228 research outputs found

    Cdkn1c (p57Kip2) is the major regulator of embryonic growth within its imprinted domain on mouse distal chromosome 7

    Get PDF
    Background: Cdkn1c encodes an embryonic cyclin-dependant kinase inhibitor that acts to negatively regulate cell proliferation and, in some tissues, to actively direct differentiation. This gene, which is an imprinted gene expressed only from the maternal allele, lies within a complex region on mouse distal chromosome 7, called the IC2 domain, which contains several other imprinted genes. Studies on mouse embryos suggest a key role for genomic imprinting in regulating embryonic growth and this has led to the proposal that imprinting evolved as a consequence of the mismatched contribution of parental resources in mammals. Results: In this study, we characterised the phenotype of mice carrying different copy number integrations of a bacterial artificial chromosome spanning Cdkn1c. Excess Cdkn1c resulted in embryonic growth retardation that was dosage-dependent and also responsive to the genetic background. Two-fold expression of Cdkn1c in a subset of tissues caused a 10–30% reduction in embryonic weight, embryonic lethality and was associated with a reduction in the expression of the potent, non-imprinted embryonic growth factor, Igf1. Conversely, loss of expression of Cdkn1c resulted in embryos that were 11% heavier with a two-fold increase in Igf1. Conclusion: We have shown that embryonic growth in mice is exquisitely sensitive to the precise dosage of Cdkn1c. Cdkn1c is a maternally expressed gene and our findings support the prediction of the parental conflict hypothesis that that the paternal genome silences genes that have an inhibitory role in embryonic growth. Within the IC2 imprinted domain, Cdkn1c encodes the major regulator of embryonic growth and we propose that Cdkn1c was the focal point of the selective pressure for imprinting of this domain

    Genome-Wide Location Analysis Reveals Distinct Transcriptional Circuitry by Paralogous Regulators Foxa1 and Foxa2

    Get PDF
    Gene duplication is a powerful driver of evolution. Newly duplicated genes acquire new roles that are relevant to fitness, or they will be lost over time. A potential path to functional relevance is mutation of the coding sequence leading to the acquisition of novel biochemical properties, as analyzed here for the highly homologous paralogs Foxa1 and Foxa2 transcriptional regulators. We determine by genome-wide location analysis (ChIP-Seq) that, although Foxa1 and Foxa2 share a large fraction of binding sites in the liver, each protein also occupies distinct regulatory elements in vivo. Foxa1-only sites are enriched for p53 binding sites and are frequently found near genes important to cell cycle regulation, while Foxa2-restricted sites show only a limited match to the forkhead consensus and are found in genes involved in steroid and lipid metabolism. Thus, Foxa1 and Foxa2, while redundant during development, have evolved divergent roles in the adult liver, ensuring the maintenance of both genes during evolution.Institute for Diabetes, Obesity and Metabolism. Diabetes Research Center (Functional Genomics Core P30-DK19525

    A mitochondria-targeted mass spectrometry probe to detect glyoxals: implications for diabetes

    Get PDF
    The glycation of protein and nucleic acids that occurs as a consequence of hyperglycaemia disrupts cell function and contributes to many pathologies, including those associated with diabetes and aging. Intracellular glycation occurs following the generation of the reactive 1,2-dicarbonyls methylglyoxal and glyoxal and disruption to mitochondrial function is associated with hyperglycemia. However, the contribution of these reactive dicarbonyls to mitochondrial damage in pathology is unclear due to uncertainties about their levels within mitochondria in cells and in vivo. To address this we have developed a mitochondria-targeted reagent (MitoG) designed to assess the levels of mitochondrial dicarbonyls within cells. MitoG comprises a lipophilic triphenylphosphonium cationic function, which directs the molecules to mitochondria within cells and an o-phenylenediamine moiety that reacts with dicarbonyls to give distinctive and stable products. The extent of accumulation of these diagnostic heterocyclic products can be readily and sensitively quantified by liquid chromatography-tandem mass spectrometry (LC-MS/MS), enabling changes to be determined. Using the MitoG-based analysis we assessed the formation of methylglyoxal and glyoxal in response to hyperglycaemia in cells in culture and in the Akita mouse model of diabetes in vivo. These findings indicated that the levels of methylglyoxal and glyoxal within mitochondria increase during hyperglycaemia in both cells and in vivo, suggesting that they can contribute to the pathological mitochondrial dysfunction that occurs in diabetes and aging

    Human SNP links differential outcomes in inflammatory and infectious disease to a FOXO3-Regulated Pathway

    No full text
    The clinical course and eventual outcome, or prognosis, of complex diseases varies enormously between affected individuals. This variability critically determines the impact a disease has on a patient’s life but is very poorly understood. Here, we exploit existing genome-wide association study data to gain insight into the role of genetics in prognosis. We identify a noncoding polymorphism in FOXO3A (rs12212067: T > G) at which the minor (G) allele, despite not being associated with disease susceptibility, is associated with a milder course of Crohn’s disease and rheumatoid arthritis and with increased risk of severe malaria. Minor allele carriage is shown to limit inflammatory responses in monocytes via a FOXO3-driven pathway, which through TGFb1 reduces production of proinflammatory cytokines, including TNFa, and increases production of anti-inflammatory cytokines, including IL-10. Thus, we uncover a shared genetic contribution to prognosis in distinct diseases that operates via a FOXO3-driven pathway modulating inflammatory responses

    Student evaluation of an OSCE in paediatrics at the University of the West Indies, Jamaica

    Get PDF
    BACKGROUND: The Faculty of Medical Sciences, University of the West Indies first implemented the Objective Structured Clinical Examination (OSCE) in the final MB Examination in Medicine and Therapeutics during the 2000–2001 academic year. Simultaneously, the Child Health Department initiated faculty and student training, and instituted the OSCE as an assessment instrument during the Child Health (Paediatric) clerkship in year 5. The study set out to explore student acceptance of the OSCE as part of an evaluation of the Child Health clerkship. METHODS: A self-administered questionnaire was completed by successive groups of students immediately after the OSCE at the end of each clerkship rotation. Main outcome measures were student perception of examination attributes, which included the quality of instructions and organisation, the quality of performance, authenticity and transparency of the process, and usefulness of the OSCE as an assessment instrument compared to other formats. RESULTS: There was overwhelming acceptance of the OSCE in Child Health with respect to the comprehensiveness (90%), transparency (87%), fairness (70%) and authenticity of the required tasks (58–78%). However, students felt that it was a strong anxiety-producing experience. And concerns were expressed regarding the ambiguity of some questions and inadequacy of time for expected tasks. CONCLUSION: Student feedback was invaluable in influencing faculty teaching, curriculum direction and appreciation of student opinion. Further psychometric evaluation will strengthen the development of the OSCE

    Serum Lipoprotein(a) and Bioprosthetic Aortic Valve Degeneration

    Get PDF
    AIMS: Bioprosthetic aortic valve degeneration demonstrates pathological similarities to aortic stenosis. Lipoprotein(a) [Lp(a)] is a well-recognized risk factor for incident aortic stenosis and disease progression. The aim of this study is to investigate whether serum Lp(a) concentrations are associated with bioprosthetic aortic valve degeneration. METHODS AND RESULTS: In a post hoc analysis of a prospective multimodality imaging study (NCT02304276), serum Lp(a) concentrations, echocardiography, contrast-enhanced computed tomography (CT) angiography, and 18F-sodium fluoride (18F-NaF) positron emission tomography (PET) were assessed in patients with bioprosthetic aortic valves. Patients were also followed up for 2 years with serial echocardiography. Serum Lp(a) concentrations [median 19.9 (8.4-76.4) mg/dL] were available in 97 participants (mean age 75 ± 7 years, 54% men). There were no baseline differences across the tertiles of serum Lp(a) concentrations for disease severity assessed by echocardiography [median peak aortic valve velocity: highest tertile 2.5 (2.3-2.9) m/s vs. lower tertiles 2.7 (2.4-3.0) m/s, P = 0.204], or valve degeneration on CT angiography (highest tertile n = 8 vs. lower tertiles n = 12, P = 0.552) and 18F-NaF PET (median tissue-to-background ratio: highest tertile 1.13 (1.05-1.41) vs. lower tertiles 1.17 (1.06-1.53), P = 0.889]. After 2 years of follow-up, there were no differences in annualized change in bioprosthetic hemodynamic progression [change in peak aortic valve velocity: highest tertile [0.0 (-0.1-0.2) m/s/year vs. lower tertiles 0.1 (0.0-0.2) m/s/year, P = 0.528] or the development of structural valve degeneration. CONCLUSION: Serum lipoprotein(a) concentrations do not appear to be a major determinant or mediator of bioprosthetic aortic valve degeneration

    Human SNP links differential outcomes in inflammatory and infectious disease to a FOXO3-regulated pathway

    Get PDF
    The clinical course and eventual outcome, or prognosis, of complex diseases varies enormously between affected individuals. This variability critically determines the impact a disease has on a patient’s life but is very poorly understood. Here, we exploit existing genome-wide association study data to gain insight into the role of genetics in prognosis. We identify a noncoding polymorphism in FOXO3A (rs12212067: T > G) at which the minor (G) allele, despite not being associated with disease susceptibility, is associated with a milder course of Crohn’s disease and rheumatoid arthritis and with increased risk of severe malaria. Minor allele carriage is shown to limit inflammatory responses in monocytes via a FOXO3-driven pathway, which through TGFβ1 reduces production of proinflammatory cytokines, including TNFα, and increases production of anti-inflammatory cytokines, including IL-10. Thus, we uncover a shared genetic contribution to prognosis in distinct diseases that operates via a FOXO3-driven pathway modulating inflammatory responses. PAPERCLIP

    Social disparities in food preparation behaviours: a DEDIPAC study

    Get PDF
    BACKGROUND: The specific role of major socio-economic indicators in influencing food preparation behaviours could reveal distinct socio-economic patterns, thus enabling mechanisms to be understood that contribute to social inequalities in health. This study investigated whether there was an independent association of each socio-economic indicator (education, occupation, income) with food preparation behaviours. METHODS: A total of 62,373 adults participating in the web-based NutriNet-Santé cohort study were included in our cross-sectional analyses. Cooking skills, preparation from scratch and kitchen equipment were assessed using a 0-10-point score; frequency of meal preparation, enjoyment of cooking and willingness to cook better/more frequently were categorical variables. Independent associations between socio-economic factors (education, income and occupation) and food preparation behaviours were assessed using analysis of covariance and logistic regression models stratified by sex. The models simultaneously included the three socio-economic indicators, adjusting for age, household composition and whether or not they were the main cook in the household. RESULTS: Participants with the lowest education, the lowest income group and female manual and office workers spent more time preparing food daily than participants with the highest education, those with the highest income and managerial staff (P < 0.0001). The lowest educated individuals were more likely to be non-cooks than those with the highest education level (Women: OR = 3.36 (1.69;6.69); Men: OR = 1.83 (1.07;3.16)) while female manual and office workers and the never-employed were less likely to be non-cooks (OR = 0.52 (0.28;0.97); OR = 0.30 (0.11;0.77)). Female manual and office workers had lower scores of preparation from scratch and were less likely to want to cook more frequently than managerial staff (P < 0.001 and P < 0.001). Women belonging to the lowest income group had a lower score of kitchen equipment (P < 0.0001) and were less likely to enjoy cooking meal daily (OR = 0.68 (0.45;0.86)) than those with the highest income. CONCLUSION: Lowest socio-economic groups, particularly women, spend more time preparing food than high socioeconomic groups. However, female manual and office workers used less raw or fresh ingredients to prepare meals than managerial staff. In the unfavourable context in France with reduced time spent preparing meals over last decades, our findings showed socioeconomic disparities in food preparation behaviours in women, whereas few differences were observed in men
    • …
    corecore