is of sufficient size for the intended purpose, which in this case 45 bits in length.  

Once the Genetic Algorithm has created a sufficient number of 45 bit structure codes 

(in the case of this program the number was typically 12) the program can then export the 

strings as a text files, which are a format that can be read by a Visual Basic macro in CST. 

Said macro now takes over control of the Genetic Algorithm program. 

 

Randomly create 
Seed population 

Evaluate according 
to fitness function 

Select best individual 

Select top 5 individuals 

Cross-over best 
individual and top 5 
at random point 

Randomly mutate 
remaining members of 
the population 

Generate new 
population equal in 
size to the original 

Port to CST  Build structures 

Analyse structures  
Port results back to 
MATLAB 

Port to CST  

Start 

If target is 
reached, end 

Figure 3.3: Flow chart detailing Genetic Algorithm run procedure.  
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Figure 3.4: Flowchart of the initial chromosome generation procedure.  
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3.2.2: Building the Structures 

 

 

 

Once a full length bit string has been exported as a text file, MATLAB triggers a 

Visual Basic file to run and sits back. This VBA file then imports the text file as a variable, 

and runs through the bits applying 1mm by 1mm squares of material (usually a metal such as 

copper or silver) to predefined template (seen in figure 3.5) based on whether the bit is a 1 or 

a 0. Once the template has been filled, it is reflected along its diagonal axis before being 

rotated around the centre of the structure to produce a rotationally symmetrical shape.  

Initially, this part of the code produced a 36-digit string of numbers which were 

applied (truncated) grid directly. It was only later that the aforementioned L-system 

techniques were employed to reduce the number of randomly generated variables to nine, 

whilst maintaining the original string length. This also allowed the structure to be easily 

expanded and as such, later tests were performed on the performance of 45 and 54 digit 

strings. These numbers are important as they correspond to values that fit in the above 

triangular grid pattern (figure 3.5), simply adding a row each time. The reason that this was 

done was as an attempt to reduce the complexity of the problem and allow the Genetic 

Figure 3.5: Map of bit numbers in the string to the pixel in the high-impedance surface 

template they correspond to. If the bit is a 1 there will be a 1mm x 1mm square of 

material inserted. If it is a 0, this space will be left blank. 
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Algorithm to reach a solution more quickly, as together with the excessively long run time of 

CST, the whole optimisation process will be very time-consuming, which make it impractical 

for engineering applications. 

3.2.3: Analysis of Structures 

Once a structure has been built in CST, it is then analysed using the software’s 

frequency domain solver, which extracts the real and imaginary parts of the S11 parameters. 

It then exports these back to MATLAB using the same method of having text files as an 

intermediary. MATLAB then uses these to derive other parameters such as the permeability 

or permittivity using the equations which have been derived in chapter 2 and [34] 

𝜀𝑟 =
1

𝑖𝛽0𝑑
tanh−1 𝑍𝑖𝑚𝑝

𝑍0
                                           (3.13) 

𝑍𝑖𝑚𝑝 = 𝑍0
(1+𝑆)

(1−𝑆)
                                                 (3.14) 

Where d is the effective thickness of the structure, Z0 is the impedance of free space, 

Zimp is the impedance of the structure, and S is the reflection parameters.  

 

 

 

Figure 3.6: Detail of the build and analysis step, separated into the 

programs used for each component 
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3.2.4: Evaluation by Fitness Function 

The permittivity parameters calculated by MATLAB from the CST-derived reflection 

values are then inserted into the Fitness Function in order to assess them and determine which 

population member has them at the most optimal values. The criterion for this is based on 

how close to a minimum of the function they approach. Those closest, within a tolerance 

level set by the program, are selected to form the next generation. Several iterations of the 

program experimented with different tolerance levels, in order to establish a good balance 

between finding too many solutions and not finding enough. It is important to have a good 

selection of solutions for recombination whilst not being so generous that solutions with 

insufficient chance of producing the desired end result slip in.  

The Fitness function used here was based on the one used by Kern et al in [54], 

modified slightly to allow for differences in the program structure and design constraints. The 

base goals were the same, however: a dielectric constant of 10 and minimal loss.  As such, 

the function took the form 

𝐹𝐹 = −[(𝜀𝑅𝐸𝐴𝐿 − 10)2 + 𝜀𝐼𝑀𝐴𝐺𝑁𝐼𝑁𝐴𝑅𝑌]                                       (3.15) 

with the two variables being those taken from the calculated permittivity. 
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3.2.5: Recombination of solutions and the creation of the second generation. 

 

 

The solutions that meet the standards as chosen by the fitness function and other 

parameters defined within the program are then recombined (with the best function also 

remaining intact, so the program does not go backwards and lose it) by a process which takes 

two solution chromosomes, cuts them in half at a semi arbitrary point (typically somewhere 

in the middle, to ensure a good combination of features) and swaps the pieces over. The 

members who failed to achieve parameters within the prescribed tolerance limit are not 

without use, however. Since the population needs to remain constant (at least with this 

example of the algorithm) the remaining chromosomes are randomly mutated by flipping a 

few of their bits from either 1 to 0 or vice versa and used to fill the population back up to its 

initial size. This is not the only reason for doing this, however. Rather, it is also done in order 

to maintain diversity in the solutions and so avoid becoming trapped at a local minimum.  

The process then begins again with the new population, theoretically producing better 

and better results until finally a solution sufficiently close to the target is reached, at which 

point the program will terminate and output that design. 

Figure 3.7: Fitness function evaluation and recombination procedure. 
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3.3: Application of Fractal Designs 

The Genetic Algorithm program uses a Lindenmayer-system algorithm, also known 

as an L-system algorithm [53], to expand the 9-bit seed generated in MATLAB into a 45-bit 

string useable by the CST construction macro. This is done in order to reduce the number of 

variables that the genetic algorithm must deal with, with the goal of increasing the 

algorithm’s efficiency and the speed with which it converges upon a solution.  

An L-system algorithm works by applying a certain series of rules under which the 

variables in a string are altered. For example it could be that every 0 in the string is replaced 

by a 0 and a 1 and every 1 is replaced by a 0. The algorithm then takes the new string and 

applies the rule again, repeating the process until the string has reached a desired length.   

This is a somewhat unusual use of the technique, however. By far the most common 

use for L-system algorithms, and the purpose they were designed for, is as a means of 

constructing fractal patterns [53]. This is done by assigning some sort of function to each 

variable, such as drawing a line pointing in one direction or another. The repeating variables 

will naturally cause these simple designs to form deceptively complex patterns such as the 

well-known dragon curve. Other L-systems can be used to form different types of pattern 

such as the Hilbert curve, a space-filling curve useful in a wide variety of applications [55] 

[56]. 
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As one can see from figures 3.8 and 3.9, Fractal Patterns, which is a term coined by 

mathematician Benoit Mandelbrot in 1975, in relation to his study of what would later be 

known as the Mandelbrot set, are patterns that exhibit what has been described by some as 

“expanding symmetry”. What this means is that in much the same way that an object with 

reflectional symmetry will appear the same when reflected along a certain axis and an object 

Figure 3.9: A Hilbert curve, another fractal pattern that can be created using 

an L-system. A Hilbert curve is also an example of a space filling curve, 

which can also have applications in high impedance surface design. [58] 

Figure 3.8: The construction process of a Dragon Curve. It can most simply be thought of 

as the result of folding a piece of paper in half many times (far more than the maximum 

of 7 or so that is possible in reality) before unfolding and opening all the folds at 90 

degrees. It can also be modelled by an L-system of the form X-> X+YF+ and Y->-FX-Y 

using an initial string FX. [57] 
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with rotational symmetry will appear the same when rotated through a particular angle, an 

object with expanding symmetry will appear the same when magnified by a particular 

amount. In some cases this may only hold true at a few distinct magnifications but others can 

be astoundingly complex. The dragon curve, for example, will tessellate with itself, and 

several of them can be combined into a larger version of the pattern.  

3.4: Final Design and Modifications 

As mentioned earlier, the structures initially created by the program were 16 x 16 

structures, produced via a direct 36 bit chromosome. In other words, each pixel was 

completely independent of all the others, which increased the potential design space at the 

cost of increased computational load. One example of a design from this version of the 

program is shown in figure 3.10. Visually speaking, the differences between that and the 

other two types of structure are subtle at best, but there are fundamental differences between 

the three. When combined with the L-system expansion and slight rearrangement of the grid 

structure of the template, the small increase in size also means that a given string will 

produce dramatically different high-impedance surface structures.  

 

 

 

 

 

 

 

 

 

 

 
Figure 3.10: Example of the type of structure that will be generated by the GA 

program (non-optimised, as this was taken from one of the early generations) 
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It is for this reason that when the seed generation algorithm was redesigned in such a 

way that it became possible to increase the size of the structure without increasing the 

complexity of the randomly generated portion, the opportunity to explore what differences 

such a change would make, and which were most beneficial to the goal of creating an 

artificial magnetic conductor was quickly seized upon. 

Since the structure creation method involves generating a small randomised segment 

of the design and reflecting it in several axes until it reaches the desired shape and size, it 

requires the final shape to be an even number of units in width. As such, when it came to 

selecting larger sizes to attempt an exploration of it was decided that exploring 18 x 18 and 

20 x 20 squares would prove most fruitful. This required increasing the length of the input 

sting from 36 bits to 45 and 54 bits, respectively.  

All L-systems require at least one of the replacement strings be longer that what it 

replaces, so that the overall string increases in size. Often, one of the replacement strings of 

an L-system can be longer than the other. For example you may have an algorithm that 

replaces “0” with “01” and “1” with “0”. In cases like this, the length of the string after a 

given number of passes through the algorithm will display a degree of variation, based on the 

values in the initial string. One that began with more 0s will be larger after a given number of 

cycles, as each zero is replaced with two characters rather than one. In cases where the 

replacement strings are of equal length the final length of the full string they will produce will 

be consistent, but even then it is often difficult to set these up so that the final value will be 

exactly what is required by the program.  

So, either way, the program will likely end up with either too few or too many values 

after a given number of iterations. This issue was particularly noticeable at first, as the 

program initially used a for-loop to run the L-system for a set number of iterations. In order 

to prevent having too few, the program was instead set to deliberately overshoot and then 

discard any excess values. This had the downside several of the variables of the base string 

would inevitably be lost, with a severity depending on the L-system used, and meant that if 

care was not taken the structure would be dominated by just the first few random values, 

truncating the design space to an unacceptable degree.  
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This issue was partially solved by switching to a while-loop that terminated the 

process as soon as the required value was met or exceeded, allowing the program to have 

flexibility which minimised both run time and waste chromosome clippings. Eliminating lost 

values entirely was, unfortunately, almost impossible.   

The design of the Genetic Algorithm remained largely intact throughout production, 

but there were some alterations to the design once it was complete. The final Genetic 

Algorithm’s software structure proposed in this thesis is shown in figure 3.11. The primary 

difference between the final version of the Genetic Algorithm depicted here in figure 3.11 

and the initial design shown in figure 3.3 is the addition of the initialisation loop depicted on 

the left of the diagram. Its function is largely identical to the rest of the algorithm, but 

variations in the design that arose from generating a population of solutions from scratch 

instead of receiving them from a prior loop meant that it proved to be far easier to construct 

that step from a separate set of functions. 

3.5: Validation of the Genetic Algorithm 

Validation is important in any project, and it is important to reassess that validation 

from time to time as the project progresses. Something may have worked originally, but 

additions and increasing complexity have the potential to have unforeseen consequences that 

affect the function of those original components, and when this happens it is important to 

Figure 3.11: Final Iteration of Genetic Algorithm function. 
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catch those issues and fix them. This is especially true in a complex function like the Genetic 

Algorithm designed for this project, as it contains a multitude of moving parts.  

Initially, the MATLAB portion of the program was built and tested by tasking it to 

optimise the raw chromosomes of the structures, in absence of any CST analysis. After 

several rounds of modifications to connect the program to CST and general improvements, 

the Genetic Algorithm had been altered sufficiently from its initial form that it was felt 

prudent to test the program in order to validate the results of the current iteration and to 

ensure that these modifications had not negatively impacted its function.  

This was done by carefully deactivating the additional lines of code without 

disturbing the now-modified original structure. This reduced the goal to one similar to that of 

the original non-linked program, but rather than the simple gradient fitness function it was 

initially using it was instead tested using the two-dimensional form of the Griewank function, 

seen in figure 3.12.  The Griewank function is a function designed for this purpose with an 

abundance of local minima intended to trap insufficiently robust genetic algorithms. It is 

defined by the equation 

𝑦 = 1 +
1

4000
∑ 𝑥𝑖

2𝑛
𝑖=1 − ∏ cos (

𝑥𝑖

√𝑖
)𝑛

𝑖=1                                       (3.16) 
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The Genetic Algorithm was tested against both a first order and second order 

Griewank function. Since there was no processing of the generating bit string in CST for this 

evaluation, the GA was simply tasked with minimising the sum of the digits in the string. 

This did mean that the values for x could only go from 0 to 9, and thus a lot of the Griewank 

function’s complexity was lost, but what remained proved sufficient for the purposes 

required. 

It was decided that this was also a good opportunity to test the effect of population 

size on the speed of convergence for the algorithm. As such, tests were done with both a 12 

member population and an 8 member population of solutions. A lower number of members in 

the population would result in each individual generation being completed faster, at the 

expense of more generations being required to converge upon a solution, on average. What 

Figure 3.12: The first order two-dimensional Griewank function, a function with 

a multitude of local minima designed to trap optimisation algorithms. [59] 
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the experiment intended to discover was which of these effects was larger, as this would 

inform the optimal point of maximum efficiency.  

In each case, the Genetic Algorithm was run numerous times and the number of 

generations required to converge on the solution was logged. In addition, the program was set 

to terminate after 1000 generations regardless of whether a solution had been found, and this 

eventuality was also recorded. Then, a bar chart of the frequency of each instance of a given 

number of generations was constructed, grouped into sets of 100.  

In the case of population size 8, the number of generations required to converge on a 

solution is somewhat erratic. This size of population also displayed a high frequency of runs 

(over 25) which hit the 1000 generation cut-off point and were terminated without finding a 

solution. 

 

          

 

 

Figure 3.13: The first order griewank function used for testing the GA 
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Figure 3.14: The number of generations required to converge upon a solution 

when the population size was set to 8. 

Figure 3.15: The number of generations required to converge 

upon a solution when the population size was set to 12 



70 
 

By comparison, the 12 member population shows a distinct improvement in 

efficiency. None of the runs failed to converge on a solution, and the longest any of them 

took was between 500 and 600 generations, a little over half the maximum allowed. There is 

also a clear progression of rarity as the required number of generations increases, with the 

vast majority of runs taking far less than this, with most lying in the 0-200 range.  Almost 

50% of the optimisation attempts converged within 100 generations of the algorithm being 

started.  

Having excluded the eight-member population as a viable option, the 12-member 

population was subjected to a more rigorous variant of the Griewank function, that being the 

second-order version. This had an additional local minimum in the available design space, 

and was therefore more likely to trap the algorithm than the first-order version.  

 

 

 

 

Figure 3.16: The second order two-dimensional griewank 

function used for testing the Genetic Algorithm 
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Oddly, while there was a slight increase in the maximum number of generations 

required, this was represented by only a very small number of runs. The vast majority 

actually seemed to cluster more at the low-generation end of the scale than they did with the 

first order function. Regardless, it was considered at this point that the base program had 

proven itself to have remained functional, so work could continue on the program with 

confidence.  

3.6: Summary 

In this chapter, several potential forms of computational optimisation are presented 

and studied, their pros and cons evaluated and their applicability to certain problems is 

assessed. These included the Newton-Raphson method, Quasi-Newton method, Particle 

Swarm technique and Genetic Algorithm method. The chapter then goes into particular detail 

about the latter method, as this was the sort used by this project. It details the process by 

Figure 3.17: Number of Generations required by the program to converge upon a 

solution with a population size of 12 
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which Genetic Algorithm was constructed, based on previous attempt to create one with the 

intention of designing Metamaterials, along with a step-by-step guide to how it functions.  

Details are presented regarding the process by which the Genetic Algorithm created 

for this thesis project uses a combination of MATLAB and CST to design, build and evaluate 

potential metaferrite structures. It uses a technique derived from fractal generation methods to 

expand a small base chromosome into a larger structure, in order to reduce complexity and 

increase efficiency.  

The chapter also concerns itself with how the Genetic Algorithm went through several 

iterations and several rounds of testing before arriving at its current form. These testing 

methods are also presented in detail.  
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Chapter 4: Design and Characterisation of Metaferrites 

4.1: Basic Design 

Once the replicated structures had been studied and confidence of the parameters and 

responses expected of simulated metaferrite structures had been developed, the next step was 

to develop some sample structures to validate the design approach. To that end, the Genetic 

Algorithm program detailed in chapter 3 was used to design and optimise metaferrite 

structures, based on a template and parameters set beforehand. This chapter deals with the 

process of how the nature of that template and those parameters was arrived upon. 

The basic shape of the metaferrite arose partially in imitation of previous designs, 

such as [1] and partially as a consequence of the constraints of the genetic algorithm. It 

consisted of a square, rotationally symmetrical structure with additional lines of symmetry 

bisecting each edge and the diagonals. This facilitated a construction method that began with 

a small, triangular patch of square pixels. These pixels were either filled or left empty 

according to a data string generated by the genetic algorithm, and once complete this 

triangular patch was reflected along the diagonal line of its hypotenuse forming a square. 

This square was then rotated around the central point of the unit cell, forming the final shape.  

 

 

 

 

 

 

 

 

 

 Figure 4.1: Diagram of the construction process of the metaferrite structures 
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Figure 4.2: Typical appearance of a randomly-generated 16 x 16 mm 

structure 

Beyond this basic shape, however, there were numerous parameters that needed to be 

considered. 

4.2: Determination of Optimal Unit Cell Size. 

To begin with, an assessment needed to be made of the optimal unit cell size for the 

structures. Three sizes were studied, each varying by changing the number of layers on the 

core triangular pattern of the structure. When expanded to full size, this resulted in square 

unit cells 16, 18 and 20 mm in width. Owing to differences in how the pixels were arranged 

for each size of structure, there were a number of subtle differences in both the typical shapes 

they produced, even when using identical templates. As a result of this the S11 parameters 

each of these structures was correspondingly different.  

The 16 x 16 structure had a randomised patch consisting of 36 pixels. This was the 

size of the structure used prior to the introduction of the L-system expansion method [2], 

when each pixel was randomly determined. As such there was already available data 

regarding the typical parameters and limitations of a structure this size, and this formed the 

standard by which the other variants were compared. 
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Figure 4.4: Example phase for a randomly-generated 16 x 16 mm structure 

Figure 4.3: Example of resonance values for a randomly-generated 16 x 16 mm structure 
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Figure 4.5: Typical appearance of a randomly-generated 18 x 18 mm structure. 

Structures of this size typically displayed responses similar to the example depicted in 

figure 4.5. There are a few advantages associated with smaller structures, such as greater 

simulation speed, but the concern was that the inclusion of the L-system (itself designed to 

improve this factor) would reduce the possible design space [3], and it was felt that a larger 

structure could alleviate this issue. As such, other two sizes of structure presented here were 

simulated. 

The 18 x 18 mm structure used a 45 pixel patch. This struck a balance between the 

smaller design space and the larger time taken for analysis, in addition to the other issues 

with a larger structure seen below. 
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Figure 4.7: Example phase for a randomly-generated 18 x 18 mm structure. This was 

deemed to be the one most likely to produce a working metaferrite structure with the 

desired properties in the lowest number of generations. 

Th 

Figure 4.6: Example of resonance values for a randomly-generated 18 x 18 mm structure.  
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Figure 4.8: Typical appearance of a randomly-generated 20 x 20 mm structure 

The 20 x 20 structure used a 54 pixel variable patch. This granted the structure an 

even larger potential design space than the previous design, but was not without problems. 

Analysis of the reflection showed a greatly increased number of reflections scattered around a 

wide range of frequencies. There was concern that having multiple frequency bands in this 

manner would cause issues with assessment by the fitness function, so it was judged that a 

structure of this size should probably not be used despite the greater design space afforded. 

As such, it was ultimately judged that the 18 x 18 structure presented previously was the 

optimal form for the metaferrite designs to take. 
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Figure 4.9: Example resonance values and phase for a randomly-generated 20 x 20 mm structure 
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A perfect magnetic conductor (PMC) provides 0 degrees reflection phase. Therefore, 

a metaferrite structure aiming to replicate the material response of a magnetic material should 

aim to achieve the same value. Since a metasurface can theoretically achieve any reflection 

phase desired, this is well within the bounds of feasibility. [4] In practice, however, such 

control is bound to a narrow operating frequency, dependent on the structure in question. 

Changing the structure size will, naturally, have an effect on this frequency. While the two 

smaller structures made it easy to find a functional operating frequency, the multiple 

resonances displayed by the 20 x 20 pixel structure made it hard to pin down.  

4.3: Analysis of desired features 

The structure depicted in figure 4.10 was replicated using CST to validate that the 

same result that was presented in [6] could be produced by the software. This was successful. 

The same technique was then applied to other designs shown below. It was quickly 

concluded that the low loss structures the project was aiming for have a profile characterised 

by a fairly short, wide-based peak. Since the structure generally produced other resonances of 

higher amplitude, this meant that isolating the desired one was slightly more complex than 

simply using the minimum-finding function packaged with MATLAB. Instead the approach 

used was to identify each peak in turn, using a copy of the magnitude matrix and removing 

each peak as it is found, before displaying the values at the same point in the real matrix.  

Figure 4.10: Structure replicated for the purposes of comparison [14] 
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It was also determined that, if possible, it was best to aim for patterns with fewer 

independent pixels. These produce better reflection profiles, as they possess a more coherent 

pseudo-capacitor/inductor mesh [7]. This condition could be enforced by manipulating the L-

system generator so that it always produces sections of a minimum length, but this has the 

downside that it can interfere with the repeating pattern as it would allow for fewer iterations 

of the algorithm. One must be careful to avoid overly restricting the design space when 

designing a genetic algorithm, as the entire point is to explore options that would not 

normally be considered. 

4.4: Inclusion of Optimisation Parameters 

Once a rough idea of what it should be aiming at had been cemented, a fitness 

function based on the one in Kern et al’s paper [1], [8] was inserted into the Genetic 

Algorithm and true optimisation could begin. As would be expected, this yielded more 

consistent results at resonances far closer to those desired, even after only a few generations. 

There was an issue with the magnitude of the parameters predicted being far higher than they 

Figure 4.11: Comparison of Permittivity and permeability of structure in Gonzalo’s’s 

paper [5] with one of several peaks in the reflection phase of a structure randomly 

designed by the project, characterised by being of the shorter and wider variety, indicating 

that this is the type of pattern to aim for. There is a notable difference regarding the 

amplitudes of the two peaks, but since this is the focus of the fitness function it is thought 

that this will be corrected in the fully optimised structure. 
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should be at first, but this problem was eventually corrected. An example of the responses 

predicted by the program at this point is shown in figure 4.12. It was felt that these results 

could be improved upon though. In pursuit of this, variations on the structure were also 

designed and analysed. One modification studied was the addition of a layer of substrate and 

a square patch of metal in front of the metallic structure. This initially seemed to have the 

effect of reducing the resonance frequency values by approximately 4 GHz, as shown in 

figure 4.13. 

 

 

 

 

 

 

 

 

Figure 4.12: Comparison of real (red) and imaginary (blue) components of the 

permeability and permittivity of the structure (which are assumed by equations to 

be equal to each other) as predicted at an early stage of the project.  
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This result is far closer to the response seen in the paper [8] that the structure was 

attempting to emulate, aside from the yet-to-be-corrected magnitude problem, and while the 

optimisation process in this case was not completed, it can be seen that it was already 

approaching the desired form. Unfortunately, subsequent simulations involving such a 

structure proved to not merely be similar, but highly identical. This caused some concerns to 

be raised regarding how much influence the underlying high-impedance surface actually had. 

It seemed that very little of the incoming wave was reaching the second layer of the structure, 

and the response was almost entirely due to the square patch on the front.  

This was studied further using a variant consisting of a large patch covering several of 

the rotationally symmetric unit cells. A 3 x 3 structure was chosen for this purpose as it was 

felt that this provided a good balance between a single unit cell and a continuous boundary. It 

displayed several additional resonances of decreasing amplitude at high frequencies. This was 

Figure 4.13: Real (red) and imaginary (blue) components of permeability 

of structure when placed behind a layer of substrate and patch antenna. 
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somewhat unexpected, but was at least different to the results seen with the previous square 

patch.  

There are a few possible explanations for the result. It may have been due to the 

increased size of the structure [9], or the fact that rather the structure had a finite size rather 

than an infinitely repeating pattern [9]. If the latter was the root cause it possibly indicates 

that slight adjustments to the analysis configuration were required, as the values were 

calculated based off the s11 parameters of the structure and so would be vulnerable to 

reflection, which the repeated, fading resonance points resemble. Since the commercial 

software used employs Finite Integral Time Domain modelling [10], a flaw in the boundaries 

of the simulation could conceivably cause this. 

 

 

 

 

Figure 4.14: Multiple unit cell structure, with and without a 

square patch and additional layer of substrate placed in front 
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4.5: Analysis of the Effects of Metallic Fraction on High-Impedance 

Surface Behaviour 

Later, tests were performed to ascertain the effect of various parameter changes on the 

results generated by the structures designed by the Genetic Algorithm. One such test was to 

compare the amount of metal (measured as the fraction of the total possible area of coverage 

that the structure actually covers) with the value of the lowest frequency resonance point, 

within the range analysed.  

This was done by calculating the fraction for each structure generated by the GA and 

then plotting said fraction against the lowest frequency value of the resonance point of the 

dielectric response.  When a sufficiently large number of data points are collected in this 

manner, the following relation is seen: 

Fig 4.15: the resonance pattern produced by the structure in figure 4.14  
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As can be seen in figure 4.16, there appeared at first to be a positive correlation 

between the lowest resonance frequency and the metal fraction of the structure. The 

groupings seen are thought to have arisen due to the data points depicted being comprised of 

several different variants on the program, mostly centred on alterations made to the L-system 

expansion. This was done because an individual L-system actually turned out to have 

minimal variance in the metal fractions it produced, and so running multiple simulations with 

different ones was required to change the metallic fraction by a notable degree and provide a 

usable range of samples. The fact that this was required is actually potentially rather useful, 

as it provides a means of controlling the expected metal fraction and thus the resonance point 

expected on average. However, it may be more due to the varying designs that accompanied 

the different tiers of metal fraction rather than an effect of metal fraction directly. 

Another test performed dealt with the effect of the dielectric constant of the substrate 

and its thickness. Several combinations were tested, but ultimately while this proved to some 

Figure 4.16: frequency of lowest resonance point of numerous structures 

plotted against the fraction of said structure composed of metal 
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effect on the location of the point of resonance, said effect was too small to really be of any 

practical use when designing a metaferrite structure. The main goal of the project is to make 

artificial ferrites that can be used for low-profile antennas, after all [13]. If the substrate was 

several centimetres thick this would defeat the point, as any gains to be had by placing 

components closer together would be cancelled out by their sheer bulk.  

4.6: Post-correction Designs. 

Later on, the accuracy of certain equations within the genetic algorithm were called 

into question. Once these faults were corrected, it was deemed prudent to run another round 

of simulations in order to ascertain the exact effects the modification had upon the function of 

the program. Several examples of the structures produced by this modified program are 

presented below, in figures 4.18 to 4.25.  

 

 Figure 4.17: Structure generated after 35 generations by corrected algorithm 
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To begin with the L-system used produced a structure with a fairly low metallic 

fraction. The metal portion of structures seen in the initial population was notably even 

sparser than that seen later ones, indicating that this level of metallic fraction was a little too 

low. Clearly this was not something that was beyond the power of the GA to correct. as long 

as it had sufficient design space this should not cause trouble. The reason for choosing such a 

low-density L-system parameter was in order to avoid the issues that could arise at high metal 

fractions, most notably the potential for the entire structure to be made out of a single piece of 

metal with just a few holes cut out of it. This would eliminate the capacitor nature of the 

structure, a vital component of high impedance surfaces, and instead render it more of a 

slightly modified PEC.   

 

 
Figure 4.18: Magnitude parameter of alternate structure 

generated after 35 generations by corrected algorithm 
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Figure 4.19: Phase parameter of alternate structure 

generated after 35 generations by corrected 

algorithm 

Figure 4.20: Dielectric response parameter of alternate structure 

generated after 35 generations by corrected algorithm 
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These structures displayed a small resonance peak at a fairly high frequency, far 

higher than that seen in the structures designed prior to the corrections to the GA. This was 

merely generation 35, however, so it was entirely possible that leaving the program to run for 

longer would correct any issues seen here, particularly those related to the magnitude of the 

material responses, such as the dielectric response showing greater levels of losses than 

desired. However, given how low the metallic fraction generated by the L-system used here 

was, it was felt that it would be better to modify it and run the algorithm from the start than 

allow this version to continue.  

This version of the program was left to run for far longer than the previous iteration, 

and one of the best examples this alternate variant produced was the following structure, seen 

after 101 generations: 

 

 

 

Figure 4.21: Alternate variant of structure generated by 

corrected algorithm after 101 generations 
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This structure had the following material responses: 

 

 

 

 

Figure 4.22: Magnitude response of alternate variant of 

structure generated by corrected algorithm after 101 generations 

Figure 4.23: Phase response of alternate variant of structure 

generated by corrected algorithm after 101 generations 
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These results showed a good resonance peak at 12 GHz, as well as a wide phase shift 

at the same point, indicating a good bandwidth. These were not an exact match for the goal, 

but it was felt that they were close enough that further optimisation would be able to close the 

gap.  

Results of this nature seem to persist indefinitely from this point onwards, indicating 

that this may be the best that this particular configuration of the program can manage. 

Modifications to the base parameters may facilitate a better agreement with the goal at this 

stage.  

4.7: Summary 

A range of Artificial Magnetic Conductor designs were experimented with in order to 

determine the optimal parameters to serve as a basic template for the project. The parameters 

tested included structure size, substrate thickness, the materials used and even the presence of 

additional components such as a back plate and square patch antenna. These results were 

Figure 4.24: Permittivity response of alternate variant of 

structure generated by corrected algorithm after 101 

generations 
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compared with those of similar projects described in academic papers. Other more unusual 

designs such as placing a large patch over multiple unit cells were also investigated.  

Other tests on the various parameters were also performed. The effect of metal 

fraction on the response of the structure was investigated, but after an initial false positive 

was found to be of negligible effect. The same was true of substrate thickness. Whilst there 

was a correlation seen, it was determined that capitalising on it would have been impractical 

given the ratio of variables involved.  

The final conclusion was that an 18 x 18 mm unit cell was optimal for the purposes of 

the project, ideally constructed using a metal such as silver or copper. The reason for this was 

that a structure of this size had a greater design space than smaller structures, owing to the 

particular method of construction involving multiple 1mm by 1mm squares, but also 

remained free of the distortions in the signal seen when the structure became too large. The 

metals chosen are due to the fairly large conductivity required to generate the desired results. 

Conductive ink was also investigated as an option, but ultimately simulations indicated that it 

was unfeasible, as the lower conductivities available were insufficient to produce those same 

results.  

Once the basic parameters necessary for the goals of the project were established, 

designs following that template were then subjected to computational optimisation using the 

genetic algorithm method in order to refine them and design a novel metaferrite structure that 

could be fabricated. This took several forms, as multiple designs were fabricated for the 

purposes of comparison between fabrication techniques. The materials available for these 

techniques also informed the initial parameters of the simulation. This is another reason that 

silver and copper were tested, and why conductive ink was explored.  

Initially a high-metallic-fraction series of structures were generated, but these lacked 

the characteristic features sought by the project. Another L-system design with less metal was 

attempted, and this did produce the desired responses. This indicates a consequence of high 

metallic fraction not brought to light by the previous study of the topic: In cases where the 

fraction is so high that the structure is composed of a single, linked piece of metal, the 

capacitance that the high impedance surface relies upon is compromised. This can lead to it 

not functioning as intended. For this reason, it has become apparent that lower-fraction 

surfaces are preferable. However, by the same token the L-system required to produce the 

lowest fraction structures appears to generally favour higher resonance points. The genetic 
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algorithm is capable of fine-tuning a structure to some degree, but first one has to ensure that 

its design space can easily reach the required parameters. 

Later on, further designs were simulated after it came to light that there was an error 

in the calculation used by the genetic algorithm program. These results display many of the 

same features as those later fabricated, but seem to suffer from a design space issue that 

leaves them stuck at a local minimum of the fitness function. 
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Chapter 5: Fabrication and Measurement of Metasurfaces 

5.1: Overview 

Fabrication is an important step in the development of any computer-assisted design.  

After all, a metaferrite design is no good if it stays as a simulation forever. So, when it was 

felt that a sufficient number of simulations had been made, the clear next step for the project 

was to choose a design to actually fabricate. This would allow testing of the material 

responses and validating the predictions made by the genetic algorithm.  

There were several methods of fabrication considered. These included screen printing, 

inkjet printing, chemical etching, and a few other techniques [1], [2]. Screen printing is a 

process by which ink is transferred onto a substrate via a mesh. Currently, synthetic threads 

such as polyester are most commonly used for the process, but nylon and even stainless steel 

meshes are available for more specialised applications. Historically, silk was a common 

material to use for such a purpose. The desired pattern is achieved by blocking certain areas 

of the mesh with a stencil. 

Inkjet printing is a method commonly used in commercially available printers. It 

involves a moving ink cartridge that passes across a stationary substrate and coats it via a 

series of jets, hence the name. Its popularity is due to the relative speed and ease of use with 

which it can print documents and other such common items. Its major weakness, as will be 

explored later, is a lack of uniformity in its deposition profile. As such it’s best suited for 

tasks where this doesn’t matter.  

Chemical etching [3] is a process by which the substrate is entirely coated with the 

material intended to cover it, and the unwanted portions are chemically dissolved until only 

the desired design remains. The exact chemicals involved vary depending on the materials 

used, but generally include some sort of corrosive solvent, which can make the process tricky 

to use. A similar technique is laser etching, which involves the same coat and remove process 

but which is done using a laser instead of chemical solvents. A similar result can be achieved 

through pcb milling, where the material is removed mechanically rather than by chemicals. 

This has the advantage of producing less hazardous waste and being easier to do in a lab 

without specialised equipment.  
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It was the techniques of inkjet printing and pcb milling that were eventually put into 

practice, however, mostly due to the availability of the required equipment.  This chapter will 

concern itself with the results that were produced by these methods. 

In both cases, the structure had the same basic composition: A high impedance 

surface placed on a dielectric substrate with a PEC back plate behind it, as shown in figure 

5.1. What differed were the materials involved. The first material attempted was silver ink.  

5.2: Silver Ink 

5.2.1: The Inkjet Printing Method 

The first fabrication attempt used silver ink on a PET substrate, fabricated using the 

inkjet printing method. Inkjet printing is a technique that allows a thin layer of conductive 

materials to be deposited on a substrate, making it ideal for designs like metaferrites, high-

impedance surfaces and other printed electronics, where the material only needs to be a 

millimetre or two thick. [4] 

The material to be deposited is prepared in a liquid form (the titular “ink”) and placed 

in a cartridge in the printer. The substrate is placed on a flat surface inside, held in place via 

vacuum suction. Deposition is controlled by moving the printer head containing the ink 

cartridge over the substrate, depositing one line of the material at a time, not dissimilar to 

how a standard computer printer functions.  

Figure 5.1: Basic composition of typical metaferrite structure. All of the 

fabricated structures outlined in this chapter conform to this design. 
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5.2.2: Fabrication of Chosen Design 

To begin with, a design that was predicted to display the desired sort of response was 

selected and a structure with that as the unit cell was created. 

The structure depicted in figure 5.3 was chosen for this purpose. It was not a fully 

optimised example, but since the main purpose of this first round of fabrication was to assess 

the viability of the inkjet printing method for the fabrication of later structures, that was 

considered sufficient.  

A number of settings and approaches were implemented when creating the larger 

structures. Simply going down in rows of unit cells was the most straightforward method, but 

this meant that if something went wrong then the resulting structure was awkwardly shaped 

and unsalvageable for analysis. A second approach instead worked outwards, making first a 2 

x 2 unit cell structure, then expanding it to a 3 x 3 structure, and then (it was intended) to 4 x 

4 and so on. Unfortunately issues with the process meant that the largest structure created was 

a 3 x 3 unit cell.  

Figure 5.2: Diagram of inkjet printer used to fabricate 

the structure depicted in figures 5.3 and 5.4 
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Figure 5.3: Design of structure that was 

fabricated from silver ink using inkjet printing. 

Figure 5.4: Example of structure that was 

fabricated from silver ink using inkjet printing. 
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These attempts at manufacture were less than perfect. The material deposition was 

somewhat uneven. Several individual unit cells (as seen in figure 5.4) were produced, in an 

attempt to find parameters for the inkjet printer that reduced this, and while improvements 

were made the deposition was never perfect. Additionally, there was a small error made when 

copying the pattern onto a file readable by the printer. Since this was more a test of the 

method’s viability than a genuine attempt at a finished structure, the latter problem was not 

considered to be all that significant.  

Far more of a deciding factor was another issue. Namely that this method proved 

unreliable for generating the large area required for proper validation of the predicted 

material response. A 3 x 3 unit cell tile (54 mm on each side) being the largest successfully 

manufactured before problems with the printing head led to sections of the pattern failing to 

print. In practice, a 4 x 4 (72 mm) unit cell structure or a 5 x 5 (90 mm) unit cell structure 

would have been preferable. 

 

 

 

Figure 5.5: 3 x 3 tile using the above unit cell. It was initially intended 

for a larger tile to be created, but issues in the manufacturing process 

meant that this was the largest successfully created via inkjet printing. 
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Despite above the structure produced lacking the ideal dimensions for analysis, an 

attempt was nonetheless made to measure its S11 parameters using a horn antenna, and this 

produced the parameters depicted in Figure 5.6. The results are not particularly close to those 

expected, as shown in figure 5.7. The issues encountered whilst attempting the inkjet printing 

process are likely to blame for this, and so whilst it could theoretically produce structures of 

the sort desired, if it were performed successfully, this would likely have taken multiple 

attempts and have been overly expensive.  

 

Figure 5.6: Results as predicted by simulation 
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5.3: Milled Copper on FR4 

5.3.1: Fabrication and Analysis 

Since the inkjet printing method proved to be both problematic and expensive, other 

avenues of fabrication were also investigated. One such alternative that proved more viable 

was milled copper on FR4 substrate.  

Rather than depositing the material, the surface came pre-covered and the design was 

created by removing material until only the desired shapes remained. This required some of 

the work to be done by hand, which meant that it took a fair bit longer than the inkjet printing 

method. The payoff was that it was also far more reliable, allowing for the creation of a far 

larger structure suitable for long range analysis in an anechoic chamber. 

Since the materials used for this design were different to the one fabricated through 

the previous method, that pattern would not have generated the same material response. For 

this reason a new, more optimised structure was designed via the Genetic Algorithm program 

to replace it. In this case, it predicted an optimal performance for a design such as that in 

Figure 5.8. 

Figure 5.7: Results as tested at short range. 
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A 10 x 10 grid with this unit cell was constructed. A photograph of the structure is 

depicted in figure 5.10, below. Like the previous example, this structure’s reflection 

parameters were measured using a horn antenna, both at short range and at a distance of 

about 1 metre in an anechoic chamber. These results were compared to those predicted by the 

simulation (shown in figure 5.11). While the short range measurement (figure 5.12) displayed 

a strong resemblance to the simulated values, the measurement from the chamber (figures 

5.13 and 5.14) displayed a far greater imaginary component, which entirely eclipsed the real 

values in magnitude. 

Figure 5.8: Design of structure that was 

fabricated from copper on fr4 substrate 
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Fig 5.9: Diagram of the anechoic chamber setup. 
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The anechoic chamber [5] used for this analysis consisted of a large wooden cabinet 

with absorbing materials attached to the inner surfaces. Halfway up, approximately one meter 

from a horn antenna set in the base, there is a shelf on which to place a sample.  The sample 

shelf has an aperture in the centre, over which the sample is placed in order to expose it to the 

signal transmitted from the horn antenna. This particular feature limits the sample size under 

the test.  

The computer simulation of this structure predicted a strong resonance at around 9.7 

GHz, with a very small imaginary peak at the same point. The numerical values of these 

points are somewhat higher than one would expect, but it is believed that this is largely due to 

a slight error in single variable in the S11 to permittivity conversion equation, which was 

later corrected to a more appropriate value for subsequent simulations. This variable only 

affects the scaling of the values, so it should not have any effect on the qualitative features of 

the prediction.  

Figure 5.10: 10 x 10 unit cell structure that was fabricated 

from copper on FR4 substrate 
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Figure 5.11: Results as predicted 

by simulation 

Figure 5.12: Results as measured at short range 
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Figure 5.13: Comparison of measured (red) and simulated (blue) 

S11 Results after processing via the time gating method. [6], [7] 

Figure 5.14: Comparison of measured (red) and simulated (blue) effective 

permeability after processing via the time gating method. [6], [7] 
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 The close-range analysis of the fabricated structure is similar in appearance to 

the simulated responses predicted, and far closer to them than the measured response of the 

inkjet-printed structure was. The resonance is smaller than predicted (it was calculated from 

the measured s11 parameters by the same equation as was used for the simulation, so ratios 

will be preserved) and the major resonance has shifted down about 0.2 GHz, but overall the 

agreement appears to be quite high. 

Simulation and fabrication of structures is ongoing. The later modifications to the GA 

and subsequent simulations will provide new, improved designs to fabricate and these new 

fabricated structures should better adhere to the goals of this project than those already 

created.  

5.3.2: Further Simulation of Copper Metaferrite Design 

The etched copper structure was subjected to further study later on in the project. For 

this, the CST model of the structure was subjected to further tests by a colleague, Mr Yujie 

Liu. 

First, the metaferrite structure’s performance when placed behind a bow tie antenna 

[8] was compared with that of the same antenna placed in front of a vacuum.  

 

 

 

 

Figure 5.15: Simulated results of antenna in front of vacuum in air (orange) and effective 

medium with same parameters as the metaferrite (green) with 13mm periodic [7] 



114 
 

 

 

   

The effective medium [9] shown in figure 5.15 has the same permeability and permittivity as 

the metaferrite structure, and was found to increase the bandwidth from 1.5 GHz to 2.5 GHz, 

compared to vacuum. In figure 5.16 the actual metaferrite structure was compared to the 

same effective medium and air, and was found to increase bandwidth from 2.7 GHz to 3.17 

GHz. This means that a structure of this type could potentially see use in antenna 

applications.  

In addition to this, the simulated Radar Cross-Section [10] of the structure was 

calculated. It was predicted that the structure would display reduced RCS when compared 

with that of a metal surface. This could also be of use in some applications, but further study 

is probably required, including refinements.  

 

 

Figure 5.16: Simulated results of antenna in air (green), effective medium (red) and 

the actual metaferrite (blue) with 18mm periodic [7] 

Figure 5.17: Predicted RCS response of the structure, obtained via simulation. [5] 
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5.3.3: U-Slot Patch Antenna Fabrication 

 

 

 

In addition to the bowtie antenna, a second antenna was simulated, this time a U-slot 

patch antenna. This antenna was also fabricated, and practical tests were performed to 

validate the results of the simulation. The copper structure in figure 5.10 formed the base 

plate of this structure, and a second layer of substrate was placed on top, as show in figure 

5.18. On top of this was a metal patch antenna with a U-shaped slot cut out of it, as shown in 

figure 5.19 and 5.20 

 

 

 

 

 

 

 

 

 

 

Figure 5.18: The layered design of the metaferrite antenna 

compared with the theoretical effective medium model. 

Figure 5.19: Diagram of U-slot patch 

antenna over metaferrite base. 



116 
 

 

 

 

The antenna’s response was measured and compared to that predicted by simulation. 

The S11 parameters showed good agreement, taking into account a small frequency shift 

caused by an air gap in the fabricated structure. Both indicated that the desired value of 

𝜀𝑟 = 𝜇𝑟 = 3 − 𝑖 for RCS reduction was achieved at around 9 GHz, as shown in figure 5.21. 

            

 

 

Figure 5.20: Image of fabricated U-slot patch 

antenna over metaferrite base. 

Figure 5.21: Comparison of simulated and measured RCS 

reduction values for U-slot patch antenna 
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The farfield response of this antenna was also measured and compared to simulation 

at three distinct frequencies, as shown in figure 5.22.  

5.4: Summary 

Several structures designed by the genetic algorithm program were fabricated using a 

variety of techniques, generally depending on the parameters on which the simulation was 

based. This was done both to validate the accuracy of the simulations and to assess the 

viability of the fabrication techniques used.  

Figure 5.22: Comparison of measurement and simulation of the 

normalised E- and H-plane radiation patterns at 8.65, 8.8 and 9 GHz 
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The primary techniques studied were inkjet printing using silver ink on a PET 

substrate, and etching using copper foil on an FR4 substrate. Of these two the latter was 

found to be the preferable technique, owing to its greater robustness and reliability, and lesser 

cost. Silver is, after all, expensive, and performing several trial runs using an inkjet printer in 

order to establish the proper settings required to create a full structure proved to quickly use 

up valuable material.  

The results obtained were approximately those expected, but there is certainly room 

for improvement, both in conformity to the results predicted and in the conformity of the 

results predicted to the goals. It is hoped that the results presented here might form a basis for 

improvements to the genetic algorithm and manufacturing methods that will facilitate both.  

Following this, simulations and experiments were performed to explore the 

performance of the copper structure when placed behind both a bow tie antenna and a u-slot 

patch antenna. These were found to aid in RCS reduction. 

The current structures have proved to be able to enhance the bandwidth of an antenna 

if placed behind one, but overall they function better as an absorber than a reflector. It is 

hoped that new designs taking the new parameters into account will better conform to the 

goal. Other designs involving multi-layer structures and transmitters are also being studied. 
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Chapter 6: Hyperuniform Metamaterials 

6.1: Other Metaferrite Structures: Random vs Periodic vs Hyperuniform 

To date, almost all forms of metamaterials and metasurfaces including metaferrites 

are periodic structures with repeating patterns of unit cells [1], [2]. These unique topologies 

offer peculiar electromagnetic properties as they introduce constructive and/or destructive 

interference at certain directions due to Bragg diffractions [3]. They can be used to 

manipulate angular properties and polarisations of transmitted and reflected waves. This is 

not the only way such a goal may be realised, however.  Randomly dispersed structures occur 

in the formation of conventional dielectrics where their inclusions are also irregular [4], and 

so, some questions are raised over the role of periodicity and randomness of point 

distributions of meta-atoms within metasurfaces.  

Recently, increasing interests have been found in the study of hyperuniform 

randomness. Hyperuniform Structures work differently to metaferrites exploiting high 

impedance effects, instead exploiting the “ordered randomness” they possesses to scatter 

incoming waves. This “ordered randomness” means that hyperuniform structures possess 

traits of both periodic and random structures [5], [6]. This means that they are characterised 

by a reduction in density fluctuations compared to random structures, but also lack the bragg 

peaks seen in periodic structures. This causes them to resemble a hybrid of crystal and 

isotropic liquid. The way they work differs from high-impedance surface based metaferrites 

as well, scattering rather than absorbing radiation. This means that their performance is 

orientation dependent, being most effective at particular angles of incidence whilst not 

reducing the global reflection when all angles are considered. Hyperuniform structures also 

prevent situations that can arise in a truly random arrangement such as low-entropy states like 

all the particles in a room ending up in one corner, which are theoretically possible, if 

unlikely. Such a state is not generally what is being sought by those who elect to generate a 

random distribution, however. More commonly, what someone employing a “random” 

distribution desires is a reasonably even distribution that is not bound to a rigid periodic 

lattice [7]. A significant number of papers have been published in exploring novel structures 

such as photonic crystals with a wide bandgap. [8], [9], and demonstrating the technology’s 

usefulness in the field of optical waveguides and High-Q polarizers, on chip spectrometers 

and Luneberg lenses, to name a few.  
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Hyperuniform structures can be designed by allowing each particle to occupy a 

random position within a segment of a grid. In terms of Fourier space, the structure factor 

S(k) approaches zero as |k| approaches zero. This means that there will be a reasonably even 

distribution of particles, free of any clumping that a truly random arrangement could produce. 

Indeed, hyperuniform structures can often appear more consistently “random” than a truly 

random distribution. 

In order to evaluate the differences between hyperuniform and high impedance 

metaferritesm, several metasurfaces based on the former were designed with the goal of 

minimising the back-scattering from an incident plane wave reflected from the surface. This 

took the form of multiple dipole structures consisting of two metallic arms of 8-10 mm in 

length at an angle of between 0 and 90 degrees from each other. The values were randomly 

determined for each antenna. These structures were designed in CST using a VBA macro to 

quickly translate hyperuniform distributions into simulated structures ready for analysis. The 

analysis itself was performed by a colleague, who also provided the distributions to input.  

Following this, further testing aimed at reducing the radar cross section of the structures was 

also performed. Periodic, random and hyperuniform structures were compared for these 

purposes. The hypothesis was that hyperuniform structures would perform better than either 

of the alternatives, and comparing them in this manner is obviously the most straightforward 

method of either confirming or disproving that notion. The structure of the unit cell is shown 

in figure 6.2, along with the various parameters that could be varied within a structure.  [10] 

Figure 6.1: Illustration of the difference between randomised, hyperuniform and periodic 

particle distribution. 
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The structures consisted of a number of simple v-shaped dipole antennas of various, 

randomly determined, tine lengths and opening angles. The purpose of this was to alter the 

refractive index of the material, since structures of this nature can act as a plasmonic 

metasurface [11]. Snell’s law of refraction states that the ratio of the sines of the angles of 

incidence and refraction of light entering a medium is equal to the ratio of the phase 

velocities of that medium and the medium that the light entered from, which is also equal to 

the inverse ratio of the two media’s refractive indices [12], [13]. Or in other words: 

sin 𝜃2

sin 𝜃1
=

𝑣2

𝑣1
=

𝑛1

𝑛2
                                                                      (6.1) 

In the case of an array of v-shaped antenna the plasmonic interfaces impart abrupt 

phase shifts in the optical paths, which allows for more flexibility in how one moulds the 

optical wavefront [14]. This allows Snell’s law to be generalised to the form  

[𝑘0 𝑛𝑖sin(𝜃𝑖)𝑑𝑥 + (Φ + 𝑑Φ)] − [𝑘0 𝑛𝑡sin(𝜃𝑡)𝑑𝑥 + Φ] = 0                      (6.2) 

which can then be rearranged to give  

sin(𝜃𝑡) 𝑛𝑡 − sin(𝜃𝑖) 𝑛𝑖 =
𝜆0

2𝜋

𝑑Φ

𝑑𝑥
                                                   (6.3) 

Here, 𝜆0  is the vacuum wavelength, 𝜃𝑖  and 𝜃𝑡  are the angles of incidence and 

refraction respectively, and 𝑛𝑖 and 𝑛𝑡 are similarly the refractive indices of the materials in 

which the incident and refracted radiation propagate. 𝑘0  is 
2𝜋

𝜆0
, and Φ and Φ + 𝑑Φ are the 

phase discontinuities where the paths cross the interface.  

 Figure 6.2 depicts the design and paramters of the v-antenna structures. They were 

placed on a substrate which had a thickness of 2mm and a dielectric constant of 2.65. The 

metal v-antenna itself had a thickness of 0.018mm, as did the ground plate behind the 

structure. The structures were arranged in either a periodic, random or hyperuniform 

arrangement and farfield simulations of each were made. In order to understand the scattering 

field of the structure as a whole, it’s useful to understand that of a single lattice. The 

theoretical formula for the E-field of a diploe antenna is given by  

E(θ) =
cos(

𝑘𝑙
2

∗ sin 𝜃 ∗ sin 𝜑) − cos(
𝑘𝑙
2

)

√1 − 𝑠𝑖𝑛2φ 𝑠𝑖𝑛2θ
                                                  (6.4) 
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In the case where there is no coupling between dipoles and each of them rotates by half the 

opening angle 𝜎 (28) can become 

 

E(θ) =
cos(

𝑘𝑙
2 ∗ sin 𝜃 ∗ sin(𝜑 ± 𝜎/2)) − cos(

𝑘𝑙
2 )

√1 − 𝑠𝑖𝑛2(φ ± 𝜎/2)∗ 𝑠𝑖𝑛2θ
                                      (6.5) 

 

The S-parameters of this structure were taken at a range of incidence values and for various 

parameters of the length and opening angle. These are detailed below in figure 6.3:  

 

PEC 

Spacer 

p=15mm 

E 

L=7-10mm 

f=8-12GHz 

  =0-90° 

Parameters 

 

 

 
   

Figure 6.2: Parameters of dipole unit cells used in metaferrite structures described below  
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As can be seen, the individual unit cells display a range of possible phase shift 

frequencies, ranging from just under 10 GHz at the lower end to just under 12 GHz at the 

upper one. The greatest values are typically those that correspond to higher angles of 

incidence.  

Following this analysis, periodic and hyperuniform structures were created. Each had 

the form of an M x N array of v-shaped antennas. The scattering pattern of such a structure 

can be characterised as a superposition of the scattered waves of its constituents, meaning 

that the normal incidence can be derived as 

 

Figure 6.3: S- Parameters response of dipole unit cells used in metaferrite structures 

taken at a range of variables and angles of incidence  
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𝑓(𝜃, 𝜑) = 𝑓𝑒(𝜃, 𝜑) ∑ ∑ exp{−𝑖}

𝑁

𝑛=1

𝑀

𝑚=1

[𝛿(𝑛)                                                           

+ 𝑘𝐷 sin 𝜃 × ((𝑚 − 1/2)𝑐𝑜𝑠𝜑 + (𝑛 − 1/2) sin 𝜑)]                                    (6.6) 

In the case of a non-periodic distribution, this is modified to  

𝑓(𝜃, 𝜑) = 𝑓𝑒(𝜃, 𝜑) ∑ exp{−𝑖[𝛿(𝑛) + sin 𝜃(𝑢 ∗ 𝑐𝑜𝑠𝜑 + 𝑣 ∗ sin 𝜑)]}

𝑁

𝑛=1

               (6.7) 

 𝑓(𝜃, 𝜑)  is the vector far-field of the element at position [n], while 𝜃  and 𝜑  are 

respectively the polar and azimuthal angle. When the initial phase of the elements is applied 

between 0 and 360 degrees randomly the far-field scattering should undergo complex 

interference in an equally random manner and thus act similarly to light illuminating a rough 

surface, theoretically producing a low backward scattering.  

Naturally, structures of the nature described here were constructed in CST and tested 

in order to verify this theoretical analysis. First to be studied was the periodic structure seen 

below, in figure 6.4. This displayed a phase shift at 9 GHz.  

 

 Figure 6.4: Periodic structure displaying a phase shift at 9 GHz 
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It also displayed the following farfield parameters, seen in figure 6.5:  

 

 

 

 

 

 

 

Figure 6.5: Farfield response as 9GHz periodic structure 
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By comparison, the hyperuniform structure is depicted in figure 6.6, below. This 

structure also displayed a phase shift at 9 GHz, making it ideal for comparison with the 

structure in figure 6.6.  

 

 

 

 

 

 

 

 

 

Figure 6.6: Hyperuniform structure displaying a phase shift at 9 GHz 
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This structure displayed the farfield parameters seen in figure 6.7: 

 

 

 

 

 

 

Figure 6.7: Farfield response as 9GHz hyperuniform structure 
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As can be seen here, the hyperuniform structure studied does indeed display a lower 

far-field response than the periodic structure in the 0 degree direction, whilst maintaining an 

Figure 6.8: Comparison of the farfield response of periodic and hyperuniform structures 
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equally high magnitude at 180 degrees. The results indicate that the hyperuniform structure is 

better at reducing the back scattering from the plane wave, as predicted.  

In the structures seen above, the periodic and hyperuniform variants both possessed 

the same number of particles. However, hyperuniform structures allow one to fit more 

particles in a given area, thereby increasing the bandwidth possible.  This feature was 

explored with the use of 144, 197 and 208 dipole structures with periodic, hyperuniform and 

randomised distributions respectively.  

 

 

 

 

Figure 6.9: Periodic structure containing 144 dipoles. 
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Figure 6.10: Hyperuniform structure containing 197 

dipoles. Note the far less ordered arrangement. 

Figure 6.11: Random distribution structure containing 208 

dipoles. 
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The simulated structures were subjected to more in depth farfield analysis, this time 

taking into account Bistatic Scattering, with the aim of determining which best achieved the 

goal of reduced far-field reflection. The typical response of the structures generally 

resembled that shown in figure 6.12, however the differences between the various 

metasurfaces are more clearly seen in tabular form. Such a table is depicted below in figure 

6.13. 

 

 

 

 

 

 

 

Figure 6.12: Typical far-field response of high- density metasurfaces 
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As can be seen, periodic structures do appear to have a disadvantage over 

hyperuniform ones, most prominently at the 9.6 to 10 GHz range. These results are somewhat 

preliminary, and further study would be required to confirm them.  
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Figure 6.13: Table depicting RCS reduction 

bandwidth of various metamaterial structures. 
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6.2: Summary 

This chapter details a study of hyperuniform metamaterial structures, with the aim of 

reducing back-scattering and radar cross-section. These structures consisted of multiple 

angular dipole antenna arranged in periodic, hyperuniform and random arrangements, and at 

various numbers in a given structure. The various effects of these differences were compared 

to one another, with a focus on their far-field responses. 

The primary hypothesis under investigation was that hyperuniform structures would 

have an advantage in achieving the desired goal of reduced far-field reflection over their 

periodic and random counterparts for certain angles of incidence. The results, albeit 

preliminary at this stage, appear to bear that hypothesis out.  

In the future, it may be possible to apply the genetic algorithm to this problem, 

optimising for hyperuniform distribution, structure tine length, structure opening angle or 

some combination of the three. This could improve the performance of the structure and lend 

itself to many applications.  
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Chapter 7: Conclusion and Future Work 

7.1: Conclusions 

7.1.1: Novel Contributions 

Like most projects of this nature, this thesis sought to provide a novel contribution to 

the field of antenna engineering. It has achieved this by providing a new, integrated approach 

to metaferrite design as well as several designs that could potentially see use as absorbers and 

bandwidth-enhancing back plates for antenna applications. It has also laid the groundwork for 

designing newer, improved versions of the same at a later date  

The more significant product, however, is the genetic algorithm created over the 

course of this work. It’s this genetic algorithm that was used to design the structures 

mentioned and that could be used to generate improved structures. It is a flexible tool that can 

be reconfigured for other design goals with minimal alteration, and incorporates a multi-

program approach to analysis and data collection. It is this latter feature that provides a novel 

approach to certain problems, as incorporating a program to simulate the structures designed 

instead of relying on analytical functions is something that has not been done before. The GA 

was also highly modular in nature, allowing sections to be easily replaced. This allows it to 

easily be adapted to a range of problems with minimal alterations to the surrounding 

algorithm.  

The hyperuniform structures, albeit preliminary, could also yield useful contributions 

at a later date, and could also be the subject of optimisation to improve their performance 

beyond what has already been seen.  

7.1.2: Summary 

The outputs of this project can essentially be divided into two groups: those being the 

genetic algorithm program designed to aid in the creation of a variety of metaferrites, and the 

structures that this algorithm designed that were subsequently fabricated.  

The former of the two is the more substantial product. While there were a few 

setbacks along the way, the GA has slowly developed as the project progressed. The surfaces 

produced were created not simply for their own end, but also to test and improve the genetic 

algorithm, and the knowledge gained by studying them will ultimately go back into the 
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algorithm that created them to upgrade and improve it, in order to produce new, superior 

structures.  

That is not to say that the fabricated structures were unimportant, of course. There are 

multiple fabrication methods to choose from and studying them to determine which would be 

most efficient and reliable was an important part of the process, as was understanding the 

processes involved in those that were new and unfamiliar. Likewise, the techniques used to 

analyse the structures, and the design limitations that need to be taken into account to 

accommodate that, are also important features.  

This was also the reason behind some of the early metaferrite design exercises. Not 

only were they intended to explore the ins and outs of the mechanics of metamaterial 

surfaces, they also served to increase familiarity and understanding of the tools used to create 

them. The hexagon-based structure that was so difficult to make at the time would likely have 

been far easier to recreate had that been attempted at the tail-end of the project, but that 

learning experience was necessary to ensure that the commercial software was set up 

properly and produced the correct results when used to analyse the metasurface structures 

produced by the genetic algorithm, even though some of the techniques introduced during 

that exercise, such as the non-rectangular unit cell, were ultimately not used in the course of 

the main project. They may, however, be of use in further exploration of the topic by future 

research.  

7.1.3: Genetic Algorithm 

As stated previously, this project sought to create a genetic algorithm that could aid 

the design of metamaterial ferrite structures. To this end, it was largely successful. The 

genetic algorithm created by this project is a flexible tool that can be fine-tuned to produce a 

number of metamaterial high-impedance surface structures. It is also modular in nature, 

allowing it to be quickly and easily reconfigured to a new task simply by swapping out pre-

created modules by altering a few lines of code. Both the fitness function and the vba 

construction macros can be interchanged this way, permitting almost any alteration of 

parameters desired.  

This flexibility of the genetic algorithm has already been capitalised on in various 

ways. Numerous materials can potentially be used to form the conductive surface of the 

structure, and several of these have been simulated using the GA with limited alteration to its 
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core structure. The incorporation of commercial software provides further flexibility, as it 

means that there will be no shortage of parameters for the simulation of even unconventional 

substances, available in the built in material library. Those that are not can be easily 

constructed using the available parameter-entry tools.  

The ease with which the fitness function can be replaced facilitates the search for 

solutions with different parameters, as replacing a given function with a slightly different 

equation can be done quickly, simply, and in an easily reversible manner. One simply needs 

to create a new file for the new function and swap out the prompt to run it in the parent file. 

Since it is possible to make reconfigurable devices that can act as either a high impedance 

surface or an absorber, this should not require much more than an alteration of the fitness 

function. As such turning the algorithm towards the design of absorbers or other similar 

structures could be done with ease. 

There is room for improvement, however. A notable issue was the long run times 

involved with the program. This often led to it needing to be left running for days or even 

weeks before it would produce a properly optimised structure, and such an extended period of 

operation left the program vulnerable to network failure or general computer errors. This 

frequently stymied attempts to run the program for extended lengths of time.  

There was also some concern about the specifics of the results derived. While 

qualitatively what was expected, they did display a numerical issue, with the actual values 

predicted being inflated to far beyond what was expected for structures of this type. This 

meant that additional simulations were required before the structures generated could be used 

in antennas. It was eventually deemed that an error in the calculation of beta-0 may have been 

behind it, and this was rectified. Subsequently a new round of simulation was performed in 

order to assess how this change had altered the function of the genetic algorithm.  

This testing involved multiple variants of the L-system in order to determine which of 

them was best suited to the new parameters. The first was tended to produce high metal 

structures that did not display the desired properties at all. It was determined that this was in 

fact due to the high fraction leading to a tendency for the segments of the design to link 

together, depriving the structure of its capacitor nature. This is an important observation and 

is something to look out for in the future, but for now it meant that such an L-system was 

unsuitable.  
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The second variant went in the opposite direction, producing extremely sparse 

designs. This did allow the structures to resonate with a degree of consistency, but generally 

at a very high frequency. This is likely due to the large gaps produced between pieces of 

metal, and their small size. 

A third variant sought to compromise between the two, and was largely successful. It 

produced the desired middle ground of metal to substrate ratio, and reduced the resonant 

point to with the desired 8 to 12 GHz range with a degree of consistency, although a few 

outliers persisted. The program did however appear to get stuck at a local minima that 

produced responses with a higher imaginary component than desired, which may be a 

consequence of the reduced design space.  

It is possible that, upon reflection, the reduction in complexity and computer load the 

L-system granted did not pay off in the long run. The benefits in speed seem to be 

outweighed by the cost in overall versatility. Future work to increase design space may be 

worth pursuing.  

7.1.4: Fabrication 

The genetic algorithm produced multiple potential designs for a metaferrite structure. 

Several of these designs produced by the genetic algorithm were selected to progress to the 

fabrication stage, and ultimately two such structures were created. These were then analysed 

and compared to one another at both short range and long range, in and outside an anechoic 

chamber. The results showed moderate agreement with those predicted by simulation, 

although in one case time gating had to be employed in order to make this apparent. The 

results found here could be put towards improvements to the genetic algorithm, or possibly 

refine the parameters of the analysis performed by the commercial software.  

The structures created provide a solid foundation for the topic, but more could 

certainly be done using the genetic algorithm. More adventurous design challenges and other, 

more novel approaches could be addressed, and the results of these endeavours could also 

provide insights on how the algorithm could be improved further. Perhaps refinements could 

be made to the fitness function, or alterations to the parameters of recombination could be 

made.  

Overall, it was concluded that the best material to use for fabrication as of yet 

attempted was Etched Copper on an FR4 substrate. This was the material combination that 
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could be fabricated with the most consistency, compared to inkjet-printed silver. This allowed 

for a larger structure to be created, which was in turn easier to analyse with the available 

equipment. It is possible that further exploration could yield a process that is even better, 

either in terms of ease of use or consistency.  

Subsequent simulations of the structure also indicated that it could reduce the radar 

cross-section of a device compared to a solid metal substrate. This has a number of potential 

applications, and may be useful to study in depth at a later date.  

7.1.5: Other Parameters Studied. 

During the construction of the algorithm, several parameters were studied in order to 

ascertain the effects they would have on the finished structure. One example is the metallic 

fraction of the structure. This was studied by logging the metal fraction of structures 

generated by the genetic algorithm and comparing them to the parameters of those structures.  

At first, it appeared that there was a correlation between the fraction of metal and the 

resonance point of the structure’s permittivity. However, as data accumulated this correlation 

slowly disappeared, leading to the conclusion that it was in fact other features of the 

structure, which metal fraction is often determined by, that was causing the pattern. This 

initial false positive likely came about because the data was accumulated through multiple 

runs using different L-system configurations. Certain l-systems do lend themselves to 

particular resonance points more easily, so when there were only a few systems in the data, 

each tending towards a different resonance point and metal fraction, it just so happened that 

these two variables lined up with each other to a certain degree. As other systems which tend 

to the same fraction appeared in the data this spurious correlation was corrected. 

Later on it also became clear that a sufficiently high metal fraction can potentially 

disrupt the function of the device, as a continuous metal structure does not possess the 

capacitance necessary for the high-impedance required to arise. As with the previous 

examples, this is more a consequence of the structures a given metal fraction lends itself to 

than the fraction itself.  

So, in conclusion, it was determined that metallic fraction can have an indirect effect 

on the parameters of structure created by influencing the structure itself, but that it does not 

possess any direct connection to the resonance point.  
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7.2: Future Work 

There are a number of directions in which research on the topic of this thesis could 

progress further. The materials, design parameters, design goal or even the optimisation 

algorithm itself could be altered. Each of these would provide a point of comparison with 

which the existing algorithm could be contrasted and potentially improved. As previously 

mentioned, the flexibility of the genetic algorithm facilitates some of these avenues. 

Replacing the algorithm itself would not be among them, obviously, as it would require 

rebuilding from the ground up.  

First and foremost, the project could simply continue on its present course. There is 

room for improvement in the genetic algorithm, certainly. It could be faster, more elegant, 

and there are likely many refinements to its function that could be made. New designs could 

be generated and fabricated, and the results used to upgrade the GA further. The structures 

previously fabricated are certainly valuable points of study, but given the refinements that 

have already been made to the GA since they were created, it is unlikely that they will 

achieve the project’s initial goal. New structures could approach those parameters to a better 

extent. 

7.2.1: Alternate Materials 

One possible alternate material that could be investigated is graphene. This was 

studied to a small degree by this project, but ultimately nothing came of it. Graphene is a 

material with a range of interesting properties, primarily derived from its unique “two-

dimensional” nature due to being merely an atom thick. A more in-depth study could yield 

better results, and possibly take advantage of alternative design techniques.  

Other metals might also be an option. Silver has numerous beneficial properties, but it 

is expensive, and the main fabrication method using it proved difficult to use consistently. If 

another method of fabrication using it was found, that may be worth investigating. 

Alternately metals with varying degrees of losses could be compared to one another, or other 

forms of conductive ink. 

Another component that could be altered is the substrate. This is often dictated by the 

constraints of a given intended fabrication method, but this has shown to have some degree of 

influence on the structure in simulation, and where there are multiple options available it 
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would be worth making a comparison between them to determine which was optimal for a 

given problem.  

7.2.2: Alternate Optimisation Procedure 

Another possible avenue of research could be to attempt another form of optimisation 

procedure aimed at the same design goal or, at the very least, a similar one. This would 

facilitate an appraisal of the two by allowing a comparison the derived solutions. If time is 

available it might even be worth comparing the solutions produced by both to multiple 

problems, in order to get a comprehensive overview of which is better suited to a given 

design goal.  

The Particle Swarm technique would be a likely candidate for such an endeavour, 

given that it has a similar concept at its core (mimicry of processes found in nature) and is a 

reasonably well-established technique. It is also sufficiently different in execution that the 

final results would probably have a reasonably distinct form, and if this were not in fact the 

case that itself would be interesting as well. Alternate optimisation could also be applied to 

other materials which the genetic algorithm struggled to find solutions for, such as graphene, 

and comparisons between them on a material by material basis could be constructed.  

This would, of course, represent a project of comparable magnitude to the one 

described in this thesis. The algorithm would need to be constructed from scratch, and an 

equivalent design parameter to that used here would need to be created. This perhaps 

stretches the definition of what could be considered further work on this project a little too 

far. But, as a project to spin off of this one, it is worth considering. 

7.2.3: Alternate Goals 

On the other hand, attempting to generate another form of structure with the same 

method rather than attempt the same goal with a different method would certainly qualify as 

an expansion. In this case, the bulk of the genetic algorithm program could remain intact, as 

only the export and fitness function modules would need to be replaced.  

The new goal could also be an attempt to replicate one done by others in the past. 

Switching the design to an absorber or some other component would provide a demonstration 

of the solver’s adaptability and the robustness of the algorithm. On the other hand, a 

completely novel design would have more impact and possibly provide new insights into the 
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topic, so perhaps that avenue would be the better one to pursue. This would require a far 

more substantial reconstruction of the build modules, of course, but if one was careful the 

new design could still be based off the same seed code, or one with only minor alterations to 

the L-system to produce one of a slightly different length.  

Another avenue of research could be to investigate the results of some of the design 

constraints being loosened or tightened. A full fractal pattern could be implemented, rather 

than the somewhat limited version used in the project. Another possibility is that variations 

on the structure’s symmetry could be explored.  

Machine Learning could also receive a more in-depth exploration. A comprehensive 

data bank of solutions would greatly speed up analysis, not only by excising repeated 

structures but also by potentially allowing the program to make intuitive leaps about the 

expected results of those it has yet to examine. The latter approach would likely require 

extensive re-working of the program, however, so much like the alternate optimisation 

approaches its implementation would be very dependent on the time remaining in the project.  

7.2.4: Further exploration of previously touched upon designs. 

Over the course of this project other designs and techniques have received a degree of 

attention, such as hyperuniform structures and multi-layer metamaterials. These are both 

avenues that could receive further exploration. The benefits of the multilayer structure appear 

to be somewhat orthogonal to the goals of this project, so a separate study may be the best 

approach there, while applying a hyperuniform approach to the metaferrite structures 

designed by this project would require a certain degree of re-working.  

This could take many forms, such as a hyperuniform distribution of pixels in the 

initial structure generation as opposed to the randomised generation seen currently, or 

perhaps a hyperuniform distribution of unit cells, or perhaps both, although this may not have 

any real benefit.  
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Appendix: MATLAB code 

GenetAlg_cluster 

clear, clc 

Dexcount=3800; 

Dexno=Dexcount; 

Dexno2=Dexcount; 

dbno=1; 

run nextgen_cluster 

runs=1; 

G=1; 

match=0; 

 

while Elite<0 && runs<500 

run nextgen_cluster2 

runs=runs+1; 

 [Elite,Position]=min(T); 

disp(Elite) 

disp(Position) 

Alpha=Newpop(:,Position); 

 

end 

disp('Best value is')  

disp(Elite) 

Plant=Alpha; 

while length(Plant)<45 

    k=length(Plant);  

    l=1; 

    for j=1:k 

        

       if Plant(j)==1 

           Y(l)=0; 

           Y(l+1)=1; 

           l=l+2; 

       else 

           Y(l)=1; 

           Y(l+1)=0; 

           l=l+2; 

       end 

    end 

    Plant=Y; 

    disp(Plant) 

end 

disp ('SCREENCAP THIS BEFORE IT VANISHES -->') 

  run impex 

 

nextgen_cluster 

 

run seedgen_cluster 

 [Length,Width]=size(Cross); 
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for n=1:Width 

    Cutpoint=round(rand*(Length-1)+1); 

    for p=1:Cutpoint 

    Newpop(p,n)=Alpha(p,1); 

    end 

    for q=Cutpoint+1:Length 

        Newpop(q,n)=Cross(q,n); 

    end 

    disp('next1a') 

end 

 

[Length2,Width2]=size(Mut); 

mutgene=3; 

t=1; 

for r=Width+1:Population 

    Newpop(:,r)=Mut(:,t); 

    for s=1:mutgene 

        Mutpoint=round(rand*(Length2-1)+1); 

        if Newpop(Mutpoint,r)==1 

            Newpop(Mutpoint,r)=0; 

        else 

            Newpop(Mutpoint,r)=1; 

        end 

    end 

    disp('next1b') 

    t=t+1; 

end 

 

seedgen_cluster 

Population=12; 

Tolerance=5; 

k=1; 

m=1; 

i=1; 

T(1)=0; 

match=0; 

fitnum=1; 

while i<=Population 

run seed 

if i==1 || seednum ~= varnum 

    Seed(:,i)=var; 

    seedflip(1,:)=Seed(:,i); 

seedchar=num2str(seedflip); 

 

g=1; 

for f=1:length(seedchar) 

     if seedchar(f)=='1' || seedchar(f)=='0' 

        seedcharshort(g)=seedchar(f); 

        g=g+1; 
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    end 

end 

 

seednum=str2num(seedcharshort); 

PlantX(:,i)=var; 

end  

i=i+1; 

disp('I am working') 

end 

disp('This is Generation 1') 

i=1; 

while i<=Population 

    Plant=PlantX(:,i); 

while length(Plant)<45 %put this back in when done debugging.  

    k=length(Plant);  

    l=1; 

    for j=1:k 

        

         if Plant(j)==1 

           Y(l)=0; 

           l=l+1; 

       else 

           Y(l)=1; 

            Y(l+1)=0; 

           l=l+2; 

       end 

    end 

    Plant=Y; 

     

    disp(Plant) 

    

end 

Plantsum = sum(Plant(1:45)); 

Plantdiag = [Plant(9), Plant(17), Plant(24), Plant(30), Plant(35), Plant(39), Plant(42), 

Plant(44), Plant(45)]; 

diagsum =sum (Plantdiag); 

    Plantfrac = ((Plantsum*2)-diagsum)/81;  

    disp('Plantfrac equals') 

    disp(Plantfrac) 

PlantY(:,i)=Plant; 

i=i+1; 

end 

i=1; 

run program_selector_fr4 

while i<=Population 

    Plant=PlantY(:,i); 

   

  

if Pha0<150 T(i)=FitMin(i); 

    disp('T-Value is') 
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    disp(T(i)) 

    

end 

 i=i+1; 

disp(length(T)) 

end 

%end 

 

 

 [Elite,Position]=min(T); 

Alpha=Seed(:,Position); 

q=0; 

o=1; 

Tbest=T(Position); 

for j=1:Population    

if T(j)<=Tbest+Tolerance && q<8 

     CrossID(o)=j; 

     Cross(:,o)=Seed(:,j); 

     

        [Length,Width]=size(Cross); 

    disp('Cross is') 

    disp(Width) 

    o=o+1; 

    q=q+1; 

     

    else  

    T(j)= Tbest+Tolerance+1000; 

end 

end 

 

for l=1:Population 

    if T(l)>Tbest+Tolerance %||dupe(l)==1 

        Mut(:,m)=Seed(:,l); 

        MutID(m)=l; 

        m=m+1; 

        mutcheck=1; 

    end 

end 

 

seed 

 

for q=1:9 

y=round(rand*9+1); 

for z=1:y 

x=rand; 

end 

if x>0.5 

    var(q,1)=1; 

else 

    var(q,1)=0; 
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end 

end 

  

varflip(1,:)=var(:,1); 

varchar=num2str(varflip); 

 

g=1; 

for f=1:length(varchar) 

     if varchar(f)=='1' || varchar(f)=='0' 

        varcharshort(g)=varchar(f); 

        g=g+1; 

    end 

end 

 

varnum=str2num(varcharshort); 

 

Nextgen_cluster_2 

run seedgen_cluster2 

 [Length,Width]=size(Mut); 

[Length2,Width2]=size(Cross); 

mutgene=3; 

Mutmax=Population-Width2; 

if Mutmax<=4 

    Mutpop=4; 

else 

    Mutpop=Mutmax; 

end 

clear Newpop 

for r=1:Mutpop 

     Newpop(:,r)=Mut(:,r); 

    for s=1:mutgene 

        Mutpoint=round(rand*(Length-1)+1); 

        if Newpop(Mutpoint,r)==1 

            Newpop(Mutpoint,r)=0; 

        else 

            Newpop(Mutpoint,r)=1; 

        end 

    end 

     

end 

 

 

t=1; 

for n=Mutpop+1:Population 

   Cutpoint=round(rand*(Length-1)+1); 

    for p=1:Cutpoint 

    Newpop(p,n)=Alpha(p,1); 

    end 

    for q=Cutpoint+1:Length 

        Newpop(q,n)=Cross(q,t); 
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    end 

   t=t+1; 

end 

 

seedgen_cluster2 

 

k=1; 

m=1; 

G=G+1; 

r=1; 

clear PlantX 

while r<=Population 

% run seed 

% Seed(:,i)=var; 

PlantX(:,r)=Newpop(:,r); 

disp('seed2a') 

r=r+1; 

end 

disp('this is generation') 

disp(G) 

r=1; 

while r<=Population 

    Plant=PlantX(:,r); 

while length(Plant)<45 

    q=length(Plant);  

    l=1; 

    for j=1:q 

        

       if Plant(j)==1 

           Y(l)=0; 

           l=l+1; 

       else 

           Y(l)=1; 

            Y(l+1)=0; 

           l=l+2; 

       end 

    end 

    Plant=Y; 

    disp(Plant) 

end 

Plantsum = sum(Plant(1:45)); 

Plantdiag = [Plant(9), Plant(17), Plant(24), Plant(30), Plant(35), Plant(39), Plant(42), 

Plant(44), Plant(45)]; 

diagsum =sum (Plantdiag); 

    Plantfrac = ((Plantsum*2)-diagsum)/81;  

    disp('Plantfrac equals') 

    disp(Plantfrac) 

PlantY(:,r)=Plant; 

 

r=r+1; 
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disp('seed2b') 

end 

r=1; 

run program_selector_fr4 

while r<=Population 

    Plant=PlantY(:,r); 

   

   

if Pha0<150 T(r)=FitMin(r); 

    disp('T-Value is') 

    disp(T(r)) 

     

end 

r=r+1; 

disp('seed2c') 

end 

[Elite,Position]=min(T); 

Alpha=Newpop(:,Position); 

Abort=8; 

dump=1; 

k=1; 

for j=1:Population 

if T(j)<T(Position)+Tolerance  

    if k<Abort  

    Cross(:,k)=Newpop(:,j); 

    CrossID(k)=j; 

    disp('Cross is') 

    disp(Width2) 

    k=k+1; 

    else 

    Mut(:,dump)=Newpop(:,j); 

    MutID(dump)=j; 

    dump=dump+1; 

    end 

end 

disp('seed2d') 

end 

 

for l=1:Population 

    if T(l)>=T(Position)+Tolerance 

        Mut(:,m+dump-1)=Newpop(:,l); 

        MutID(m+dump-1)=l; 

        m=m+1; 

    end 

    disp('seed2e') 

end 
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program_selector_fr4 

 

    Dexno=Dexno+1; 

    psscount=1; 

    

    run impexclusterfr4_1 

    run Dbasefnconv 

    Dexno=Dexno+1; 

    run impexclusterfr4_2 

    run Dbasefnconv 

    Dexno=Dexno+1; 

    run impexclusterfr4_3 

    run Dbasefnconv 

    Dexno=Dexno+1; 

    run impexclusterfr4_4 

     run Dbasefnconv 

    Dexno=Dexno+1; 

    run impexclusterfr4_5 

     run Dbasefnconv 

    Dexno=Dexno+1; 

    run impexclusterfr4_6 

     run Dbasefnconv 

    Dexno=Dexno+1; 

    run impexclusterfr4_7 

     run Dbasefnconv 

    Dexno=Dexno+1; 

    run impexclusterfr4_8 

     run Dbasefnconv 

    Dexno=Dexno+1; 

    run impexclusterfr4_9 

     run Dbasefnconv 

    Dexno=Dexno+1; 

    run impexclusterfr4_10 

     run Dbasefnconv 

    Dexno=Dexno+1; 

    run impexclusterfr4_11 

     run Dbasefnconv 

    Dexno=Dexno+1; 

    run impexclusterfr4_12 

     run Dbasefnconv 

 

X=1; 

     Dexno2=Dexno2+1; 

    run impexcluster21 

    run Dbasefnconv2 

    run Fitfun1 

    Dexno2=Dexno2+1; 

    X=X+1; 

    run impexcluster22 
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    run Dbasefnconv2 

    run Fitfun1 

    Dexno2=Dexno2+1; 

    X=X+1; 

    run impexcluster23 

    run Dbasefnconv2 

    run Fitfun1 

    Dexno2=Dexno2+1; 

    X=X+1; 

    run impexcluster24 

    run Dbasefnconv2 

    run Fitfun1 

    Dexno2=Dexno2+1; 

    X=X+1; 

    run impexcluster25 

    run Dbasefnconv2 

    run Fitfun1 

    Dexno2=Dexno2+1; 

    X=X+1; 

    run impexcluster26 

    run Dbasefnconv2 

    run Fitfun1 

    Dexno2=Dexno2+1; 

    X=X+1; 

    run impexcluster27 

    run Dbasefnconv2 

    run Fitfun1 

    Dexno2=Dexno2+1; 

    X=X+1; 

    run impexcluster28 

    run Dbasefnconv2 

    run Fitfun1 

    Dexno2=Dexno2+1; 

    X=X+1; 

    run impexcluster29 

    run Dbasefnconv2 

    run Fitfun1 

    Dexno2=Dexno2+1; 

    X=X+1; 

    run impexcluster30 

    run Dbasefnconv2 

    run Fitfun1 

    Dexno2=Dexno2+1; 

    X=X+1; 

    run impexcluster31 

    run Dbasefnconv2 

    run Fitfun1 

    Dexno2=Dexno2+1; 

    X=X+1; 

    run impexcluster32 
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    run Dbasefnconv2 

    run Fitfun1 

 

    Dbasefnconv 

Dexfile='Structurecode0000.txt'; 

Dexref=num2str(Dexno); 

if Dexno>999 

Dexfile(14)=Dexref(1); 

Dexfile(15)=Dexref(2); 

Dexfile(16)=Dexref(3); 

Dexfile(17)=Dexref(4);    

elseif Dexno>99 

Dexfile(14)='0'; 

Dexfile(15)=Dexref(1); 

Dexfile(16)=Dexref(2); 

Dexfile(17)=Dexref(3); 

elseif Dexno>9 

Dexfile(14)='0'; 

Dexfile(15)='0'; 

Dexfile(16)=Dexref(1); 

Dexfile(17)=Dexref(2); 

else 

Dexfile(14)='0'; 

Dexfile(15)='0'; 

Dexfile(16)='0'; 

Dexfile(17)=Dexref(1); 

end 

 

Dexfile 

 

 

ArchiveID = fopen(Dexfile, 'wt'); 

fprintf(ArchiveID,'%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n

%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\

n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d',PlantY(1,psscount),Plant

Y(2,psscount),PlantY(3,psscount),PlantY(4,psscount),PlantY(5,psscount),PlantY(6,psscount)

,PlantY(7,psscount),PlantY(8,psscount),PlantY(9,psscount),PlantY(10,psscount),PlantY(11,p

sscount),PlantY(12,psscount),PlantY(13,psscount),PlantY(14,psscount),PlantY(15,psscount),

PlantY(16,psscount),PlantY(17,psscount),PlantY(18,psscount),PlantY(19,psscount),PlantY(2

0,psscount),PlantY(21,psscount),PlantY(22,psscount),PlantY(23,psscount),PlantY(24,psscou

nt),PlantY(25,psscount),PlantY(26,psscount),PlantY(27,psscount),PlantY(28,psscount),Plant

Y(29,psscount),PlantY(30,psscount),PlantY(31,psscount),PlantY(32,psscount),PlantY(33,pss

count),PlantY(34,psscount),PlantY(35,psscount),PlantY(36,psscount),PlantY(37,psscount),Pl

antY(38,psscount),PlantY(39,psscount),PlantY(40,psscount),PlantY(41,psscount),PlantY(42,

psscount),PlantY(43,psscount),PlantY(44,psscount),PlantY(45,psscount)); 

fclose(ArchiveID); 

psscount=psscount+1; 
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Dbasefnconv2 

 

Dexfile2='Results0000.xlsx'; 

Dexref2=num2str(Dexno2); 

if Dexno2>999 

Dexfile2(8)=Dexref2(1); 

Dexfile2(9)=Dexref2(2); 

Dexfile2(10)=Dexref2(3); 

Dexfile2(11)=Dexref2(4); 

elseif Dexno2>99     

Dexfile2(8)='0'; 

Dexfile2(9)=Dexref2(1); 

Dexfile2(10)=Dexref2(2); 

Dexfile2(11)=Dexref2(3); 

elseif Dexno2>9 

Dexfile2(8)='0'; 

Dexfile2(9)='0'; 

Dexfile2(10)=Dexref2(1); 

Dexfile2(11)=Dexref2(2); 

else 

Dexfile2(8)='0'; 

Dexfile2(9)='0'; 

Dexfile2(10)='0'; 

Dexfile2(11)=Dexref2(1); 

end 

 

Dexfile2 

 

 

Afull = A.data; 

Bfull = B.data; 

Cfull = C.data; 

 

xlswrite(Dexfile2, Afull, 1) 

xlswrite(Dexfile2, Bfull, 2) 

xlswrite(Dexfile2, Cfull, 3) 

%fprintf(Dexfile2,'%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n

%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\

n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d',Anum(1),Anum(2),Anu

m(3),Anum(4),Anum(5),Anum(6),Anum(7),Anum(8),Anum(9),Anum(10),Anum(11),Anum(

12),Anum(13),Anum(14),Anum(15),Anum(16),Anum(17),Anum(18),Anum(19),Anum(20),

Anum(21),Anum(22),Anum(23),Anum(24),Anum(25),Anum(26),Anum(27),Anum(28),Anu

m(29),Anum(30),Anum(31),Anum(32),Anum(33),Anum(34),Anum(35),Anum(36),Anum(37

),Anum(38),Anum(39),Anum(40),Anum(41),Anum(42),Anum(43),Anum(44),Anum(45)); 

 

Fitfun1 

 

[Emin1,RePk]= min (EpsRE); 

[Emin2,ImPk]= min (EpsIM); 

[Pha0,CPt] = min (abs(unwrap(angle(S)))); 
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FF=-((EpsRE-10).^2.+EpsIM); 

figure(66) 

title('fitfun') 

plot(FF) 

[Fitmin,Minpoint]=min(FF); 

FitMin(X)=Fitmin; 

MinPoint(X)=Minpoint; 

EresRE = EpsRE(Minpoint); 

EresIM = EpsIM(Minpoint); 

 

impexcluster1 

 

disp ('it worked') 

 

file_id_1 = fopen('grid3.txt', 'wt'); 

fprintf(file_id_1,'%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%

d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n

%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d',PlantY(1,1),PlantY(2,1),P

lantY(3,1),PlantY(4,1),PlantY(5,1),PlantY(6,1),PlantY(7,1),PlantY(8,1),PlantY(9,1),PlantY(

10,1),PlantY(11,1),PlantY(12,1),PlantY(13,1),PlantY(14,1),PlantY(15,1),PlantY(16,1),Plant

Y(17,1),PlantY(18,1),PlantY(19,1),PlantY(20,1),PlantY(21,1),PlantY(22,1),PlantY(23,1),Pla

ntY(24,1),PlantY(25,1),PlantY(26,1),PlantY(27,1),PlantY(28,1),PlantY(29,1),PlantY(30,1),P

lantY(31,1),PlantY(32,1),PlantY(33,1),PlantY(34,1),PlantY(35,1),PlantY(36,1),PlantY(37,1),

PlantY(38,1),PlantY(39,1),PlantY(40,1),PlantY(41,1),PlantY(42,1),PlantY(43,1),PlantY(44,1

),PlantY(45,1)); 

file_id_2 = fopen('gridstore.txt', 'wt'); 

fprintf(file_id_2,'%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%

d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n

%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d',PlantY(1,1),PlantY(2,1),P

lantY(3,1),PlantY(4,1),PlantY(5,1),PlantY(6,1),PlantY(7,1),PlantY(8,1),PlantY(9,1),PlantY(

10,1),PlantY(11,1),PlantY(12,1),PlantY(13,1),PlantY(14,1),PlantY(15,1),PlantY(16,1),Plant

Y(17,1),PlantY(18,1),PlantY(19,1),PlantY(20,1),PlantY(21,1),PlantY(22,1),PlantY(23,1),Pla

ntY(24,1),PlantY(25,1),PlantY(26,1),PlantY(27,1),PlantY(28,1),PlantY(29,1),PlantY(30,1),P

lantY(31,1),PlantY(32,1),PlantY(33,1),PlantY(34,1),PlantY(35,1),PlantY(36,1),PlantY(37,1),

PlantY(38,1),PlantY(39,1),PlantY(40,1),PlantY(41,1),PlantY(42,1),PlantY(43,1),PlantY(44,1

),PlantY(45,1)); 

!"C:\Program Files (x86)\CST STUDIO SUITE 2014\CST DESIGN ENVIRONMENT.exe" 

-m structmac-solver2_ink2.bas 

 

(impexcluster2-12 are largely identical save for the name of the text file they write to 

and bas file they prompt to run) 

 

impexcluster21 

 

A = importdata('S11_Real_CST.txt'); 

B = importdata('S11_Imag_CST.txt'); 

C = importdata('S11_Phase_CST.txt'); 
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Top=max(B.data(:,2)); 

Bottom=min(B.data(:,2)); 

 

Dif=Top+Bottom; 

 

if Dif<Top 

    disp('Resonance achieved') 

else 

    disp('resonance not achieved') 

end 

 

[Max,Place]=max(A.data(:,2)); 

 

disp(Max) 

disp(A.data(Place,1)) 

 

Fz= A.data(:, 1); 

S11real = A.data(:, 2); 

S11imag = B.data(:, 2); 

 

S = S11real+1i*S11imag; 

Z0 = 376.73 ; 

Z_imp = Z0*((1+S)./(1-S)); 

n = length(S11real) ; 

 

Mu0=4*pi*10^-7; 

Eps0=8.854*10^-12; 

c = 299792458; 

lambda = c./(Fz*10^9); 

Beta0=((2*pi)./lambda); 

d=0.0024; 

 

Epsr=(1./(1i.*Beta0.*d)).*atanh(Z_imp/Z0); 

EpsRE=real(Epsr); 

EpsIM=imag(Epsr); 

 

ph = angle(S)*180/pi;%unwrap(); 

 figure(3) 

 plot(Fz,ph) 

xlabel('Frequency(GHz)') 

 ylabel('Phase(deg)') 

grid on 

 

figure(5) 

plot(Fz,20*log10(abs(S))) 

xlabel('Frequency(GHz)') 

ylabel('|S11|(dB)') 

title('Magnitude (dB)') 

grid on 
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figure(1) 

plot(A.data(:,1),A.data(:,2)) 

title('Real Part') 

figure(2) 

plot(B.data(:,1),B.data(:,2)) 

title('Imaginary Part') 

 

figure(7) 

plot(Fz,EpsRE) 

title('Eps/MU Real') 

  

figure(8) 

plot(Fz,EpsIM) 

title('Eps/Mu Imaginary') 

 

figure(9) 

plot(Fz,EpsRE,'r') 

hold on 

plot(Fz,-EpsIM) 

title('eps/mu superimp') 

xlabel('frequency (GHz)') 

hold off 

 

Database(:,dbno)= importdata('gridstore.txt'); 

dbno=dbno+1; 

 

(impexcluster 22-32 are also largely identical safe for the files they read from) 

 

 

impex 

 

 

file_id_1 = fopen('grid3.txt', 'wt'); 

fprintf(file_id_1,'%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%

d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n

%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d',Plant(1),Plant(2),Plant(3),

Plant(4),Plant(5),Plant(6),Plant(7),Plant(8),Plant(9),Plant(10),Plant(11),Plant(12),Plant(13),Pl

ant(14),Plant(15),Plant(16),Plant(17),Plant(18),Plant(19),Plant(20),Plant(21),Plant(22),Plant(

23),Plant(24),Plant(25),Plant(26),Plant(27),Plant(28),Plant(29),Plant(30),Plant(31),Plant(32),

Plant(33),Plant(34),Plant(35),Plant(36),Plant(37),Plant(38),Plant(39),Plant(40),Plant(41),Plan

t(42),Plant(43),Plant(44),Plant(45)); 

file_id_2 = fopen('gridstore.txt', 'wt'); 

fprintf(file_id_2,'%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%

d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n

%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d\n%d',Plant(1),Plant(2),Plant(3),

Plant(4),Plant(5),Plant(6),Plant(7),Plant(8),Plant(9),Plant(10),Plant(11),Plant(12),Plant(13),Pl

ant(14),Plant(15),Plant(16),Plant(17),Plant(18),Plant(19),Plant(20),Plant(21),Plant(22),Plant(

23),Plant(24),Plant(25),Plant(26),Plant(27),Plant(28),Plant(29),Plant(30),Plant(31),Plant(32),
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Plant(33),Plant(34),Plant(35),Plant(36),Plant(37),Plant(38),Plant(39),Plant(40),Plant(41),Plan

t(42),Plant(43),Plant(44),Plant(45)); 

!"C:\Program Files (x86)\CST STUDIO SUITE 2014\CST DESIGN ENVIRONMENT.exe" 

-m structmac-solver2_ink2.bas 

A = importdata('S11_Real_CST.txt'); 

B = importdata('S11_Imag_CST.txt'); 

C = importdata('S11_Phase_CST.txt'); 

Top=max(B.data(:,2)); 

Bottom=min(B.data(:,2)); 

 

Dif=Top+Bottom; 

 

if Dif<Top 

    disp('Resonance achieved') 

else 

    disp('resonance not achieved') 

end 

 

[Max,Place]=max(A.data(:,2)); 

 

disp(Max) 

disp(A.data(Place,1)) 

 

Fz= A.data(:, 1); 

S11real = A.data(:, 2); 

S11imag = B.data(:, 2); 

 

S = S11real+1i*S11imag; 

Z0 = 376.73 ; 

Z_imp = Z0*((1+S)./(1-S)); 

n = length(S11real) ; 

 

Mu0=4*pi*10^-7; 

Eps0=8.854*10^-12; 

Beta0=(Fz*1e9/(2*pi))*sqrt(Mu0*Eps0); 

d=0.001; 

 

%This is where the problem is, I think.  

Epsr=(1./(1i.*Beta0.*d)).*atanh(Z_imp/Z0); 

EpsRE=real(Epsr); 

EpsIM=imag(Epsr); 

 

ph = angle(S)*180/pi;%unwrap(); 

 figure(3) 

 plot(Fz,ph) 

xlabel('Frequency(GHz)') 

 ylabel('Phase(deg)') 

grid on 

 

figure(5) 
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plot(Fz,20*log10(abs(S))) 

xlabel('Frequency(GHz)') 

ylabel('|S11|(dB)') 

title('Magnitude (dB)') 

grid on 

 

figure(1) 

plot(A.data(:,1),A.data(:,2)) 

title('Real Part') 

figure(2) 

plot(B.data(:,1),B.data(:,2)) 

title('Imaginary Part') 

 

figure(7) 

plot(Fz,EpsRE) 

title('Eps/MU Real') 

  

figure(8) 

plot(Fz,EpsIM) 

title('Eps/Mu Imaginary') 

 

figure(9) 

plot(Fz,EpsRE,'r') 

hold on 

plot(Fz,-EpsIM) 

title('eps/mu superimp') 

xlabel('frequency (GHz)') 

hold off 

 

Database(:,dbno)= importdata('gridstore.txt'); 

dbno=dbno+1; 


