62 research outputs found

    Effects of Ontogeny on delta C-13 of Plant- and Soil-Respired CO2 and on Respiratory Carbon Fractionation in C-3 Herbaceous Species

    Get PDF
    Knowledge gaps regarding potential ontogeny and plant species identity effects on carbon isotope fractionation might lead to misinterpretations of carbon isotope composition (delta C-13) of respired CO2, a widely-used integrator of environmental conditions. In monospecific mesocosms grown under controlled conditions, the delta C-13 of C pools and fluxes and leaf ecophysiological parameters of seven herbaceous species belonging to three functional groups (crops, forage grasses and legumes) were investigated at three ontogenetic stages of their vegetative cycle (young foliage, maximum growth rate, early senescence). Ontogeny-related changes in delta C-13 of leaf-and soil-respired CO2 and C-13/C-12 fractionation in respiration (Delta(R)) were species-dependent and up to 7 parts per thousand, a magnitude similar to that commonly measured in response to environmental factors. At plant and soil levels, changes in delta C-13 of respired CO2 and Delta(R) with ontogeny were related to changes in plant physiological status, likely through ontogeny-driven changes in the C sink to source strength ratio in the above-ground plant compartment. Our data further showed that lower Delta(R) values (i.e. respired CO2 relatively less depleted in C-13) were observed with decreasing net assimilation. Our findings highlight the importance of accounting for ontogenetic stage and plant community composition in ecological studies using stable carbon isotopes.Peer reviewe

    Effects of Plant Diversity, Functional Group Composition, and Fertilization on Soil Microbial Properties in Experimental Grassland

    Full text link
    Background: Loss of biodiversity and increased nutrient inputs are two of the most crucial anthropogenic factors driving ecosystem change. Although both received considerable attention in previous studies, information on their interactive effects on ecosystem functioning is scarce. In particular, little is known on how soil biota and their functions are affected by combined changes in plant diversity and fertilization. Methodology/principal findings: We investigated the effects of plant diversity, functional community composition, and fertilization on the biomass and respiration of soil microbial communities in a long-term biodiversity experiment in semi-natural grassland (Jena Experiment). Plant species richness enhanced microbial basal respiration and microbial biomass, but did not significantly affect microbial specific respiration. In contrast, the presence of legumes and fertilization significantly decreased microbial specific respiration, without altering microbial biomass. The effect of legumes was superimposed by fertilization as indicated by a significant interaction between the presence of legumes and fertilization. Further, changes in microbial stoichiometry (C-to-N ratio) and specific respiration suggest the presence of legumes to reduce N limitation of soil microorganisms and to modify microbial C use efficiency. Conclusions/significance: Our study highlights the role of plant species and functional group diversity as well as interactions between plant community composition and fertilizer application for soil microbial functions. Our results suggest soil microbial stoichiometry to be a powerful indicator of microbial functioning under N limited conditions. Although our results support the notion that plant diversity and fertilizer application independently affect microbial functioning, legume effects on microbial N limitation were superimposed by fertilization, indicating significant interactions between the functional composition of plant communities and nutrient inputs for soil processes

    Global Change Could Amplify Fire Effects on Soil Greenhouse Gas Emissions

    Get PDF
    Background: Little is known about the combined impacts of global environmental changes and ecological disturbances on ecosystem functioning, even though such combined impacts might play critical roles in shaping ecosystem processes that can in turn feed back to climate change, such as soil emissions of greenhouse gases.[br/] Methodology/Principal Findings: We took advantage of an accidental, low-severity wildfire that burned part of a long-term global change experiment to investigate the interactive effects of a fire disturbance and increases in CO(2) concentration, precipitation and nitrogen supply on soil nitrous oxide (N(2)O) emissions in a grassland ecosystem. We examined the responses of soil N(2)O emissions, as well as the responses of the two main microbial processes contributing to soil N(2)O production - nitrification and denitrification - and of their main drivers. We show that the fire disturbance greatly increased soil N(2)O emissions over a three-year period, and that elevated CO(2) and enhanced nitrogen supply amplified fire effects on soil N(2)O emissions: emissions increased by a factor of two with fire alone and by a factor of six under the combined influence of fire, elevated CO(2) and nitrogen. We also provide evidence that this response was caused by increased microbial denitrification, resulting from increased soil moisture and soil carbon and nitrogen availability in the burned and fertilized plots. [br/] Conclusions/Significance: Our results indicate that the combined effects of fire and global environmental changes can exceed their effects in isolation, thereby creating unexpected feedbacks to soil greenhouse gas emissions. These findings highlight the need to further explore the impacts of ecological disturbances on ecosystem functioning in the context of global change if we wish to be able to model future soil greenhouse gas emissions with greater confidence

    Physiological controls of the isotopic time lag between leaf assimilation and soil CO2 efflux

    Get PDF
    EA EcolDur CT3International audienceEnvironmental factors and physiological controls on photosynthesis influence the carbon isotopic signature of ecosystem respiration. Many ecosystem studies have used stable carbon isotopes to investigate environmental controls on plant carbon transfer from above- to belowground. However, a clear understanding of the internal mechanisms underlying time-lagged responses of carbon isotopic signatures in ecosystem respiration to environmental changes is still lacking. This study addressed plant physiological controls on the transfer time of recently assimilated carbon from assimilation to respiration. We produced a set of six wheat plants with varying physiological characteristics, by growing them under a wide range of nitrogen supply and soil water content levels under standardised conditions. The plants were pulse-labelled with 13C-CO2, and the isotopic signature of CO2 respired in the dark by plants and soil was monitored continuously over two days. Stomatal conductance (gs) was strongly related to the rate of transfer of recently assimilated carbon belowground. The higher gs, the faster newly assimilated carbon was allocated belowground and the faster it was respired in the soil. Our results suggest that carbon sink strength of plant tissues may be a major driver of transfer velocity of recently assimilated carbon to plant respiratory tissues and soil respiration

    Diversity Promotes Temporal Stability across Levels of Ecosystem Organization in Experimental Grasslands

    Get PDF
    The diversity–stability hypothesis states that current losses of biodiversity can impair the ability of an ecosystem to dampen the effect of environmental perturbations on its functioning. Using data from a long-term and comprehensive biodiversity experiment, we quantified the temporal stability of 42 variables characterizing twelve ecological functions in managed grassland plots varying in plant species richness. We demonstrate that diversity increases stability i) across trophic levels (producer, consumer), ii) at both the system (community, ecosystem) and the component levels (population, functional group, phylogenetic clade), and iii) primarily for aboveground rather than belowground processes. Temporal synchronization across studied variables was mostly unaffected with increasing species richness. This study provides the strongest empirical support so far that diversity promotes stability across different ecological functions and levels of ecosystem organization in grasslands

    Measuring proliferation in breast cancer: practicalities and applications

    Get PDF
    Various methods are available for the measurement of proliferation rates in tumours, including mitotic counts, estimation of the fraction of cells in S-phase of the cell cycle and immunohistochemistry of proliferation-associated antigens. The evidence, advantages and disadvantages for each of these methods along with other novel approaches is reviewed in relation to breast cancer. The potential clinical applications of proliferative indices are discussed, including their use as prognostic indicators and predictors of response to systemic therapy

    Response of δ13C in plant and soil respiration to a water pulse

    No full text
    Stable carbon isotopes have been used to assess the coupling between changes in environmental conditions and the response of soil or ecosystem respiration, usually by studying the time-lagged response of δ13C of respired CO2 (δ13CR) to changes in photosynthetic carbon isotope discrimination (Δi). However, the lack of a systematic response of δ13CR to environmental changes in field studies stresses the need to better understand the mechanisms to this response. We experimentally created a wide range of carbon allocation and respiration conditions in Fagus sylvatica mesocosms, by growing saplings under different temperatures and girdling combinations. After a period of drought, a water pulse was applied and the short-term responses of δ13C in soil CO2 efflux (δ13CRsoil) and δ13C in aboveground plant respiration (δ13CRabove) were measured, as well as leaf gas exchange rates and soil microbial biomass δ13C responses. Both δ13CRsoil and δ 13CRabove values of all the trees decreased immediately after the water pulse. These responses were not driven by changes in Δi, but rather by a fast release of C stored in roots and shoots. Changes in δ13CRsoil associated with the water pulse were significantly positively correlated with changes in stomatal conductance, showing a strong impact of the plant component on δ13CRsoil. However, three days after the water pulse in girdled trees, changes in δ13CRsoil were related to changes in microbial biomass δ13C, suggesting that changes in the carbon source respired by soil microorganisms also contributed to the response of δ13CRsoil. Our study shows that improving our mechanistic understanding of the responses of δ13CR to changes in environmental conditions requires the understanding of not only the plant's physiological responses, but also the responses of soil microorganisms and of plant-microbial interactions.ISSN:1810-6277ISSN:1810-628

    Effects of contrasting precipitation patterns on the trajectory of actively growing and inactive microbial communities after rewetting

    No full text
    International audiencePredicted shifts in precipitation patterns could impact soil microbial activity, and thereby terrestrial ecosystem functioning. In a Mediterranean grassland soil which had been subjected to contrasting precipitation patterns, we investigated the response of active and inactive bacterial and fungal communities to rewetting over time, using O-18 stable isotope probing. Altered precipitation patterns prior to rewetting had little impact on the trajectories over time of the active and inactive bacterial communities after rewetting, as bacteria died or were recruited from the inactive to the active community. The duration of the dry summer conditions affected the diversity and phylogenetic clustering of the inactive microbial community and its functional potential, likely indicating long-lasting effects on ecosystem stability
    • …
    corecore