1,029 research outputs found

    Headache in people with epilepsy

    Get PDF
    Epidemiological estimates indicate that individuals with epilepsy are more likely to experience headaches, including migraine, than individuals without epilepsy. Headaches can be temporally unrelated to seizures, or can occur before, during or after an episode; seizures and migraine attacks are mostly not temporally linked. The pathophysiological links between headaches (including migraine) and epilepsy are complex and have not yet been fully elucidated. Correct diagnoses and appropriate treatment of headaches in individuals with epilepsy is essential, as headaches can contribute substantially to disease burden. Here, we review the insights that have been made into the associations between headache and epilepsy over the past 5 years, including information on the pathophysiological mechanisms and genetic variants that link the two disorders. We also discuss the current best practice for the management of headaches co-occurring with epilepsy and highlight future challenges for this area of research.Paroxysmal Cerebral Disorder

    Pain, quality of life and safety outcomes of kyphoplasty for vertebral compression fractures: report of a task force of the American Society for Bone and Mineral Research.

    Get PDF
    The relative efficacy and harms of balloon kyphoplasty (BK) for treating vertebral compression fractures (VCF) are uncertain. We searched multiple electronic databases to March 2016 for randomised and quasi-randomised controlled trials comparing BK with control treatment (non-surgical management [NSM], percutaneous vertebroplasty [PV], KIVA®, vertebral body stenting, or other) in adults with VCF. Outcomes included back pain, back disability, quality of life (QoL), new VCF and adverse events (AE). One reviewer extracted data, a second checked accuracy, and two rated risk of bias (ROB). Mean differences and 95% confidence intervals were calculated using inverse-variance models. Risk ratios of new VCF and AE were calculated using Mantel-Haenszel models. Ten unique trials enrolled 1,837 participants (age range: 61-76 years, 74% female), all rated as having high or uncertain ROB. Versus NSM, BK was associated with greater reductions in pain, back-related disability, and better QoL (k = 1 trial) that appeared to lessen over time, but were less than minimally clinically important differences. Risk of new VCF at 3 and 12 months was not significantly different (k = 2 trials). Risk of any AE was increased at 1 month (RR = 1.73 [1.36, 2.21]). There were no significant differences between BK and PV in back pain, back disability, QoL, risk of new VCF or any AE (k = 1 to 3 trials). Limitations included lack of a BK versus sham comparison, availability of only one RCT of BK versus NSM, and lack of study blinding. Individuals with painful VCF experienced symptomatic improvement compared with baseline with all interventions. The clinical importance of the greater improvements with BK versus NSM is unclear, may be due to placebo effect, and may not counterbalance short-term AE risks. Outcomes appeared similar between BK and other surgical interventions. Well-conducted randomized trials comparing BK with sham would help resolve remaining uncertainty about the relative benefits and harms of BK. This article is protected by copyright. All rights reserved

    Hard-Sphere Fluids in Contact with Curved Substrates

    Full text link
    The properties of a hard-sphere fluid in contact with hard spherical and cylindrical walls are studied. Rosenfeld's density functional theory (DFT) is applied to determine the density profile and surface tension γ\gamma for wide ranges of radii of the curved walls and densities of the hard-sphere fluid. Particular attention is paid to investigate the curvature dependence and the possible existence of a contribution to γ\gamma that is proportional to the logarithm of the radius of curvature. Moreover, by treating the curved wall as a second component at infinite dilution we provide an analytical expression for the surface tension of a hard-sphere fluid close to arbitrary hard convex walls. The agreement between the analytical expression and DFT is good. Our results show no signs for the existence of a logarithmic term in the curvature dependence of γ\gamma.Comment: 15 pages, 6 figure

    Luminescence behavior of semipolar (101¯1) InGaN/GaN “bow-tie” structures on patterned Si substrates

    Get PDF
    In this work, we report on the innovative growth of semipolar “bow-tie”-shaped GaN structures containing InGaN/GaN multiple quantum wells (MQWs) and their structural and luminescence characterization. We investigate the impact of growth on patterned (113) Si substrates, which results in the bow-tie cross section with upper surfaces having the (101¯1) orientation. Room temperature cathodoluminescence (CL) hyperspectral imaging reveals two types of extended defects: black spots appearing in intensity images of the GaN near band edge emission and dark lines running parallel in the direction of the Si stripes in MQW intensity images. Electron channeling contrast imaging (ECCI) identifies the black spots as threading dislocations propagating to the inclined (101¯1) surfaces. Line defects in ECCI, propagating in the [12¯10] direction parallel to the Si stripes, are attributed to misfit dislocations (MDs) introduced by glide in the basal (0001) planes at the interfaces of the MQW structure. Identification of these line defects as MDs within the MQWs is only possible because they are revealed as dark lines in the MQW CL intensity images, but not in the GaN intensity images. Low temperature CL spectra exhibit additional emission lines at energies below the GaN bound exciton emission line. These emission lines only appear at the edge or the center of the structures where two (0001) growth fronts meet and coalesce (join of the bow-tie). They are most likely related to basal-plane or prismatic stacking faults or partial dislocations at the GaN/Si interface and the coalescence region

    Circular dichroism measurement of single metal nanoparticles using photothermal imaging

    Get PDF
    Circular dichroism (CD) spectroscopy is a powerful optical technique for the study of chiral materials and molecules. It gives access to an enantioselective signal based on the differential absorption of right and left circularly polarized light, usually obtained through polarization analysis of the light transmitted through a sample of interest. CD is routinely used to determine the secondary structure of proteins and their conformational state. However, CD signals are weak, limiting the use of this powerful technique to ensembles of many molecules. Here, we experimentally realize the concept of photothermal circular dichroism, a technique that combines the enantioselective signal from circular dichroism with the high sensitivity of photothermal microscopy, achieving a superior signal-to-noise ratio to detect chiral nano-objects. As a proof of principle, we studied the chiral response of single plasmonic nanostructures with CD in the visible range, demonstrating a signal-to-noise ratio better than 40 with only 30 ms integration time for these nanostructures. The high signal-to-noise ratio allows us to quantify the CD signal for individual nanoparticles. We show that we can distinguish relative absorption differences for right circularly and left circularly polarized light as small as gmin = 4 × 10–3 for a 30 ms integration time with our current experimental settings. The enhanced sensitivity of our technique extends CD studies to individual nano-objects and opens CD spectroscopy to numbers of molecules much lower than those in conventional experiments.Biological and Soft Matter Physic

    Spin injection into a ballistic semiconductor microstructure

    Full text link
    A theory of spin injection across a ballistic ferromagnet-semiconductor-ferromagnet junction is developed for the Boltzmann regime. Spin injection coefficient γ\gamma is suppressed by the Sharvin resistance of the semiconductor rN=(h/e2)(π2/SN)r_N^*=(h/e^2)(\pi^2/S_N), where SNS_N is the Fermi-surface cross-section. It competes with the diffusion resistances of the ferromagnets rFr_F, and γrF/rN1\gamma\sim r_F/r_N^*\ll 1 in the absence of contact barriers. Efficient spin injection can be ensured by contact barriers. Explicit formulae for the junction resistance and the spin-valve effect are presented.Comment: 5 pages, 2 column REVTeX. Explicit prescription relating the results of the ballistic and diffusive theories of spin injection is added. To this end, some notations are changed. Three references added, typos correcte

    Monte Carlo Methods for Estimating Interfacial Free Energies and Line Tensions

    Full text link
    Excess contributions to the free energy due to interfaces occur for many problems encountered in the statistical physics of condensed matter when coexistence between different phases is possible (e.g. wetting phenomena, nucleation, crystal growth, etc.). This article reviews two methods to estimate both interfacial free energies and line tensions by Monte Carlo simulations of simple models, (e.g. the Ising model, a symmetrical binary Lennard-Jones fluid exhibiting a miscibility gap, and a simple Lennard-Jones fluid). One method is based on thermodynamic integration. This method is useful to study flat and inclined interfaces for Ising lattices, allowing also the estimation of line tensions of three-phase contact lines, when the interfaces meet walls (where "surface fields" may act). A generalization to off-lattice systems is described as well. The second method is based on the sampling of the order parameter distribution of the system throughout the two-phase coexistence region of the model. Both the interface free energies of flat interfaces and of (spherical or cylindrical) droplets (or bubbles) can be estimated, including also systems with walls, where sphere-cap shaped wall-attached droplets occur. The curvature-dependence of the interfacial free energy is discussed, and estimates for the line tensions are compared to results from the thermodynamic integration method. Basic limitations of all these methods are critically discussed, and an outlook on other approaches is given

    Spallation reactions. A successful interplay between modeling and applications

    Get PDF
    The spallation reactions are a type of nuclear reaction which occur in space by interaction of the cosmic rays with interstellar bodies. The first spallation reactions induced with an accelerator took place in 1947 at the Berkeley cyclotron (University of California) with 200 MeV deuterons and 400 MeV alpha beams. They highlighted the multiple emission of neutrons and charged particles and the production of a large number of residual nuclei far different from the target nuclei. The same year R. Serber describes the reaction in two steps: a first and fast one with high-energy particle emission leading to an excited remnant nucleus, and a second one, much slower, the de-excitation of the remnant. In 2010 IAEA organized a worskhop to present the results of the most widely used spallation codes within a benchmark of spallation models. If one of the goals was to understand the deficiencies, if any, in each code, one remarkable outcome points out the overall high-quality level of some models and so the great improvements achieved since Serber. Particle transport codes can then rely on such spallation models to treat the reactions between a light particle and an atomic nucleus with energies spanning from few tens of MeV up to some GeV. An overview of the spallation reactions modeling is presented in order to point out the incomparable contribution of models based on basic physics to numerous applications where such reactions occur. Validations or benchmarks, which are necessary steps in the improvement process, are also addressed, as well as the potential future domains of development. Spallation reactions modeling is a representative case of continuous studies aiming at understanding a reaction mechanism and which end up in a powerful tool.Comment: 59 pages, 54 figures, Revie
    corecore