216 research outputs found
Associations between perceived teaching behaviors and affect in upper elementary school students.
We explored the associations between student-perceived teaching behaviors and negative affect (NA) and positive affect (PA) in upper elementary age students, both before and after controlling for perceived parenting behaviors. The Teaching Behavior Questionnaire (TBQ), the Alabama Parenting Questionnaire (APQ), and the Positive and Negative Affect Schedule for Children (PANAS-C) were completed by 777 third to fifth graders in nine elementary schools. Using two-level hierarchical linear model analyses, we found that (a) perceived instructional teaching behavior was negatively associated with NA and positively associated with PA; (b) perceived organizational behavior was not associated with either; (c) perceived socio-emotional teaching behavior was positively associated with both; (d) perceived negative teaching behavior was positively associated with NA but not associated with PA. When parenting behaviors were controlled for, the associations with NA but not with PA held up. We discuss implications of the findings for education and mental health personnel
The application of ensemble wave forcing to quantify uncertainty of shoreline change predictions.
ABSTRACT: Reliable predictions and accompanying uncertainty estimates of coastal evolution on decadal to centennial time scales are increasingly sought. So far, most coastal change projections rely on a single, deterministic realization of the unknown future wave climate, often derived from a global climate model. Yet, deterministic projections do not account for the stochastic nature of future wave conditions across a variety of temporal scales (e.g., daily, weekly, seasonally, and interannually). Here, we present an ensemble Kalman filter shoreline change model to predict coastal erosion and uncertainty due to waves at a variety of time scales. We compare shoreline change projections, simulated with and without ensemble wave forcing conditions by applying ensemble wave time series produced by a computationally efficient statistical downscaling method. We demonstrate a sizable (site-dependent) increase in model uncertainty compared with the unrealistic case of model projections based on a single, deterministic realization (e.g., a single time series) of the wave forcing. We support model-derived uncertainty estimates with a novel mathematical analysis of ensembles of idealized process models. Here, the developed ensemble modeling approach is applied to a well-monitored beach in Tairua, New Zealand. However, the model and uncertainty quantification techniques derived here are generally applicable to a variety of coastal settings around the world
Recommended from our members
The impact of the 2009–10 El Nino Modoki on U.S. West Coast beaches
High-resolution beach morphology data collected along much of the U.S. West Coast are synthesized to evaluate the coastal impacts of the 2009–10 El Niño. Coastal change observations were collected as part of five beach monitoring programs that span between 5 and 13 years in duration. In California, regional wave and water level data show that the environmental forcing during the 2009–10 winter was similar to the last significant El Niño of 1997–98, producing the largest seasonal shoreline retreat and/or most landward shoreline position since monitoring began. In contrast, the 2009–10 El Niño did not produce anomalously high mean winter-wave energy in the Pacific Northwest (Oregon and Washington), although the highest 5% of the winter wave-energy measurements were comparable to 1997–98 and two significant non-El Niño winters. The increase in extreme waves in the 2009–10 winter was coupled with elevated water levels and a more southerly wave approach than the long-term mean, resulting in greater shoreline retreat than during 1997–98, including anomalously high shoreline retreat immediately north of jetties, tidal inlets, and rocky headlands. The morphodynamic response observed throughout the U.S. West Coast during the 2009–10 El Niño is principally linked to the El Niño Modoki phenomena, where the warm sea surface temperature (SST) anomaly is focused in the central equatorial Pacific (as opposed to the eastern Pacific during a classic El Niño), featuring a more temporally persistent SST anomaly that results in longer periods of elevated wave energy but lower coastal water levels
Extreme oceanographic forcing and coastal response due to the 2015-2016 El Nino
The El Niño-Southern Oscillation is the dominant mode of interannual climate variability across the Pacific Ocean basin, with influence on the global climate. The two end members of the cycle, El Niño and La Niña, force anomalous oceanographic conditions and coastal response along the Pacific margin, exposing many heavily populated regions to increased coastal flooding and erosion hazards. However, a quantitative record of coastal impacts is spatially limited and temporally restricted to only the most recent events. Here we report on the oceanographic forcing and coastal response of the 2015–2016 El Niño, one of the strongest of the last 145 years. We show that winter wave energy equalled or exceeded measured historical maxima across the US West Coast, corresponding to anomalously large beach erosion across the region. Shorelines in many areas retreated beyond previously measured landward extremes, particularly along the sediment-starved California coast
Characterizing storm-induced coastal change hazards along the United States West Coast
Traditional methods to assess the probability of storm-induced erosion and flooding from extreme
water levels have limited use along the U.S. West Coast where swell dominates erosion and storm surge
is limited. This effort presents methodology to assess the probability of erosion and flooding for the U.S.
West Coast from extreme total water levels (TWLs), but the approach is applicable to coastal settings
worldwide. TWLs were derived from 61 years of wave and water level data at shore-perpendicular
transects every 100-m along open coast shorelines. At each location, wave data from the Global Ocean
Waves model were downscaled to the nearshore and used to empirically calculate wave run-up. Tides
were simulated using the Oregon State University?s tidal data inversion model and non-tidal residuals
were calculated from sea-surface temperature and pressure anomalies. Wave run-up was combined
with still water levels to generate hourly TWL estimates and extreme TWLs for multiple return periods.
Extremes were compared to onshore morphology to determine erosion hazards and define the
probability of collision, overwash, and inundation
Recommended from our members
Development of the Coastal Storm Modeling System (CoSMoS) for predicting the impact of storms on high-energy, active-margin coasts
The Coastal Storm Modeling System (CoSMoS) applies a predominantly deterministic framework to make detailed predictions (meter scale) of storm-induced coastal flooding, erosion, and cliff failures over large geographic scales (100s of kilometers). CoSMoS was developed for hindcast studies, operational applications (i.e., nowcasts and multiday forecasts), and future climate scenarios (i.e., sea-level rise + storms) to provide emergency responders and coastal planners with critical storm hazards information that may be used to increase public safety, mitigate physical damages, and more effectively manage and allocate resources within complex coastal settings. The prototype system, developed for the California coast, uses the global WAVEWATCH III wave model, the TOPEX/Poseidon satellite altimetry-based global tide model, and atmospheric-forcing data from either the US National Weather Service (operational mode) or Global Climate Models (future climate mode), to determine regional wave and water-level boundary conditions. These physical processes are dynamically downscaled using a series of nested Delft3D-WAVE (SWAN) and Delft3D-FLOW (FLOW) models and linked at the coast to tightly spaced XBeach (eXtreme Beach) cross-shore profile models and a Bayesian probabilistic cliff failure model. Hindcast testing demonstrates that, despite uncertainties in preexisting beach morphology over the ~500 km alongshore extent of the pilot study area, CoSMoS effectively identifies discrete sections of the coast (100s of meters) that are vulnerable to coastal hazards under a range of current and future oceanographic forcing conditions, and is therefore an effective tool for operational and future climate scenario planning.Keywords: Hazards, Erosion, Inundation, Modeling, Beach, Cliff, Storm
Efficacy and safety of raltegravir for treatment of HIV for 5 years in the BENCHMRK studies: Final results of two randomised, placebo-controlled trials
BACKGROUND:
Two randomised, placebo-controlled trials-BENCHMRK-1 and BENCHMRK-2-investigated the efficacy and safety of raltegravir, an HIV-1 integrase strand-transfer inhibitor. We report final results of BENCHMRK-1 and BENCHMRK-2 combined at 3 years (the end of the double-blind phase) and 5 years (the end of the study).
METHODS:
Integrase-inhibitor-naive patients with HIV resistant to three classes of drug and who were failing antiretroviral therapy were enrolled. Patients were randomly assigned (2:1) to raltegravir 400 mg twice daily or placebo, both with optimised background treatment. Patients and investigators were masked to treatment allocation until week 156, after which all patients were offered open-label raltegravir until week 240. The primary endpoint was previously assessed at 16 weeks. We assessed long-term efficacy with endpoints of the proportion of patients with an HIV viral load of less than 50 copies per mL and less than 400 copies per mL, and mean change in CD4 cell count, at weeks 156 and 240.
FINDINGS:
1012 patients were screened for inclusion. 462 were treated with raltegravir and 237 with placebo. At week 156, 51% in the raltegravir group versus 22% in the placebo group (non-completer classed as failure) had viral loads of less than 50 copies per mL, and 54% versus 23% had viral loads of less than 400 copies per mL. Mean CD4 cell count increase (analysed by an observed failure approach) was 164 cells per ÎĽL versus 63 cells per ÎĽL. After week 156, 251 patients (54%) from the raltegravir group and 47 (20%) from the placebo group entered the open-label raltergravir phase; 221 (47%) versus 44 (19%) completed the entire study. At week 240, viral load was less than 50 copies per mL in 193 (42%) of all patients initially assigned to raltegravir and less than 400 copies per mL in 210 (45%); mean CD4 cell count increased by 183 cells per ÎĽL. Virological failure occurred in 166 raltegravir recipients (36%) during the double-blind phase and in 17 of all patients (6%) during the open-label phase. The most common drug-related adverse events at 5 years in both groups were nausea, headache, and diarrhoea, and occurred in similar proportions in each group. Laboratory test results were similar in both treatment groups and showed little change after year 2.
INTERPRETATION:
Raltegravir has a favourable long-term efficacy and safety profile in integrase-inhibitor-naive patients with triple-class resistant HIV in whom antiretroviral therapy is failing. Raltegravir is an alternative for treatment-experienced patients, particularly those with few treatment options
A meta-analytic review of stand-alone interventions to improve body image
Objective
Numerous stand-alone interventions to improve body image have been developed. The
present review used meta-analysis to estimate the effectiveness of such interventions, and
to identify the specific change techniques that lead to improvement in body image.
Methods
The inclusion criteria were that (a) the intervention was stand-alone (i.e., solely focused on
improving body image), (b) a control group was used, (c) participants were randomly
assigned to conditions, and (d) at least one pretest and one posttest measure of body
image was taken. Effect sizes were meta-analysed and moderator analyses were conducted.
A taxonomy of 48 change techniques used in interventions targeted at body image
was developed; all interventions were coded using this taxonomy.
Results
The literature search identified 62 tests of interventions (N = 3,846). Interventions produced
a small-to-medium improvement in body image (d+ = 0.38), a small-to-medium reduction in
beauty ideal internalisation (d+ = -0.37), and a large reduction in social comparison tendencies
(d+ = -0.72). However, the effect size for body image was inflated by bias both within
and across studies, and was reliable but of small magnitude once corrections for bias were
applied. Effect sizes for the other outcomes were no longer reliable once corrections for
bias were applied. Several features of the sample, intervention, and methodology moderated
intervention effects. Twelve change techniques were associated with improvements in
body image, and three techniques were contra-indicated.
Conclusions
The findings show that interventions engender only small improvements in body image, and
underline the need for large-scale, high-quality trials in this area. The review identifies effective
techniques that could be deployed in future interventions
Twenty-first-century projections of shoreline change along inlet-interrupted coastlines
Sandy coastlines adjacent to tidal inlets are highly dynamic and widespread landforms, where large changes are expected due to climatic and anthropogenic influences. To adequately assess these important changes, both oceanic (e.g., sea-level rise) and terrestrial (e.g., fluvial sediment supply) processes that govern the local sediment budget must be considered. Here, we present novel projections of shoreline change adjacent to 41 tidal inlets around the world, using a probabilistic, reduced complexity, system-based model that considers catchment-estuary-coastal systems in a holistic way. Under the RCP 8.5 scenario, retreat dominates (90% of cases) over the twenty-first century, with projections exceeding 100 m of retreat in two-thirds of cases. However, the remaining systems are projected to accrete under the same scenario, reflecting fluvial influence. This diverse range of response compared to earlier methods implies that erosion hazards at inlet-interrupted coasts have been inadequately characterised to date. The methods used here need to be applied widely to support evidence-based coastal adaptation
- …