12 research outputs found

    Microfluidic preparation of monodisperse microcapsules of silica glass with controlled morphological and optical characteristics

    No full text
    Les nanosciences représentent, actuellement, un domaine de recherche en pleine expansion grâce aux nombreuses applications auxquelles elles peuvent être associées, et en particulier à la course à la miniaturisation des systèmes. De plus, il a rapidement été montré que les propriétés physico-chimiques des matériaux à l’échelle nanométrique sont modifiées parfois de manière drastique, à cause par exemple des effets quantiques apparaissant à des tailles aussi petites, mais aussi en raison des effets de confinement. Le confinement de molécules ou de particules à l’échelle nanoscopique nécessite donc la fabrication de matériaux hôtes possédant ce qu’il convient d’appeler des sites de confinement, c’est-à-dire des sites possédant une taille voisine de celle du système à insérer. Ce type de matériau est désormais relativement connu, et deux familles monopolisent l’intérêt, à savoir la silice mésoporeuse, aussi et récemment utilisé, les verres bioactifs à base de silice ayant des caractéristiques contrôlées qui constituent des matériaux hôtes de confinement qui peuvent être immergés dans des fluides complexes tel que le plasma sanguin synthétique. Pour réaliser ces travaux on a besoins d’appliquer plusieurs techniques de caractérisations telles que la diffusion des Rayons X et des Neutrons, la Microscopie Electronique à Balayage et à Transmission, la spectroscopie Infrarouge à Transformé de Fourier etc...De plus, ces dernières années, des systèmes microfluidiques ont été utilisés pour élaborer des émulsions doubles, des microcapsules ou des microparticules, avec la particularité d’obtenir des populations très monodisperses par rapport à celles obtenues avec des techniques plus traditionnelles et de morphologie contrôlée. Dans le domaine pharmaceutique, ces capacités sont particulièrement intéressantes pour la synthèse de médicaments à libération contrôlée. Elles permettent d’obtenir des particules monodisperses de polymère encapsulantes pour lesquelles l’effet de relargage brutal est diminué et qui possèdent des vitesses de relargage plus lentes que celles observées avec des procédés de fabrication conventionnels.Nanoscience currently represent a growing area of research through the many applications for which they may be associated, particularly in the race for miniaturization of systems. In addition, it was quickly demonstrated that the physico-chemical properties of nanoscale materials are sometimes changed drastically, for example because of quantum effects occurring at sizes as small, but also because of confinement effects .Confinement of molecules or particles at the nanoscale therefore requires the manufacture of host materials with what to call containment sites, that is to say, sites with a size close to that of the system insert. This type of material is now relatively well known, and two families monopolize the interest, ie the mesoporous silica, and also recently used bioactive glasses based on silica having controlled characteristics that are host materials containment can be immersed in complex fluids such as synthetic blood plasma.To do this work several characterization techniques we need to apply, including the spread of X-rays and neutrons, the Scanning Electron Microscopy and Transmission, Infrared spectroscopy Transformed Fourier etc ...Moreover, in recent years, microfluidic systems were used to prepare double emulsions, microcapsules or microparticles, with the particularity to obtain highly monodisperse populations compared to those obtained with more traditional and controlled morphology techniques. In the pharmaceutical field, these capabilities are particularly interesting for the synthesis of controlled release to drugs. They enable polymer monodisperse particles encapsulating why the sudden release effect is decreased and have slower release rates than those observed with conventional manufacturing processe

    Elaboration par voie microfluidique de microcapsules monodisperses de verre de silice à caractéristiques morphologiques et optiques contrôlées

    No full text
    Nanoscience currently represent a growing area of research through the many applications for which they may be associated, particularly in the race for miniaturization of systems. In addition, it was quickly demonstrated that the physico-chemical properties of nanoscale materials are sometimes changed drastically, for example because of quantum effects occurring at sizes as small, but also because of confinement effects .Confinement of molecules or particles at the nanoscale therefore requires the manufacture of host materials with what to call containment sites, that is to say, sites with a size close to that of the system insert. This type of material is now relatively well known, and two families monopolize the interest, ie the mesoporous silica, and also recently used bioactive glasses based on silica having controlled characteristics that are host materials containment can be immersed in complex fluids such as synthetic blood plasma.To do this work several characterization techniques we need to apply, including the spread of X-rays and neutrons, the Scanning Electron Microscopy and Transmission, Infrared spectroscopy Transformed Fourier etc ...Moreover, in recent years, microfluidic systems were used to prepare double emulsions, microcapsules or microparticles, with the particularity to obtain highly monodisperse populations compared to those obtained with more traditional and controlled morphology techniques. In the pharmaceutical field, these capabilities are particularly interesting for the synthesis of controlled release to drugs. They enable polymer monodisperse particles encapsulating why the sudden release effect is decreased and have slower release rates than those observed with conventional manufacturing processesLes nanosciences représentent, actuellement, un domaine de recherche en pleine expansion grâce aux nombreuses applications auxquelles elles peuvent être associées, et en particulier à la course à la miniaturisation des systèmes. De plus, il a rapidement été montré que les propriétés physico-chimiques des matériaux à l’échelle nanométrique sont modifiées parfois de manière drastique, à cause par exemple des effets quantiques apparaissant à des tailles aussi petites, mais aussi en raison des effets de confinement. Le confinement de molécules ou de particules à l’échelle nanoscopique nécessite donc la fabrication de matériaux hôtes possédant ce qu’il convient d’appeler des sites de confinement, c’est-à-dire des sites possédant une taille voisine de celle du système à insérer. Ce type de matériau est désormais relativement connu, et deux familles monopolisent l’intérêt, à savoir la silice mésoporeuse, aussi et récemment utilisé, les verres bioactifs à base de silice ayant des caractéristiques contrôlées qui constituent des matériaux hôtes de confinement qui peuvent être immergés dans des fluides complexes tel que le plasma sanguin synthétique. Pour réaliser ces travaux on a besoins d’appliquer plusieurs techniques de caractérisations telles que la diffusion des Rayons X et des Neutrons, la Microscopie Electronique à Balayage et à Transmission, la spectroscopie Infrarouge à Transformé de Fourier etc...De plus, ces dernières années, des systèmes microfluidiques ont été utilisés pour élaborer des émulsions doubles, des microcapsules ou des microparticules, avec la particularité d’obtenir des populations très monodisperses par rapport à celles obtenues avec des techniques plus traditionnelles et de morphologie contrôlée. Dans le domaine pharmaceutique, ces capacités sont particulièrement intéressantes pour la synthèse de médicaments à libération contrôlée. Elles permettent d’obtenir des particules monodisperses de polymère encapsulantes pour lesquelles l’effet de relargage brutal est diminué et qui possèdent des vitesses de relargage plus lentes que celles observées avec des procédés de fabrication conventionnels

    Synthesis and functionalization of 92S bioactive glasses for drug delivery system

    No full text
    <p>A new glass formulation, with the molar composition 92% SiO<sub>2</sub>– 6 % CaO – 2% P<sub>2</sub>O<sub>5</sub> was synthesized using the sol-gel process, for applications as biomaterial in orthopaedic or maxillo facial surgery. Pellets, made of glass powder, were uniaxially compacted and soaked  in Simulated Body Fluid (SBF) for up to 7 days at 37°C to evaluate glass bioactivity. Ionic exchanges  at the interface glass-SBF were evaluated by studying evolutions of calcium, phosphorus and  silicon concentrations in SBF using ICP-OES. Changes in glass surface, and the formation of crystalline phases were analyzed using XRD, SEM, EDS and FTIR methods. In the pharmaceutical field, these materials are particularly interesting for the synthesis of drugs for controlled release. </p

    Synthesis of mesoporous silica hollow microspheres with controlled structural and optical properties using droplet-based microfluidics

    No full text
    <div>Thisstudyfocusesonthedevelopmentofanoriginaltemplate-freemethodforthesynthesisandcharacterizationofhighlymonodisperseandmesoporoushollowsilicamicrospherescontaininghighlyorderednanometer-scaleporesofcontrollablesize.</div><div>Fabricationofsuchmicrosystemsisofafundamentalandpracticalinterest,sincetheycanbeusedforcontrolleddrugdelivery,cellsencapsulationandculture,catalysis,biosensors,bio-materialsandtissue-engineering,etc.</div

    Preparation of Mesoporous and monodisperse microdrops of bioglass through microfluidic chip

    No full text
    <p>The sol-gel method, with use of specific surfactants, is a preferred approach to generating a controlled porosity material of high specific surface. The development of microfluidics and the development of new manufacturing technologies for miniaturized devices can perform complex operations (synthesis, mixing, analysis ...) across the nanolitre.</p

    Evaluation de la bioactivité d’un verre synthétisé par voie sol-gel

    No full text
    <p>D’un point de vue structural, on peut définir un verre comme « un solide non cristallin ». </p> <p>Certains verres se comportent comme des matériaux totalement inertes, d’autres sont biodégradables et d’autres enfin ont présentés une adaptation osseuse très satisfaisante. Ce dernier type particulier de verre; contenant de la silice, du calcium et des phosphates est appelé bioverre ou verre bioactif : il a la propriété de se lier intimement à l’os et de mieux s’adapter aux tissus que les biomatériaux habituellement utilisés.</p><p><br></p

    Microfluidic-assisted Formation of Highly Monodisperse and Mesoporous Silica Soft Microcapsules

    No full text
    <div>The fabrication of mesoporous silica microcapsules with a highly controlled particle size ranging in the micrometer size presents a major challenge in many academic and industrial research areas, such as for the developement of smart drug delivery systems with a well controlled loading and release of bioactive molecules...</div

    Microfluidic-assisted Formation of Highly Monodisperse and Mesoporous Silica Soft Microcapsules

    No full text
    Abstract The fabrication of mesoporous silica microcapsules with a highly controlled particle size ranging in the micrometer size presents a major challenge in many academic and industrial research areas, such as for the developement of smart drug delivery systems with a well controlled loading and release of (bio)active molecules. Many studies based on the solvent evaporation or solvent diffusion methods have been developed during the last two decades in order to control the particle size, which is often found to range at a sub-micrometer scale. Droplet-based microfluidics proved during the last decade a powerful tool to produce highly monodisperse and mesoporous silica solid microspheres with a controllable size in the micrometer range. We show in the present study, in contrast with previous microfluidic-assisted approaches, that a better control of the diffusion of the silica precursor sol in a surrounding perfluorinated oil phase during the silica formation process allows for the formation of highly monodisperse mesoporous silica microcapsules with a diameter ranging in the 10 micrometer range. We show also, using optical, scanning and transmission electron microscopies, small angle x-ray diffraction and BET measurements, that the synthesized mesoporous silica microcapsules exhibit a soft-like thin shell with a thickness of about 1 μm, across which 5.9 nm sized mesopores form a well-ordered hexagonal 2D network. We suggest and validate experimentally a model where the formation of such microcapsules is controlled by the solvent evaporation process at the droplet-air interface
    corecore