
1.  Introduction
Sandy shorelines respond to oceanographic and geologic processes at a variety of temporal (e.g., seconds 
to decades) and spatial (e.g., surf zone to ocean basin wide) scales. Thus, forecasting short- and long-term 
shoreline change remains difficult. Accurate predictions of shoreline movement in response to sea-level 
rise, changing wave climates, and reduced sediment supplies are increasingly sought to support coastal 
management, often out of fears that many beaches may be severely impacted by climate change (Le Cozan-
net et al., 2019; Masselink et al., 2016; Vitousek, Barnard, Limber, 2017).

Several well-tested and emerging models exist to represent shoreline change at a multitude of spatiotempo-
ral scales (Roelvink 2011; Montaño et al., 2020; Ranasinghe 2020). Most shoreline models simplify complex 
coastal sediment transport processes to simulate the evolution of lines dividing beaches from adjacent water 
bodies, that is, “shorelines.” Shoreline models are typically derived from a one-dimensional expression of 
conservation of sediment in the alongshore direction (Pelnard-Considere 1957). The evolution of shorelines 
is most often directly linked to oceanographic forcing from waves and sea level. In the most successful cas-
es, the skill of shoreline models owes to strong connections between wave forcing and response (Robinet 
et al., 2016; Splinter et al., 2014). However, the growing uncertainty associated with future sea level and 
wave climate precludes a straightforward prediction along the forcing-response pathway. Hence, we are met 
with a pressing need for ensemble prediction, where once deterministic model predictions are replaced with 
probabilistic predictions (Davidson et al., 2017; Ranasinghe et al. 2012).

1.1.  Ensemble Shoreline Change Modeling and Uncertainty

Probabilistic approaches to shoreline evolution are not entirely new (Vrijling & Meijer, 1992). Yet, the field 
of coastal change modeling remains dominated by single-realization, deterministic simulations with com-
plex models at increasingly higher resolution (Roelvink & Walstra 2004). Several probabilistic approaches 
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are emerging, most of which rely on Monte Carlo methods, for example, running ensemble simulations of 
a deterministic model with random perturbations in parameters, different forcing conditions, etc., (Cal-
laghan et al., 2013; Cowell et al., 2006; D'Anna et al., 2020; Davidson et al., 2017; Ding et al., 2018; Kroon 
et al., 2020; Le Cozannet et al., 2019; Reeve & Fleming 1997; Reeve et al., 2014; Ranasinghe et al. 2012; 
Ruggiero et al., 2007; Wang & Reeve, 2010; Zacharioudaki & Reeve, 2011). Among the multitude of coastal 
morphologic evolution models, we suggest that shoreline models may readily adopt ensemble methods for 
a variety of reasons, given below:

�(1)	� Shoreline models are exceedingly affordable in computational cost compared with complex two-di-
mensional (2-D) and three-dimensional (3-D) physics-based sediment transport models (Antolínez 
et al., 2019; Reeve et al., 2016; Robinet et al., 2018; Vitousek et al. 2017). Hence, given an equivalent 
computational effort, the cheaper model facilitates the use of large ensembles in a Monte Carlo simula-
tion (Davidson et al., 2017; Limber et al., 2018).

�(2)	� Sediment transport models invariably rely on parameterizations of unresolved physics. Hence, un-
known, tunable parameters abound for most sediment transport formulations. Ensemble modeling 
approaches facilitate the application of a wide range of potential parameter values to a given problem.

�(3)	� Shoreline change is strongly driven by wave and sea-level forcing conditions, which, so far, cannot be 
predicted deterministically with any skill beyond time scales of a few days. Ensemble methods, on the 
other hand, might improve predictions of strongly forced, stochastic systems in a statistical sense.

�(4)	� Shoreline movement is often ‘noisy’ due to hydrodynamic processes (e.g., tides, winds, waves, and wave 
runup), which vary on time scales of seconds to hours and manifest in observations collected sporadi-
cally over much longer time scales. Thus, the ensemble modeling approach allows the representation 
of noisy, unresolved processes in an otherwise deterministic model.

�(5)	� Data assimilation can be readily applied to ensemble models (e.g., via ensemble Kalman filter methods) 
without incurring much computational overhead or extra analytical work (particularly, when com-
pared with variational data-assimilation methods, see e.g., Bannister, 2017).

�(6)	� The use of a multimodel ensemble (e.g., changing the underlying model formulation or governing equa-
tions across each ensemble member) is well suited to coastal change problems (Limber et al., 2018), 
since the ‘best’ performing model is often difficult to select a priori and it may change over space and 
time, due to future climatic uncertainty (Montaño et al., 2020).

�(7)	� Uncertainty due to the aforementioned items and processes is treated in a straightforward manner (e.g., 
based on Monte Carlo) and, therefore, is easy to quantify based on the spread of model trajectories. For 
example, 95% confidence intervals can be easily determined by the band that encloses the middle 95% 
of model trajectories in the ensemble.

The current paper addresses the research question:

What are the differences in shoreline change projections and uncertainty estimates made with and without 
ensemble (i.e., probabilistic) wave conditions?

Uncertainty is often classified into two types, “epistemic,” due to model errors, and “intrinsic,” (or “aleatory”) 
due to the inherent variability of stochastic processes like weather and waves (see e.g., Kroon et al., 2020; 
Murray et al., 2016; Roy & Oberkampf, 2011; Walker et al., 2003). The current paper seeks to quantify the 
intrinsic uncertainty of shoreline models due to waves. However, in doing so, we also attempt to understand 
and minimize epistemic (i.e., model) uncertainty using data assimilation. Davidson et al. (2010, 2017) were 
among the first to consider the intrinsic uncertainty of projected shoreline erosion due to wave climate 
variability. Davidson et al. (2017) used a Monte Carlo simulation of a shoreline model with ensemble wave 
conditions to produce erosion return-period curves, which provide probabilistic assessments of yet-to-oc-
cur extreme erosion events. In the current paper, we seek to address a similar research question to that of 
Davidson et al.  (2017). However, here we also seek analytical means to quantify epistemic and intrinsic 
uncertainty, rather than via simulations alone. In the following sections, we demonstrate that by achieving 
a better (epistemic) understanding of the physics of shoreline change models, we can thus achieve a better 
understanding of the model's response and uncertainty due to the intrinsic variability of wave conditions.
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1.2.  Synopsis

The remainder of the paper is divided into four sections. Section 2 presents the methods used in the paper 
(i.e., the model governing equations and modifications of Yates et al.  (2009), uncertainty quantification 
using ensembles of idealized models, the data-assimilation method, and the statistical-downscaling wave 
model to generate shoreline model input conditions). Section 3 presents Results of two distinct simulations 
of shoreline change (i.e., forced with and without ensemble wave forcing). Sections 4 and 5 present the Dis-
cussion and Conclusions, respectively. The paper also presents one appendix (Appendix A), which provides 
thorough mathematical analyses and derivations of the variance of ensembles of idealized process models, 
which are summarized in Section 2.2. The appendix supports the results of the model-derived uncertainty 
estimates presented in Section 3.

2.  Methods
2.1.  Shoreline Change Models

A variety of sediment transport processes (e.g., longshore transport, cross-shore transport, equilibrium pro-
file adjustments due to sea-level rise, and sediment supply) contribute to coastal erosion, and a few “hy-
brid” coastal change models such as CoSMoS-COAST (Vitousek & Barnard, 2015; Vitousek et al. 2017), 
LX-Shore (Robinet et al., 2018), and COCOONED (Antolínez et al., 2019) are capable of resolving their 
combined effects. Previous works (Banno et al. (2015), Le Cozannet et al. (2019), Kroon et al. (2020), and 
D'Anna et al. (2020)) have investigated the modeling uncertainty associated with individual or combined 
sediment transport components. Here, we focus on addressing the uncertainty of cross-shore, wave-driven 
shoreline change, which is well simulated by equilibrium shoreline models (e.g., Davidson et al. 2013; Yates 
et al., 2009), and has been shown to capture up to 90% of the variance of the overall shoreline change in 
certain settings over short (i.e., annual to decadal) timescales (Vitousek et al. 2017). We begin with a careful 
consideration of the physics manifested in the popular Yates et al.  (2009) equilibrium shoreline change 
model. We present a subtle modification of Yates et al. (2009), which improves our physical intuition of 
the behavior of the model and guides our analytical approach to quantify uncertainty, as discussed below.

2.1.1.  Cross-Shore Equilibrium Shoreline Change Model (Yates et al., 2009)

The original Yates et al. (2009) equilibrium shoreline change model is given by

dY

dt
CE E CE E E  1 2 1 2/ /

cross-shore equlibirum transport‘ ’
  eeq     CE E aY b

1 2/� (1)

where Y  is the shoreline position, t is time, C is the erosion/accretion parameter (quasi-time-scale) param-
eter,  2

sE H  is the wave energy (where sH  is the significant wave height), and   eqΔE E E  is the wave 
energy disequilibrium, where the equilibrium wave energy is a linear function of shoreline position given 
by  eqE aY b, where a and b are parameters representing the equilibrium slope (with dimensions of wave 
energy per length of shoreline change) and intercept (with dimensions of wave energy), respectively.

The role and dimensions of parameters C, a, and b in Equation 1 are not immediately obvious (see Ta-
ble 1). Hence, subsequent works have modified the form of Equation 1 in order to improve clarity. Blossier 
et al. (2017a, 2017b) reformulated the Yates et al. (2009) model as

 
   eq

1dY Y Y
dt

� (2)

where


eq

E bY
a

� (3)

and
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  1/2
1

CaE
� (4)

are the equilibrium shoreline position and the time scale for equilibrium adjustment, respectively. Equa-
tions 2 and 3 express the equilibrium state in terms (and dimensions) of shoreline position rather than in 
terms of wave energy like in Equation 1. Equation 2 is similar to the form of Miller and Dean (2004) and 
clarifies the equilibrium behavior and time scale. However, the dimensional role of parameters C, a, and 
b remain unintuitive. Previous studies have shown that parameters a and C are related (e.g., they both ap-
pear in the calculation of the time scale,  ) and can have compensating physical effects related to the beach 
dynamics (Castelle et al., 2014; Lemos et al., 2018). Thus, the model parameters are not always comparable 
between different sites. Here, we further modify the Yates et al. (2009) model based on Equation 2 so that 
the modified parameters (and their dimensions and signs) become easier to interpret physically. More spe-
cifically, we reformulate the original model parameters, so that the new parameters are all positive and have 
dimensions of simply length or time.

2.1.2.  The Modified Yates et al. (2009) Model

We reformulate the Yates et al. (2009) model to improve the physical interpretation of the model param-
eters, while retaining exactly the same model dynamics. The modified Yates et al. (2009) model becomes:

 
 eq

1dY Y Y
dt

� (5)

where

     
        

 

2 2

eq 2Δ
ˆ

ˆ
s s

s

E b b E b b E b b E b H HY Y
a b a a b a b H

� (6)
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Original 
parameter Role Dimensions

Commonly used 
units

Expected 
sign

Typical range 
of valuesa

Optimal values 
reported here 

(Tairua beach)

C Erosion/accretion rate coefficient 
representing the magnitude/

time scale of erosion due to wave 
activity

length−2 time−1 meters−2 days−1, meters 
per meters3 hr, 

wave energy−1 hr−1

negative −4 to 0 −0.19 meters−2 days−1

a The change in equilibrium wave 
energy per unit length of the 

shoreline

length, energy per 
length

meters, meters2/meter negative −0.5 to −0.0001 −0.15 meters2/meter

b The background (e.g., mean) wave 
energy that characterizes the mean 

shoreline state

length2, energy meters2, wave energy positive 0 to 4 1.49 meters2

Modified 
parameter Role Dimensions

Commonly 
used units

Expected 
sign

Typical range 
of values

Optimal values reported 
here (Tairua beach)


1/2

1ΔT
Cab

The equilibrium adjustment time scale time days, weeks positive 1–4 weeks 28.6 days




Δ bY
a

The equilibrium shoreline excursion parameter length meters positive 1 to 50 9.7 meters

ˆ
sH b The background (e.g., mean) wave height length meters positive 0 to 2 1.22 meters

aNote some publications (e.g., Yates et al., 2009) calculate the wave energy as  21
16 sE H , whereas, for simplicity, we use  2

sE H  throughout following Long 
and Plant (2012). Hence, the reported values of C, a, and b can vary as a result.

Table 1 
The Original (Yates et al., 2009) and Modified Equilibrium Shoreline Change Model Parameters, Roles, Dimensions, Units, Expected Sign, and Range of Values
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and




    
                  

11/2 1/2

1/2 1/2 1/2 1/2 1/2
1 1 1 1 Δ Δ

ˆ ˆ
ˆ ˆ

s s s

s ss s

b b H H HT T
H HCaH HCaE CaE b Cab E

� (7)

This reformulation has replaced the three original model parameters (b, a, and C) with ˆ
sH , ΔY , and ΔT , 

which represent combinations of the original parameters. The new model parameters are all positive and 
have intuitive dimensions of either length or time, as discussed below and in Table 1.

1.	 �  ˆ
sH b E  represents the background wave-height parameter in the equilibrium shoreline model. 

Here, ˆ
sH  is simply a model parameter whose value is determined using data assimilation, however its 

magnitude typically bears a close resemblance to that of the average of the wave-height time series. Our 
initial estimates of ˆ

sH  are based on the average of the wave-height time series, and the final, optimized 
value of ˆ

sH  is generally close to the average wave height (e.g., within approximately 50% of the average).

2.	 � 


Δ bY
a

 represents the characteristic cross-shore length scale of the shoreline erosion or accretion. 

Yates et al. (2019) identified  /b a as the maximum beach width. However, here the ΔY  parameter plays 
the role of an erosion/accretion excursion length-scale, as discussed below.

3.	 �  1/2
1ΔT

Cab
 represents the time scale for equilibrium adjustment, as discussed below.

As discussed above, the reformulated parameters in Equations  5–7 represent an improvement over the 
parameters in Equation 1 from a dimensional viewpoint (see e.g., Table 1). However, it is important to note 
that the reformulation presented here has not changed any of the fundamental behavior of the original Yates 
et al. (2009) model (i.e., Equation 1 and Equations 5–7 are equivalent). The modification presented here has 
only reformulated the model by changing how we interpret its parameters.

Modifying the Yates et al. (2009) model (according to Equations 5–7) identifies two key variables that are 
critical to defining equilibrium-based shoreline change models: [1] the equilibrium shoreline position, eqY , 
in Equation 6 (which is driven by the wave conditions) and [2] the equilibrium time scale,  , in Equation 7. 
Miller and Dean (2004) tested several different parameterizations for the equilibrium rate,   1k , such as 

using a constant k k ,  2
sk H ,  3

sk H ,  Ω s

s

Hk
w T

 (where Ω is the dimensionless fall velocity, sw  is the 

sediment fall velocity, and T  is the wave period), although none emerged as the best alternative for their 
site of interest. Yates et al. (2009), on the other hand, considered the form   1

sk H  like in Equation 7. 
Many alternative parameterizations for the equilibrium position and time scale, such as those investigated 
by Miller and Dean (2004), might be easily integrated into the modified equilibrium model presented above 

by changing the time-varying wave factors 2 2

2

ˆ
ˆ

s s

s

H H
H

 and 


 
  
 

1

ˆ
s

s

H
H

in Equations 6 and 7, respectively. Howev-

er, in the current paper, we only consider the behavior of the Yates et al. (2009) parameterizations of eqY  and 
  in Equations 6 and 7, respectively.

In Equation  6, the equilibrium shoreline position, eqY , is determined by the time-varying wave-energy 

anomaly term, 2 2

2

ˆ
ˆ

s s

s

H H
H

, scaled by the shoreline excursion parameter ΔY . Note that the negative sign in 

Equation 6 scales positive wave-energy anomalies into erosion (i.e., eq 0Y ), and vice versa, with nega-
tive wave-energy anomalies resulting in accretion. The role of the time-varying (inverse) normalized wave-
height term ˆ/s sH H  in Equation 7 is to decrease or increase the time scale for equilibrium adjustment,  , 
during large or small wave events, respectively. During background wave conditions,   ΔT . In the current 
work, introducing a dedicated, constant background time-scale parameter, ΔT , is advantageous for several 
reasons:

1.	 �Creating a new background time-scale parameter from the scalar triple product of the original Yates 

model parameters (i.e.,  1/2
1ΔT

Cab
) makes parameter estimation (e.g., via optimization, data assimi-

lation) more well-conditioned. As shown in the equation for ΔT  above, changing any or all of parame-
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ters C, a, or b in the data-assimilation step would alter the equilibrium time scale in the original Yates 
et al.  (2009) formulation. Further, the original parameters C, a, and b generally have vastly different 
orders of magnitude, hence perturbations to the effective equilibrium time scale can become large when 
all of the original parameters (C, a, and b) are adjusted simultaneously during data assimilation. On the 
other hand, the modified parameters are assimilated more directly. For example, adjusting ΔT  alone 
during the data-assimilation step directly changes the equilibrium time scale. A further advantage of the 
modified form is that all of the parameters have similar orders of magnitudes (e.g.,   Δ 1 10 daysT  ,  

  Δ 1 10 metersY  , and   1 metersˆ
sH  ), which reduces the need to introduce a normalization or 

feature scaling procedure in the parameter-estimation routine.

2.	 �The original time scale   1/2
1

CaE
 of Blossier et al. (2017a, 2017b) (or equivalently the ‘e-folding scale’ of 

Yates et al. (2017)) varies with time. The newly introduced background time-scale parameter, ΔT  within 

 



1

Δ ˆ/s sT H H , is constant, yet it is easy to understand how time variability in the equilibrium time 

scale,  , is introduced via the inverse of the normalized wave height term, ˆ/s sH H . During large wave 
events (when erosion is usually expected), the time scale for equilibrium adjustment is decreased. Vice 
versa, the equilibrium time scale is increased during small wave events, which typically lead to accretion. 
This reformulation demotivates the practice (as in Yates et al. (2009)) of applying different erosion rate 
coefficients (i.e., C+ and C− for accretion and erosion, respectively), since it now becomes clear that such 
an accretion/erosion time-scale disparity is already partially captured using the time-varying normalized 
wave height factor in Equation 7. We note again that the reformulation presented here has not changed 
any of the underlying behavior of the original Yates et al. (2009) model, only our interpretation of it. If 
the additional C+, C− accretion/erosion time-scale disparity behavior is desired to be retained, then this 

can simply be accomplished by adopting 


 1/2
1ΔT

C ab
 and 


 1/2

1ΔT
C ab

 parameters in the modi-

fied formulation, which is not pursued here.
3.	 �During equilibrium (i.e., background) wave conditions,   ΔT . Hence, time scales of ΔT  or greater will 

generally represent the beach recovery time scales for large erosion events followed by average or below 
average wave conditions, respectively. Further, the form of Equation 5 indicates that the total recovery 
time-scale ( 3ΔT  to 4ΔT) during nominal wave conditions (i.e., when eq 0Y  since  ˆ

s sH H ) is inde-
pendent of the magnitude of erosion (i.e., 0Y ), since during background wave conditions, the solution to 
Equation 5 is given by   0/ exp / ΔY Y t T .

Finally, we make a remark on the ‘equilibrium’ nature of the shoreline dynamics manifested in models 
like Equations 5 and 6. As a thought experiment, assume that the shoreline could respond instantaneously 
to come into equilibrium with the wave conditions. Thus, the instantaneous shoreline position would be 
given by Equation  6 (  eqY Y ), which predicts that when the wave energy is twice as large as the back-
ground value, 2 22 ˆ

s sH H , then the shoreline position would be  ΔY Y , that is one “unit” of the eroded 
shoreline excursion parameter. In practice, the assumption of instantaneous adjustment to equilibrium 
will grossly over-predict the shoreline erosion response to large wave events, due to the muting effect of the 
equilibrium adjustment time scale in Equation 5. For example, consider the data-assimilated (“best-fit”) 
equilibrium shoreline change parameters at our study site, Tairua beach (described below): Δ 10Y , and 

ˆ 1.2 msH . The maximum observed relative wave-energy anomaly is 
  

  
 
 

2 2

2max 10
ˆ

ˆ
s s

s

H t H

H
, yet the ob-

served, maximally eroded shoreline position is −23 m, which is obviously far less than the   10Δ 100 mY  
eroded position that would be predicted by Equation 6 under the assumption of instantaneous adjustment 
to equilibrium. Hence, the time scale for equilibrium adjustment plays an exceedingly important role in the 
dynamics of shoreline change.

The “best-fit” value of the time scale for equilibrium adjustment at Tairua beach, is given by Δ 28.6 daysT  

during nominal wave conditions or 


 
   

 

1

Δ 8 daysˆ
s

s

HT
H

 during the largest wave events (where 

   5ˆmax / 3.s sH H ). This 8-day equilibrium adjustment time scale during large wave conditions seems 
to indicate that the beach erosion is “duration limited” (which borrows the term from the literature on 
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wind-generated waves). Here, we define “duration limited” to mean that the shoreline will likely not come 
to its equilibrium position during a single wave event, since large wave events typically peak and decline 
in far less than a week. Instead, the most eroded beach states (at Tairua and elsewhere) are likely to be pro-
duced by several wave events. Thus, we suggest it is important to recognize the sense of “dynamic equilib-
rium” that can only manifest in a differential equation, like Equation 5. Further, we suggest that although 
these models are called ‘equilibrium shoreline models’, truly reaching an ‘equilibrium state’ associated with 
large wave conditions (as described in Equation 6) may never occur. Instead, the beach perpetually exists 
in a transient state determined by the recent memory of large wave events that have forced the system out 
of its baseline state. We further explore the concepts of “dynamic equilibrium” and “beach memory” below.

2.1.3.  Forcing, Damping, and “Beach Memory” in Equilibrium Shoreline Change Models

We prefer the modified equilibrium shoreline model presented in Equation 5 instead of that of Blossier 
et al. (2017a, 2017b) presented in Equation 2 (which is equivalent), because Equation 5 can be more easily 
interpreted as the combination of a wave forcing term and a damping term. For example,

dY

dt
Y Y f t Y      

1


eq

wave forcing damping
  .� (8)

In Equation 8,  



  

2 2

eq 2
Δ ˆ1
Δ ˆ ˆ

s s s

s s

Y H H Hf t Y
T H H

 is the wave “forcing” term (based on the definitions of eqY  

and   in Equations 6 and 7, respectively), which is purely a function of the model's wave input conditions 
(and the model parameters), and  Y  is the “damping” term, which is a function of the dependent variable 

Y  and has a time-varying damping coefficient/rate of    1 1
Δ ˆ

s

s

H
T H

. Classically, the appearance of the 

term  Y  in a first-order ordinary differential equation (i.e., with a left-hand side, 
dY
dt

) represents (linear) 

damping or drag, where the   represents the damping or decay rate (see e.g., Moin 2010). The role of the 

damping term becomes more obvious when noting that the solution of  
dY Y
dt

 is an exponential decay 

given by   0 expY Y t . In Equation 8, the damping term acts to mute the effect of the forcing term, 
 f t , with larger values of   causing larger amounts of damping. In the absence of damping, the system 

responds directly to forcing conditions.

In layman's terms, a shoreline model of the form presented in Equation 8 expresses the simple behavior 
that beaches become increasingly harder to erode (while in an eroded state). The treatment of wave forc-
ing and damping is an extremely important aspect of the model/observations of Yates et al. (2009), which 
contrasts the underlying formulation of the equilibrium Shoreline Forecast (ShoreFor) model of Davidson 
et al. (2013).

The ShoreFor model as presented in Splinter et al. (2014) and Davidson et al. (2017) is given by

   
 

  
  eq0.5 0.5

ΔΩ ΔΩ

Ω ΩΔΩ t tdY c P c P
dt

� (9)

where Ω s

s p

H
w T

 is the dimensionless fall velocity (which, in this case, also represents the processes respon-

sible for the equilibrium behavior), where sw  is the sediment fall velocity and pT  is the peak wave period, 
P is the wave power, c  are free calibration parameters representing erosion (−) and accretion (+), respec-
tively. The equilibrium condition is     eqΔΩ Ω Ωt t , and ΔΩ is the standard deviation of ΔΩ, which 
effectively normalizes the quantity in Equation 9. eqΩ  is the ‘equilibrium’ value of the dimensionless fall 
velocity, which is given by

 
 

 












2 Δ /
1

eq 2 Δ /
1

Ω 10
Ω

10

j t
jj

j t
j

t� (10)

VITOUSEK ET AL.

10.1029/2019JF005506

7 of 43



Journal of Geophysical Research: Earth Surface

following Wright et al. (1985), where Ω j represents past values of the forcing conditions, where j is the num-
ber of days prior to the present time, Δt is the time step, and   is the “memory decay” rate, which represents 
a damping time scale that is similar to  .

Equation 10 is a weighted average of recent, antecedent forcing conditions. Thus, unlike in Yates et al. (2009), 
the entire right-hand side of Equation 9 is purely a function of the wave forcing conditions, that is,

dY

dt
f t ( ) ,

wave forcing

� (11)

and is not a function of the shoreline position Y  as in Equation 8 (See Example #5 in Appendix A for further 
details). In layman's terms, a shoreline model of the form presented in Equation 11 expresses the simple be-
havior that beaches erode and accrete in response to recent wave forcing conditions (and evolve independent-
ly of the current shoreline position). Although there is no explicit form of shoreline-position dependent 
“damping” in the ShoreFor model (i.e., Equations 9 and 10), the method places importance on recent wave 
conditions and provides mechanism for the shoreline position to equilibrate to persistent wave conditions, 
which acts somewhat similarly to damping.

The balance between forcing and damping is responsible for the equilibrium or baseline state of the shore-
line (as well as the magnitude of possible departures from the equilibrium state). For example, the “steady 

state,” time-averaged solution of the Yates et al. (2009) model (Equation 5) is   
      

2 2

eq 2

ˆ
ˆΔ s s

s

H HY Y Y
H

,  

which is approximately equal to zero provided   2 2ˆ
s sH H , where 



  
0

0

1 ()
t T

t
dt

T
 is an operator that repre-

sents the time average. In contrast, the tendency for ShoreFor simulations (Equation 11) to oscillate around 
a baseline state of  0Y  over a long period of time is only achieved by near-perfect periodicity in the wave 
forcing conditions over time, that is,    0Y  if and only if   ( ) 0f t . ShoreFor's lack of an explicit shore-
line-position dependent damping term (e.g.,  Y ) allows for large shoreline fluctuations over time, which 
would otherwise be completely suppressed if damping were included. We demonstrate that the treatment 
of forcing and damping is also directly responsible for the concept of “beach memory.”

We show in Appendix A (see Equation 52), that equilibrium models like Yates et al. (2009), which include 
a shoreline-dependent damping term as in Equation 8, have only a limited beach memory: they become 
uninfluenced by past shoreline states and storm-driven erosion events beyond a certain time scale. Mathe-
matically, a lack of beach memory in the Yates et al. (2009) model means that the influence of past shoreline 
states decays exponentially with time, as demonstrated in Appendix A. On the other hand, equilibrium 
models like ShoreFor, which do not include a shoreline-dependent damping term as in Equation 11, have 
a near-perfect beach memory: the current shoreline position is uniquely determined by its initial condition 
and its entire time history of wave forcing conditions (see Equation 93 of Appendix A).

The differing treatments of forcing, damping, and beach memory, detailed above, represent fundamental 
and philosophical dissimilarities between Yates et al. (2009) and ShoreFor. Although the concept of damp-
ing is implicitly present in the name equilibrium shoreline model, the form and role of damping in the two 
different models was not immediately obvious and, until now, was never explicitly stated. In the following 
section, we demonstrate that the uncertainty of the shoreline model predictions is intimately related to the 
behaviors of forcing and damping manifested in their governing equations (cf., Equations 8 and 11). We 
demonstrate this via an analytical approach to assess the variance of ensembles of idealized process-based 
models that resemble Equation 8.

2.2.  Uncertainty Quantification of Idealized Process Model Ensembles

In order to quantify uncertainty of ensemble shoreline-change simulations, we analyze idealized model 
ensembles that include the processes of forcing, damping, and noise, as given below
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dY

dt T
f t Y

f

  
1

1

2
3

( ) .

[ ]

[ ]
[ ]

forcing

damping
noise 

  � (12)

Appendix A presents complete mathematical analyses and derivations of the uncertainty of idealized 
process models that include different combinations of the right-hand side terms in Equation 12. Here, 
we focus on and briefly summarize the uncertainty of the complete forced, damped, random walk 
ensemble of the form in Equation 12, due to its consistency with the Yates et al.  (2009) equilibrium 
shoreline model described above in Equation 8. However, the complete set of idealized models inves-
tigated in Appendix A should apply to a wide range of ensemble modeling approaches throughout the 
geosciences.

The variance of a forced, damped, random walk ensemble (given by    1 Δ
Δ

n n n n

f

t
T

Y f Y ε , where 

   1 Δ / 1t , Δt is the model time step,   is a damping time scale, and Δ fT  is a forcing time scale as 
in Equation 75 of Appendix A) cannot grow indefinitely over time despite a continuous injection of noise 
because it is suppressed by damping (see Examples 2–4 in Appendix A). Instead, the variance becomes ap-
proximately constant in time and is given by







F ,max
2 2

1













coefficient

related to

damping

varia  nnce from

additive noise

(epistemic uncertainty)

 








t

T
f 


2

2
F

f


variance from forcing

(intrinsic uncertainty)

  

























� (13)

which is derived in Equation 84 of Appendix A and is repeated here for clarity.

According to Equation 13,  2
,maxF  is set by the product of a coefficient related to damping, 


  1, which is 

generally larger than 1 (since 


 2
1 1 and   1) and the sum of the individual variances contributed by 

the additive noise (where  2var( )ε , since   20,ε   is a sample of normally distributed random, addi-

tive noise) and the forcing (where    2var ff ). Focusing first on the effect of damping, we see, intuitively, 
that increasing the amount of damping decreases the maximum variance  2

,maxF  and vice versa. Focusing 
next on the effect of forcing, we see the presence of a factor F in the variance contributed by the forcing in 
Equation 13. This factor acts to increase the variance contributed by a general forcing function relative to 
that of a random forcing function (compare Examples 3 and 4 in Appendix A). Factor F in Equation 13 is 
given by

 
 





 


 1

cov ,
1 ,

var      

i j
i j
N i
i

F
f f

f
� (14)

which is derived in Equations 82 and 83 of Appendix A and is repeated here for clarity. In the current ap-
plication, we find that the covariance of the forcing ensemble increases the overall variance of the forcing 
term in Equation 13 by a factor of  15F  compared to the case of random forcing conditions. Qualitatively, 
this increase makes sense: when the forcing conditions (e.g., waves) are auto-correlated, they will generally 
cause persistent changes (e.g., erosion or accretion) over time compared to random forcing conditions that 
frequently change sign. Thus, the cumulative effect of the forcing on the model's state (and its variance) is 
increased.
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In the context of shoreline change simulations, the first and second variance terms within the square brack-
ets of Equation 13 represent the epistemic and intrinsic uncertainty, respectively. The first term (i.e., the 
variance from the additive noise) represents (a portion of the overall) epistemic uncertainty because it is a 
user-prescribed parameter that specifies the accuracy limitations of the model due to unresolved processes. 
The second term (the variance from the forcing) represents the intrinsic uncertainty because it inherently 
results from the variability of the forcing conditions (e.g., waves). Further, Equation 13 indicates that a uni-
formly-forced model (with    2var 0ff ) contributes no variance with respect to the forcing term (since 
the uniform forcing is applied consistently to all ensemble members). Hence, all of the intrinsic uncertainty 
is missing from uniformly forced simulations, and the variance of a uniformly forced ensemble is given by

 


 
   

2 2
max 1

� (15)

We further explore the behaviors of epistemic and intrinsic uncertainty in the simulations presented below 
in Results.

2.3.  Data-Assimilation Method

Here, we utilize an ensemble Kalman filter (EnKF) data-assimilation method following Evensen (1994). 
The ensemble Kalman filter method has not been utilized in the context of shoreline modeling, until now. 
However, the method has been used in the nearshore processes literature for parameter estimation and 
bathymetric inversion (see e.g., Wilson et al., 2010, 2014).

Based on available observations, the EnKF data-assimilation method computes a Bayesian update of an 
ensemble of the model state,      

  
1 2 ensNψ , where each state vector 


 of the ensN  member en-

semble contains the combination of the model solution and parameters (see e.g., Equation 27 below). The 
EnKF method automatically adjusts the model state during the simulation to best fit any available shoreline 
observations at the concurrent time step, via an optimal interpolation that accounts for the uncertainty of 
both the model and observations. The procedure of the data-assimilation method is given by:

1.	 �Run the forward model with added noise:

   nψ F ψ ε� (16)

�where ψ  is the forecasted state vector (see e.g., Equation 27 below), nψ  is the model state vector at time 
step n, F is the operation of the (forward) model advancement for a single time step (see e.g., Equation 26 
below) and   20,ε   is a sample of random, additive noise drawn from a normal distribution with 

zero mean and user-prescribed variance  2.
�In the absence of data to assimilate, the inverse model (i.e., the data-assimilation method computed via 
steps 2–4 below) is not computed, and the model state vector at time step  1n  is simply predicted by the 
(forward) model, i.e.,  1nψ ψ .

2.	 �Calculate the covariance of the model ensemble for ψ :

           


   

 
Nens

1ens

1cov
N 1

T
i i

i
P ψ� (17)

�where   is the ensemble average state vector ψ . Compared with the extended Kalman filter (EKF) ap-
proach (used in Long & Plant, 2012; Vitousek et al. 2017), Equation 17 replaces the analytical derivation 
and advancement of the error covariance matrix P, which is calculated from the Jacobian matrix (i.e., 
the matrix of partial derivatives) of the forward model F. Hence, the EnKF method using Equation 17 
requires very little computational overhead and no analytical work to derive the Jacobian matrix, in 
contrast to the EKF method. On the other hand, the EnKF necessarily requires running an ensemble, 
whereas the EKF method can be run on a single model realization.
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3.	 �Calculate the so-called Kalman gain, K, according to the Equation

  
1
,T TK PH HPH R� (18)

�where H is the operator relating the model and observations (see e.g., Equation  28) and 

    



 

ens
obs obs

1ens

1
1

N T

i i
iN

R  is the covariance matrix of the perturbed observations, where 

   2
obs obs0,  is the noise associated with the observations, which we assume to be drawn from a 

normal distribution with zero mean and variance  2
obs.

4.	 �Update the state vector:


1 1

obs obs
model prediction for the observed locations/varaibalesperturbed observations

[ ]n n   
 
      
 

ψ ψ K ψ ε Hψ
� (19)

�where 1nψ  is final (analysis) state vector. Equation 19 demonstrates that the Kalman gain K effectively 
scales/translates the mismatch between the observations and the model into adjustments made to the 
state vector ψ. Note that the bracketed term in Equation 19 represents perturbation of the observed state 
vector, 1

obs
nψ , with the representative observation noise, obsε .

Finally, we present a modification of the model equations to preserve the expected signs of the model pa-
rameters during the data-assimilation step following the approach in Vitousek et al. (2017). As mentioned 
previously, several of the model parameters (e.g., ΔT , ΔY , and ˆ

sH ) are positive. However, there is no guar-
antee that the data-assimilation method (specifically, in Equation 19) will preserve the expected signs of 
the parameters. Hence, we modify the model equations following Vitousek et al. (2017) to ensure that the 
parameters retain their expected sign during the data-assimilation procedure.

The numerical method for Equation 5 is given by

     
 

2 2
1

eq 2

damping
wave forcing

ˆ

ˆ ˆ ˆˆ
1 Δ 1

Δ Δ

nn n n n ns sn n ns s s

s s ss

H HY Y H Y H HY Y Y
t T T TH H HH

      
                     

� (20)

where

   
 


 

2 2

eq 2

ˆ

ˆ
Δ

n
s sn

s

H H
Y Y

H
� (21)

and where the first-order accurate forward Euler time stepping method (see e.g., Moin 2010) has been used. 
Equation 20 can be rearranged as an update equation for Y  given by

     
 

2 2

1
eq 2

damping
wave forcing

Δ Δ ΔΔ .
Δ

ˆ

ˆ ˆ ˆˆΔ Δ

nn n ns sn n n n n ns s s

s s ss

H Ht H Y H t HY Y Y Y Y t Y
T T TH H HH


     

               
     

    
� (22)

We modify the parameters in Equation 22 according to

  0 1 1Δ Δ exp ΔT T T� (23)
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  0 1 1Δ Δ exp ΔY Y Y� (24)

     10 1
eˆ ˆ ˆxps s sH H H� (25)

where 0ΔT , 0ΔY , and  
0

ˆ
sH  are the initial parameter estimates and the static parameter 1, which is set to a 

value of 0.5 as in Vitousek et al., 2017, influences the range of the possible values of the assimilated param-
eters. Note that in Equations 23–25, 1ΔT , 1ΔY , and  

1
ˆ

sH  can be positive or negative but the resulting values 

for ΔT , ΔY , and ˆ
sH  will be positive.

After substituting Equations 23–25 into Equation 22, the model equation becomes

Y Y
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  
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
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  


11 1

2
( ) ))H

Y

s

n












� (26)

which represents the forward model, F, in Equation 16. The state vector used in data assimilation is thus 
given by

      


1 1 1
Δ Δ ,ˆ

T

sY T Y H� (27)

and hence the operator relating the model to the observations is given by

   1 0 0 0 .
T

H� (28)

Here, Equation 28 simply indicates that observations exist only for the shoreline position Y  in the state 
vector 


 given by Equation 27, and likewise that we have no direct observations of the values of the model 

parameters 1ΔT , 1ΔY , and  
1

ˆ
sH .

In summary, the change of variables from Equations 22–26 allows the data-assimilation method to adjust 
the parameters 1ΔT , 1ΔY , and  

1
ˆ

sH  (which can be positive or negative) and the original parameters ΔT , ΔY ,  

and ˆ
sH  will retain their requisite sign.

2.4.  Calibration/Validation of the Multivariate, Stochastic Climate-Based, Wave Emulator to 
Generate Ensemble Wave Conditions at Tairua Beach, New Zealand

Wave modeling remains a critical component to assess coastal change (Antolínez et al., 2016; Camus 
et al., 2017; Hegermiller et al., 2016; Robinet et al., 2016). Here, we briefly describe the wave modeling 
approach, based on the Multivariate, Stochastic Climate-Based, Wave Emulator of Cagigal et al. (2020), 
used to generate ensemble wave forcing conditions at our current study site, Tairua beach, New Zealand. 
The complete methodology of the Wave Emulator is presented in Cagigal et al.  (2020). However, we 
briefly summarize the methodology of the model at Tairua beach in Figure 1. The wave model repro-
duces not only the historical intraseasonal, seasonal, and interannual variability, but also the intrastorm 
chronology, which is a key issue for shoreline change models as the time-history and duration of storms 
can cause very different erosion or accretion patterns. The wave chronology is also important in the 
quantification of uncertainty evidenced by the role of the auto-correlation factor, F, in Equation 84 of 
Appendix A.

The validation of the wave parameters with hindcasted wave conditions at Tairua beach, NZ is shown in 
Figure 2. The occurrence probabilities of the different wave parameters in the bivariate space are explored 
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in Figure 2 panels a–c. Here, we compare the probabilities associated to the hindcast (background grid) with 
the ones associated to the simulations (circles). A perfect match of the bivariate distributions between hind-
cast and simulation would be found when both the grid and the circle have the exact same probability (or 
the same color in Figure 2). As shown on Figure 2, we find a good, general agreement among the different 
parameters, although small differences could be found in some grids associated with small wave period ( mT ) 
and wave height ( sH ) values. In order to evaluate the extreme value distribution of the wave parameters, we 
compare the return periods for the (simulated and historical) wave height and wave period, shown in the 
middle and lower panels of Figure 2, respectively. The red line corresponds to the mean of the 1,000 simu-
lations, the shaded areas represent the 95% confidence intervals and the dots are the historical values in the 
period 1979–2016. Once again, the simulated extreme wave conditions, which are critical to characterize the 
largest storm-driven erosion events, agree well with historical extreme wave data. The wave model of Cag-
igal et al. (2020) is capable of capturing the climate-driven changes in wave height expected before the end 
of the 21st (see e.g., Morim et al., 2019) by adjusting the occurrence probabilities of the model's underlying 
“weather types.” However, for the current application, we simply assume a stationary wave climate that is 
consistent with historical conditions.
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Figure 1.  Methodology leading to 3-hourly realizations of wave climate following Cagigal et al. (2020): (a) Define historical daily Weather Types (WTs), based 
on sea-level pressure fields over the wave generation region, which is determined by the “Evaluating the Source and Travel of the wave Energy reaching a 
Local Area” (ESTELA)-method of Perez et al. (2014); (b) Reproduce sequences of daily WTs using an autoregressive logistic regression (ALR) model (Anderson 
et al., 2019); (c) Run Monte Carlo simulations to obtain wave parameters (e.g., wave height, wave period and wave direction) associated to each synoptic state. 
To account for the joint probability between variables, we use a multivariate Gaussian copula within each WT (Rueda et al., 2017).



Journal of Geophysical Research: Earth Surface

3.  Results
We present two contrasting simulations (with and without ensemble wave forcing) of Tairua beach, New 
Zealand modeled with the modified Yates et  al.  (2009) model, Equations  5–7. Here, we primarily focus 
on the short-term, cross-shore equilibrium shoreline response to waves (using Equations 5–7) as it domi-
nates the observed record at Tairua beach (Blossier et al., 2017a, 2017b; van de Lageweg et al., 2013). For 
simplicity, we model the evolution and uncertainty of the alongshore-averaged shoreline position, and, 
hence, we ignore the effects of longshore transport. However, Montaño et al., 2020 showed that models that 
included both longshore and cross-shore sediment transport at Tairua beach did not show an improvement 
in the shoreline hindcast over short (multiyear) time scales compared to those that only included cross-
shore processes.

The first ensemble simulation (shown in Figure 3) applies uniform wave-forcing conditions to each mem-
ber of the ens 1,000N  ensemble. In other words, the same wave time series is applied to each member of 
the ensemble (although each ensemble member has different values of the model parameters and different 
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Figure 2.  Validation of the simulated wave parameters against the historical data. Panels a, b, and c show comparisons of the probability of occurrence in the 
bivariate wave parameter space. The background grid color corresponds to the probability associated with the hindcast and colors of the circles correspond to 
the probability associated with the simulations. Panels d and e show wave height versus return period and mean wave period versus return period, respectively, 
for the hindcast (blue dots) and simulations (red solid lines with pink uncertainty limits).
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realizations of the additive noise). The second ensemble simulation (shown in Figure 4) applies unique 
wave time series to each member of the ensemble. As detailed below, both simulation ensembles consider 
a range of the “best-guess,” initial estimates of the model parameter values. Naturally, when best-guessing 
model parameter values, it is highly beneficial to have a model formulation based on parameters with phys-
ically intuitive dimensions as this facilitates assessment of an appropriate scale (or order of magnitude) for 
a given parameter. However, a modest mis-specification of the initial parameter ensemble (e.g., one that is 
approximately within an order of magnitude spread of the optimal value) generally does severely denigrate 
the assimilated parameter estimates over time (Evensen, 2003).

Figure 5 compares the model uncertainty, given by the square root of the variance of the shoreline position 
across the ens 1,000N  member ensemble, for the simulations shown in Figures 3 and 4. Each simulation 
is partitioned into three time periods representing (1) a 10-year data-assimilated “Hindcast (Calibration)” 
period, which assimilates data from 1999 to 2008, (2) an 8-year “Forecast (Validation)” period from 2009 to 
2016 where observed wave and shoreline data exist but data assimilation is turned off, and (3) a “Projection” 
period (2017 and later) where no shoreline data are available for comparison, and where wave conditions 
are considered to be unknown. Hence, the ensemble wave-forcing conditions are applied only for the “Pro-
jection” period since the actual wave conditions (and resulting shoreline change) prior to 2017 are con-
sidered to be known in this example. For projections where neither shoreline nor wave observations exist 
(e.g., future projections), ensemble wave forcing conditions, in general, must be applied when the waves 
are considered unknown in a deterministic sense despite exhibiting consistent seasonal and interannual 
patterns in a statistical sense.
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Figure 3.  A ens 1,000N  ensemble shoreline simulation with uniform wave forcing (i.e., a single time series of wave 
conditions), shown on the top panel. The model is assimilated with observations (blue dots on the bottom panel) prior 
to 2009 during the “Hindcast (Calibration)” period. Data assimilation is turned off during the “Forecast (Validation)” 
period. No shoreline observations exist for model comparison during the “Projection” period, which starts in 2017. 
The bottom panel shows time series of the model's ensemble mean (red line) as well as 80% (green band) and 95% 
confidence intervals (yellow band) and the so-called “max” band (in red) between the 95% confidence level and the 
maximum eroded shoreline position across the entire ensemble.
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The numerical solution to the governing equation used in the simulations presented here is given in Equa-
tion 22 with a time step of Δ 3t  hours. The original numerical method must be modified (without loss 
of form) to Equation 26 to ensure that the data-assimilation procedure maintains the expected signs of the 
model parameters as discussed above. In this example, the important model parameters are ΔT  (the equilib-
rium shoreline adjustment time scale), ΔY  (the equilibrium shoreline excursion), and ˆ

sH  (the equilibrium 
wave height), as discussed above. The ensemble simulations here apply ens 1,000N , where each ensemble 
member differs in the values of its initial parameters and in the time series of its wave-forcing conditions (in 
the case shown in Figure 4). The ens 1,000N  model parameters are initialized with normally-distributed 

random-number generator with Δ 28 daysT ,  Δ 1dayT , Δ 10 mY ,  Δ 2 mY , and ˆ 0.8 msH  (which 

is calculated from the mean wave-height time series) and  ˆ 0.166 mHs
 (which is selected as 20% of ˆ

sH ,  
based on our judgment as a reasonable initial spread of this parameter), where the overbar indicates the 
mean of the parameter and ΔT, ΔY, and Hs represent the standard deviations of the initial parameters ΔT ,  
ΔY , and ˆ

sH , respectively.

The simulations here apply additive noise of   2 20, (0.2 m)ε   at each time step, but only to the 

model solution Y  (and not to the other model parameters ΔT , ΔY , and ˆ
sH ). Here, the prescribed additive 

noise (with a standard deviation of   0.2 m) is a tunable parameter that we chose specifically to capture 
the deviations of the observations about the ensemble mean, as discussed below. The shoreline observation 
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Figure 4.  A ens 1,000N  ensemble shoreline simulation with ensemble wave forcing (i.e., a unique time series of 
wave conditions applied to each member of the shoreline model ensemble) applied during the “Ensemble Projection” 
period shown on the top panel. The model is assimilated with observations (blue dots on the bottom panel) prior to 
2009 during the “Hindcast (Calibration)” period. Data assimilation is turned off during the “Forecast (Validation)” 
period. No wave or shoreline observations data exist for model comparison during the projection period, which starts 
in 2017. Hence, ensemble wave forcing conditions are used during the “Ensemble Projection” period when the waves 
are considered unknown in a deterministic sense, despite exhibiting consistent seasonal cycles in wave height in a 
statistical sense. The panels show time series of the model's ensemble mean (red line) as well as 80% (green band) and 
95% confidence intervals (yellow band) and the so-called “max” band (in red) between the 95% confidence level and the 
maximum wave height (top panel) and maximum eroded shoreline position (bottom panel) across the entire ensemble.
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error, used to calculate the Kalman gain in Equation 18, is set to  obs 0.5 m, which is consistent with the 
rectified pixel size of the imagery from van de Lageweg et al. (2013), which is used to derive the shoreline 
data at Tairua beach.

The ens 1,000N  model ensemble uses a single wave time series for the simulations shown in Figure 3, 
despite the “true” future wave conditions after 2017 being considered unknown. In the ensemble projection 
shown in Figure 4, for each of the ens 1,000N  ensemble members, we apply unique wave time series gen-
erated from the statistical downscaling method described above. However, in general, there is no require-
ment that a unique wave time series must be applied to each of the ens 1,000N  members of the ensemble. 
In certain cases, it may preferable that the number of forcing conditions  ensfN N , in the case where the 
ensemble wave conditions are computationally expensive to generate. In such cases (which is not the case 
here), certain ensemble members may utilize the same time series of wave conditions, albeit with differ-
ent values of the model parameters (e.g., ΔT , ΔY , and, ˆ

sH ). As one might reasonably expect, we find that 
increasing the number of unique forcing conditions, fN , increases the intrinsic uncertainty (although this 
analysis is not shown). For the current application, we find that a number of unique forcing conditions 

 250fN  is sufficient for convergence of the intrinsic uncertainty (due to the convergence of the variance 
of the ensemble wave-height time series).

The top panels of Figures 3 and 4 show the hindcasted wave height time series at Tairua beach. In the top 
panel of Figure 4, the wave height transitions from a single time series to an ensemble after 2017, where time 
series of the 80% and 95% confidence intervals and ensemble maxima wave heights are depicted. The bottom 
panels of Figures 3 and 4 show time series of the 80% and 95% confidence intervals and the ensemble mean 
and maximum eroded shoreline positions (driven by the wave conditions in the top panel), where negative 
and positive values of the shoreline position (Y ) represent eroded and accreted beach states, respectively. 
The confidence bands (in green, yellow, and red) are shown in the bottom panels of Figures 3 and 4, yet they 
only become visible when data assimilation is turned off at the start of the “Forecast (Validation)” period. 
During the “Hindcast (Calibration)” period, the confidence bands on Figures 3 and 4 are imperceptibly nar-
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Figure 5.  Comparison of the model uncertainty over time between the ensemble simulations shown in Figure 3 (in 
blue) and Figure 4 (in red). The figure cutout in the upper left corner depicts the growth of uncertainty compared to 
the theoretical (square-root time) growth rate given in Equation 31 of Appendix A (i.e., the black dashed line) that 
occurs following data assimilation steps. The uncertainty of the uniformly forced ensemble simulations (in solid blue) 
stabilizes near the theoretically derived value of max from Equation 15, shown in the blue dashed line. The uncertainty 
of the ensemble wave forcing simulations (in solid red) stabilizes near the theoretical value of  ,maxF  in Equation 13 
with  15F , shown in the red dashed line. Note that the standard deviation of the ensemble wave-forcing simulations, 
i.e., the ‘uncertainty’, is about 1–2 meters larger than the uniformly forced simulations, in this example.
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row, but the uncertainty levels can be seen in Figure 5. While data assimilation is turned on, each member 
of the model ensemble is nudged toward the synoptic observation data (i.e., the blue dots on the bottom 
panels of Figures 3 and 4), which represent the observed shoreline positions at Tairua beach at approxi-
mately bi-monthly intervals. During the “Forecast (Validation)” period when data assimilation is turned off, 
the widths of the confidence intervals (i.e., the difference between the upper and lower confidence bounds) 
appear relatively constant in time despite variations in the ensemble mean. This finding is also apparent in 
the consistency of the model uncertainty with time shown in Figure 5, as discussed below.

The variance in the model ensemble during the “Forecast (Validation)” period is primarily associated with 
the additive noise to the ensemble. A salient feature of the equilibrium shoreline model based on Yates 
et al. (2009), used here, is that even though noise is constantly being added to the shoreline position every 
time step, the confidence bounds do not appear to grow with time, as discussed in the following section. 
During the “Ensemble Projection” period in Figure 4, the variance in the model ensemble is due to the sum 
of the variance contributed by the additive noise and the variance introduced by the ensemble wave forcing 
conditions.

Figure 5 compares the evolution of model uncertainty between the ensemble simulations shown in Figure 3 
(in blue) and Figure 4 (in red). The cutout in the upper left corner of Figure 5 depicts the growth of uncer-
tainty following data-assimilation steps compared to the theoretical (square-root time) growth rate given 
in Equation 31 of Appendix A (i.e., the black dashed line). Note that the lower bound of the uncertainty in 
Figure 5 occurs immediately following a data-assimilation step and is consistent with that of the prescribed 
error in the shoreline position,  obs 0.5 m. When data assimilation is turned on, the model's confidence 
bands typically have standard deviations in the range   0.5 2 mY ‐  (see Figure  5). As discussed in the 
following section, the uncertainty of the uniformly forced ensemble simulations (in solid blue) stabilizes 
near a value of max, given in Equation 15 and shown in the dashed blue dashed line in Figure 5. The un-
certainty of the ensemble wave forcing simulations (in solid red) stabilizes near a value of  ,maxF  given in 
Equation 13, which is shown in the dashed red dashed line in Figure 5. As shown in Figure 5, the standard 
deviation of the ensemble wave forcing simulations, that is the “uncertainty,” is about 1–2 meters larger 
than the uniform forcing simulations in this example at Tairua beach, as a result of the ensemble wave 
forcing. Figure 5 exhibits temporally varying perturbations to the model variance, which cause it to differ 
from the theoretical result, due to variations in the wave height across the ensemble. Higher values of the 
fluctuations in the model uncertainty, in the case of the uniformly forced ensemble, are generally associated 
with smaller wave heights, because during these periods there is a large spread across the shoreline position 
ensemble. During the largest erosion events (e.g., post-2011 and just prior to 2015) in the “Forecast (Valida-
tion)” period, nearly all ensemble members are in an eroded state and thus the modeled uncertainty is gen-
erally near its minimum value. On the other hand, during the “Ensemble Projection” period, large spikes 
in shoreline variance of ensemble wave forcing simulations are generally associated with periods of larger 
variance in the wave forcing ensemble. For example, during the austral winter when the waves are largest. 
The variations in the model uncertainty, found here, are consistent with the results of D'Anna et al. (2020), 
who found that the variance-based contributions (i.e., sensitivity) of the equilibrium shoreline model pa-
rameters to shoreline change uncertainties vary strongly with in time, due to time variability in wave height.

The shoreline model simulations presented here require only 45 s of computer time on a 2.1 GHz worksta-
tion for a ens 1,000N  member ensemble for 26 years of simulation time. However, we note that the ensem-
ble wave conditions, supplied as inputs to the shoreline model, are precomputed (because the wave model 
often represents the computational bottleneck). Thus, the limited computational cost of this model easily 
affords the potential for simulations of even larger ensembles or spatiotemporal extents.

4.  Discussion
During the “Hindcast (Calibration)” period, the model applies data assimilation and thus the model solu-
tion and parameters are adjusted to fit the observations. Hence, agreement between the model and the 
observations during this period does not represent the skill of the model. However, we assess the model 
skill during the “Forecast (Validation)” period when data assimilation does not take place and the com-
parison between model and observations does indicate the model's skill in faithfully representing the ob-
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served behavior. Note that, in general, the ensemble mean of the modeled shoreline position (red line in 
Figures 3 and 4) captures the interannual behavior of the observations during the “Forecast (Validation),” 
yet the agreement is not perfect. The model does not always perfectly capture the most eroded and most 
accreted states, although this issue persists for many shoreline models. Only the most eroded members of 
the ensemble come close to capturing the largest observed erosion events near 2015, which may be due to 
imperfections in the wave forcing time series, the model's parameters, and/or the model's physics.

The observations generally exhibit more noise than the smoother ensemble mean (red line in Figures 3 
and 4) during the “Forecast (Validation)” period. The confidence bounds of the ensemble generally capture 
the slight, noisy offsets between model and observations, which likely result from unresolved processes like 
the tide, beach cusps, sand waves, longshore transport, etc. However, this occurrence is not fortuitous or 
coincidental, it is by design. The magnitude of user-prescribed additive noise, which controls the size of the 
uncertainty bounds (see Equation 15), is tuned to best capture the observations.

Reeve et al. (2014) state that “verifying the results of Monte Carlo simulation can be problematic because 
Nature only gives us one realization.” To build upon this statement, we propose that ensemble simulations 
can sometimes make verification easier but also can make it trivial. For example, if the confidence bounds 
of ensemble simulations are not well constrained (e.g., due to forcing or additive noise, etc.), then it be-
comes trivial for future observations to fall within the model's bloated confidence bounds. This, of course, 
represents an unreasonably “low bar” for verification. Certainly, the predictability of strongly forced sys-
tems will be inherently limited without knowledge or constraint of nature's “actual” forcing conditions. 
However, when seeking to model an intrinsically noisy system with “known” antecedent forcing condi-
tions, an ensemble modeling approach may provide a great benefit over a more dogmatic approach to the 
model parameters. For example, specifying a single, unchanging value of a model parameter to capture a 
wide range of system dynamics may not be entirely realistic. This notion especially pertains to the field of 
sediment transport, where important, yet unknown parameters abound. The value of ensemble modeling 
is perhaps most evident in the “Forecast (Validation)” period of Figures 3 and 4: it appears that the confi-
dence bands (representing additive noise and the spread of the model parameters) can nicely capture the 
deviations between the ensemble mean and the single observed (realized) shoreline position. However, the 
agreement between model confidence bands and the fluctuations of the observations about the ensemble 
mean is only accomplished via the knowledge that the additive noise controls the size of the uncertainty 
bands and tuning its magnitude accordingly, as discussed below.

A salient feature of the confidence bands shown in Figures 3 and 4 (which is also evident in Figure 5) is 
that they remain roughly of constant width through time even though noise is constantly being added to 
the shoreline position. The near constant width of the uncertainty bands is noticeable in Figure  3 dur-
ing the “Forecast (Validation)” and “Projection” periods, and is even more evident in Figure 4 during the 
“Ensemble Projection” period. Ignoring the red confidence bands (between the 95% confidence level and 
the ensemble maximum), the green and yellow confidence bands at the 80% and 95% confidence levels, 
respectively, are roughly constant with a slight seasonal oscillation. Upon initial impression, the apparent 
seasonal cycle of the "Ensemble Projection" period in Figure 4 seems muted compared with the seasonal 
cycle of the “Hindcast (Calibration)” and “Forecast (Validation)” periods. For example, the seasonal shore-
line excursion of ensemble mean of the “Ensemble Projection” is only about 1.0m from the background 
state compared with about 10.0m during the prior periods. However, closer inspection reveals that large 
shoreline fluctuations during the “Hindcast (Calibration)” and “Forecast (Validation)” periods are driven 
by interannual fluctuations in the single time series of wave forcing rather than seasonal variations. The 
interannual variability during in the “Ensemble Projection” period is practically undetectable because the 
entire model ensemble experiences several different and possibly opposing realizations of interannual var-
iability in the wave height.

A peculiar benefit of the “Ensemble Projection” is that it simultaneously captures both the extremes and 
the ordinary. The variation within the bounds of these two end-members becomes somewhat inscrutable 
when confidence bands are applied to the ensemble mean, unless some gradation (e.g., green, yellow, and 
red bands) is used. Overall, Figure 4 nicely illustrates the mirror-like reflection of the consistent pattern 
of the confidence bands in the wave forcing conditions (on the top panel) to the shoreline response (on 
the bottom panel) during the “Ensemble Projection” period. Below, we discuss the specific reasons for the 
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constant/consistent form of the confidence bands in the following discussion of Figure 5. Although one 
might reasonably expect a growing uncertainty or an increase in the width of the confidence bands with 
time (especially since noise is constantly being injected into the solution), this is not the case due to the be-
havior of the equilibrium shoreline model used here. Long-term processes such as longshore transport (e.g., 
beach rotation), sea-level rise, and sediment supply would certainty contribute to a growing uncertainty 
over longer periods of time, but these processes are not considered in the present analysis. The current equi-
librium shoreline modeling approach could also capture the effects of long-term changes in wave climate 
(which are not modeled here) by establishing a new shoreline baseline state and new confidence limits.

Figure 5 shows a time series of the model uncertainty, given by the square root of the variance of the mod-
el ensemble at the current time step. The uncertainty during the “Hindcast (Calibration)” period is low 
compared with the “Forecast (Validation)” period and the “Projection” period due to the data assimilation 
procedure, which adjusts the model state to best fit the observations. During the “Hindcast (Calibration)” 
period, the uncertainty resembles a sawtooth pattern with minima of approximately 0.5 m, which is the 
standard deviation of the prescribed, normally distributed noise associated with the observations,  obs. Im-
mediately, following the data-assimilation step, which adjusts the model state to resemble that of the obser-
vations, the ensemble variance grows linearly with time, and thus the uncertainty grows like the square root 
of time as demonstrated in Appendix A. The cutout in Figure 5 shows a zoomed-in plot of a few months of 
the simulation and compares the model uncertainty to the theoretical (square-root time) growth rate given 
by Equation 31 of Appendix A. Here, the good agreement between the modeled and theoretical rates of 
growth in the uncertainty indicates that the magnitude of the (prescribed) additive noise to the model state  
(    2 20, (0.2 m) ) is responsible for the behavior of the model uncertainty during the data-assimila-
tion period, since the additive noise directly controls the growth rate via Equation 31 of Appendix A. Even-
tually, the modeled uncertainty diverges from the theoretical growth rate because the uncertainty begins 
to asymptote to the background level of max (determined by the theoretical result in Equation 15), which 
is achieved through the balance between the additive noise to the model state and the process of damping 
governed by the equilibrium shoreline change model. The roughly constant background value of the model 
uncertainty is never reached during the data-assimilation period because the next data-assimilation step oc-
curs and nudges all of the members of the model ensemble back to the observed shoreline position. Hence, 
the variance growth rate is, in this case, not sufficient to allow the model uncertainty to grow long enough 
to reach the new background level (e.g., Equation 15) before the next data-assimilation step takes place. 
However, during the “Forecast (Validation)'” period when data assimilation is turned off, the model uncer-
tainty roughly approaches the background level of max (Equation 15) given by the blue dashed line on Fig-
ure 5. It is important to note that the user-prescribed additive noise levels, that is,    2 20, (0.2 m)  
appear to dominate the epistemic uncertainty. It is perhaps somewhat unsatisfying that tunable parameters 
(i.e., “knobs”) remain despite the application of a state-of-the-art parameter estimation (i.e., the ensemble 
Kalman Filter). However, we have clearly demonstrated the role of the additive noise “knob” in setting 
the background epistemic uncertainty, which (at the very least) is consistent with the notion that epistem-
ic uncertainty represents the user-controlled “knowledge limits” of the model. Hence, the processes that 
contribute most to the model's epistemic uncertainty should be “tunable.” Accordingly, a best practice for 
conducting ensemble simulations might be to adjust the additive noise levels until the (epistemic) uncer-
tainty bands capture the variability of the observations about the ensemble mean. This practice, of course, 
seems to necessarily require (a reasonably complete set of) observations. Hence, it may be possible that the 
additive noise might be calibrated automatically (e.g., via data assimilation) rather than manually, as is the 
case here, although this is beyond the scope of the current research. Finally, after the tuning practice is com-
pleted, the intrinsic uncertainty can be assessed when the model user applies ensemble forcing conditions 
while holding fixed the epistemic uncertainty.

During the “Ensemble Projection” period in Figure 5, the model uncertainty once again exhibits a rough-
ly constant background value. The background uncertainty level is consistent with the theoretical value 
of  ,maxF  (Equation 13), which is determined via the sum of the epistemic uncertainty due to the additive 
noise and intrinsic uncertainty due to the ensemble wave forcing. The theoretical result in Equation 13 
accounts for the covariance of the ensemble wave forcing conditions with time via a factor F, which has 
the effect of increasing the model variance compared with a random forcing function (see Appendix A 
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Equations 80–84). In this case, the factor  15F  for the wave ensemble at Tairua beach, which is deter-
mined by the ratio between the sum off diagonal elements to the sum of the diagonal elements of the 
covariance matrix of the ensemble wave time series, as given in Equation 14. Physically, F represents 
the ratio of the covariance of the wave forcing ensemble with time to the variance of the ensemble at an 
instant in time. Hence, large values of F indicate high degrees of covariance or correlation of the forcing 
ensemble with time, which is certainly the case for physical processes like wave height. Consequently, 
large values of F increase the overall model uncertainty, since the shoreline state evolves in concert with 
the (auto-correlated) wave forcing. For different model formulations, locations, or periods of interest, the 
value of the factor F may differ from the result presented here, however it can be easily calculated directly 
from an ensemble time series of forcing conditions via Equation 14. Never-the-less, the role of the factor 
F emphasizes the importance of properly characterizing ensemble storm sequences in the ensemble wave 
model.

In Figure 5, the agreement between the modeled and theoretical uncertainty is excellent for both the ensem-
ble projections (e.g.,  ,maxF  from Equation 13) and for the uniformly-forced projections (e.g., max from for 
Equation 15), which clearly demonstrates utility of the theoretical results derived from the idealized models 
presented in Appendix A.

In this application at Tairua beach, the intrinsic uncertainty due to the ensemble forcing function is ap-
proximately 50% more than that of the epistemic uncertainty, therefore the overall model variance (which 
represents the sum of the noise components) is approximately two and a half times larger for the ensemble 
projection (e.g., Figure 4) than for the uniform-forced projection (e.g., Figure 3). Hence, intrinsic uncer-
tainty due to ensemble wave forcing conditions must be accounted for when seeking robust projections 
of future change. In cases where ensemble forcing is unavailable, the heuristic approach of doubling to 
tripling the uncertainty of the uniformly forced projections may suffice. However, the heuristic factor of 
increase in uncertainty will depend on the physical state of the beach of interest, its oceanographic forcing 
conditions, and the important feedbacks between beach state and hydrodynamic processes (e.g., Wright & 
Short, 1984). Yet, the analytical results presented here, e.g., using Equations 13–15, may help to character-
ize the unresolved contributions to uncertainty when applying single realization simulations of shoreline 
change.

5.  Conclusions
We present an ensemble Kalman filter shoreline change model to predict short- and long-term shoreline 
change driven by waves. The ensemble simulations presented here facilitate both data assimilation and 
uncertainty quantification in a straightforward manner. Further, ensemble simulations motivate the use 
of multiple realizations of future wave conditions to force model projections of coastal change. Ensemble 
forcing conditions are key to develop robust shoreline change projections in cases where the wave condi-
tions are unknown (deterministically), yet exhibit consistent patterns (e.g., seasonally and interannually) in 
a statistical sense. In this application, we demonstrate that the variance of the modeled shoreline position 
more than doubles when accounting for the intrinsic uncertainty of future wave climate (i.e., by utilizing 
ensemble wave forcing conditions).

The new approach to model uncertainty quantification, presented here, reveals the individual contributions 
of epistemic and intrinsic uncertainty across different processes and spatiotemporal scales. We demon-
strate examples of how the ensemble variance/uncertainty of shoreline change models can be quantified 
via analytical relationships derived from ensembles of idealized process models. Overall, we find that the 
confidence bands of wave-driven, equilibrium shoreline change simulations (for Yates-type formulations 
but not for ShoreFor) are predictable: the model uncertainty rapidly approaches a roughly time-invariant 
background value determined by the sum of the epistemic uncertainty due to additive (i.e., user-prescribed) 
noise and the intrinsic uncertainty due to variance in the forcing of the system, which is modified by the 
damping (or equilibrium response) of the shoreline change model. This finding reveals a tight connection 
between stochastic wave forcing and shoreline response, which must be accounted for when seeking robust, 
uncertainty-aware projections of future change.
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Appendix A:  Uncertainty quantification of ensembles of idealized process 
models.
In this appendix, we analyze the behavior of ensembles of idealized, dynamical process models to in-
form the characteristics of the uncertainty/variance of more complex shoreline change models, like Yates 
et  al.  (2009), detailed above. However, the idealized models investigated here apply to a wide range of 
ensemble modeling practices throughout different fields. Here, we consider idealized models that include 
the processes of forcing, damping, and noise, as given below
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Appendix A presents complete mathematical analyses and derivations of the uncertainty of idealized pro-
cess models that include combinations of the right-hand side terms in Equation 29. The first case study 
presented below, a random walk ensemble (which analyzes the effect of only term [3] in Equation 29), is a 
“textbook” example (see e.g., Jones & Smith, 2017; Papoulis & Pillai, 2002) of the uncertainty of a (Gauss-
ian) random walk, Brownian motion, or a Wiener process (which all demonstrate linear increases in vari-
ance with time). However, to our knowledge, the analytical estimates of the variance of the other idealized 
process models detailed below have not been presented before.

In the following analysis, we develop a hierarchy of models to predict the evolution of the variable Y , 
which, in this case, represents the shoreline position. Alternatively, Y  could represent some arbitrary state 
of a system in any other application. We apply the following evolution models for the state variable Y  in an 
ensemble:

   1 2 3 ensNY Y Y YY� (30)

where ensN  is the number of ensembles. Here, each of the individual ensemble members of Y evolves ac-
cording to the same underlying model, but with different forcing conditions, noise perturbations, model 
parameters, etc. In this appendix, we seek to analyze the propagation of uncertainty by deriving metrics 
that describe the evolution of the ensemble mean,  E Y , and variance,  var Y . In the following examples, 
we equate the model variance, i.e.,  var Y  (or the square root thereof) with the model uncertainty, while 
acknowledging that in practice there are more sources of uncertainty (such as those not resolved by the 
underlying model) that are not considered here.

Summary

The analysis presented in Examples 1–5 below involve lengthy mathematical derivations of the uncertainty 
of idealized process models for the highly motivated reader. Hence, for clarity, we begin with a brief sum-
mary of the major findings of Examples 1–5 below (Table 2).

Below, we enumerate the major findings of the uncertainty analysis derived in Appendix A:

1. Example #1: The variance of an ensemble random walk (   1n n nY Y ε ) with sequential Gaussian, 
‘white-noise’ perturbations of  2(0, )ε   grows linearly with time (see Equation 49 and Figure 6 of Ap-
pendix A) according to the formula

    2 2var ,
Δ

N tN
t

Y� (31)

which is derived in Equation 49 of Appendix A and is repeated here for clarity. This is a “textbook” example 
(see e.g., Jones & Smith, 2017; Papoulis & Pillai, 2002) of a (Gaussian) random walk, Brownian motion, or a 
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Wiener process. However, to our knowledge, the subsequent analyses of the variance of more complicated 
(but still idealized) models are original.

2. Example #2: The variance of an ensemble damped, random walk (   1n n nY Y ε  where   1) cannot 
grow indefinitely as it does in Equation 31 because it is suppressed by damping (see Figure 7 of Appen-
dix A). The variance of an ensemble damped, random walk becomes approximately

 


 
   

2 2
max ,

1
� (32)

which is derived in Equation 59 of Appendix A and is repeated here for clarity. In Equation 32,  2
max is set 

by the product of the variance of the additive noise ( 2) and a coefficient related to damping, 


  1, which 

is generally larger than 1 (since 


 2
1 1 and   1). Intuitively, increasing the amount of damping de-

creases the maximum variance  2
max and vice versa.

3. Example #3: The variance of an ensemble (randomly) forced, damped, random walk 

   1 Δ(
Δ

n n n n

f

t
T

Y f Y ε  where   20, )ff   is still bounded, but is increased relative to that of the 

damped, random walk given in Equation 32. The variance of the sum of uncorrelated variables is the sum of 
their individual variances, according to the Bienaymé formula. For example,        var var varX Y X Y  
when X and Y are uncorrelated (i.e.,   cov , 0X Y ). Hence, in the context of a randomly forced, damped 

VITOUSEK ET AL.

10.1029/2019JF005506

23 of 43

Table 2 
Uncertainty of Ensembles of Idealized Process Models (Derivations Can Be Found in the Following Examples in Appendix A)

Model Model equation Variance equation (i.e.,  var Y  after N time steps) Variance behavior

Noise (Random Walk)   1n n nY Y ε  (Equation 40) where 

  20,ε   is random (white) 
noise

    2 2var
Δ

N tN
t

Y  (Equation 49)
Variance grows linearly 

with time

Noise + Damping   1n n nY Y ε  (Equation 51) where 
   1 Δ / Δ 1t T , Δt = model 
time step, ΔT  = damping time 
scale.

  
 


 

   
2 2

maxvar
1

NY  (Equation 59) where 



2

1 Variance approaches  2
max.  

Uncertainty bounded 
by ∼  max3

Noise + Damping + 
(uniform) Forcing    1 Δ

Δ
n n n n

f

t f
T

Y Y ε  

(Equation 61) the forcing f  is 
uniform for the entire ensemble.
Δ fT  = forcing time scale.

Same as above (i.e., the forcing does not contribute to the 
variance when it is applied uniformly across the entire 
ensemble)

Same as above

Noise + Damping + 
(random) Forcing    1 Δ

Δ
n n n n

f

t
T

Y f Y ε  

(Equation 61) where   20, ff   
is a random forcing function.

var Y
N

f

t

T
   









 











1

2

variance from
additive noise

































2

2 2 
f f

variance from forcing

  
,max

(Equation 71)

Variance approaches 
 2

,maxf . Uncertainty 
bounded by ∼  ,max3 f

Noise + Damping + 
(general) Forcing    1 Δ

Δ
n n n n

f

t
T

Y f Y ε  

(Equation 75) where f  is a 
general (auto-correlated) ensemble 
forcing function with variance 

   2var ff .

var Y
N

f

t

T
   









 











1

2

variance from

additive noise

































2

2
F

f F
 

variance from forcing

  
,maxx

2

(Equation 84) where 
 
 





 



1

cov ,
1

var

i j

i j
N

i

i

F
f f

f
. Here,  15F .

Variance approaches 
 2

,maxF . Simulations are 
non-Gaussian and thus 
are not necessarily 
bounded by ∼  ,max3 F
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random walk, the overall model variance represents sum of two variance terms contributed individually by 
the noise and the forcing terms that is approximately







f

f

t

T
,max

2 2

1











 






variance from additive noise





























2

2
f

variance from (random) forcing

  


,� (33)

where the variance of the forcing term is given by    2var ff . Equation 33 is derived in Equation 71 of 
Appendix A and is repeated here for clarity.

4. Example #4: The variance of an ensemble (generally) forced, damped, random walk  

(    1 Δ
Δ

n n n n

f

t
T

Y f Y ε ) is still bounded, but differs slightly from Equation 33. For most geophysical 

models and applications, the forcing conditions will, in general, not be normally distributed. When the 
forcing conditions are not random, the covariance of the forcing ensemble generally increases the variance 
contributed by the forcing term. Thus, the overall variance of an ensemble (generally) forced, damped, 
random walk is approximately







F

f

t

T
,max

2 2

1











 






variance from additive noise




























2

2
F

f


variance from(general)forcing

   


,� (34)

which is derived in Equation 84 of Appendix A and is repeated here for clarity. Comparing Equations 33 
and 34, notice that the factor F in Equations 34 acts to increase the variance contributed by a general forcing 
function compared to that of a random forcing function. This factor is given by

 
 





 



1

cov ,
1 ,

var

i j

i j
N

i

i

F
f f

f
� (35)

which is derived in Equations 82–83 of Appendix A. In the current application, we find that the covar-
iance of the forcing ensemble increases the variance of the forcing term by a factor of  15F  compared 
to the case of random forcing conditions. Qualitatively, this increase makes sense: when the wave 
forcing conditions are auto-correlated, they will generally cause persistent changes (e.g., erosion or 
accretion) over the span of several time steps compared to random forcing conditions that may change 
sign every time step. Thus, the cumulative effect of the forcing on the model's state (and its variance) 
is increased.

5. Example #4 (continued): For Gaussian noise and forcing conditions, the simulations are nearly bound-
ed by  max3  or  ,max3 f , meaning that ∼99.7% of simulations will fall within this equilibrium range. For 
non-Gaussian (and potentially auto-correlated) forcing conditions, the variance still approaches  2

,maxF  on 
average (according to Equation 34). However, symmetric uncertainty limits, like  ,max3 F , which originate 
from the assumption of Gaussian statistics, are generally not appropriate to describe the potential range of 
the non-Gaussian simulations (see Example #4 and Figure 11 of Appendix A for further details).

Example #5: The ShoreFor model, as demonstrated in Equation 90, can be written entirely in terms of a 

forced, ordinary differential equation of the form dY

dt
f t ( )

wave forcing

 . Hence, the uncertainty of the ShoreFor 

model does not approach a constant value, as in does in Examples 2–4 when a (shoreline-position-depend-
ent) damping term is present.
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The properties and behavior of the ensembles of idealized process models, discussed above (particularly 
that of Example #4), directly apply to the uncertainty of the shoreline change simulations (with and with-
out ensemble wave forcing) presented in Results.

Example #1: Random walk ensemble

The first model we consider is a simple Gaussian random walk.

  1n n nY Y ε� (36)

where

      1 2 3 ens
n n n n n

Nε� (37)

is an ensemble of additive noise and

   20,� (38)

is a perturbation drawn from a normal distribution with zero mean and standard deviation  .

In terms of a differential equation, Equation 36 can be written as:




Δ
dY
dt t

� (39)

where Δt is equivalent to the model time step of the numerical method. A numerical model governing the 
evolution equation of Equation 39 can be written as

 


1

Δ Δ

n n n

t t
Y Y ε�

or

  1n n nY Y ε� (40)

when the first-order, forward Euler time-stepping method (e.g., Moin 2010) is employed. Note that Equa-
tion 40 has been rearranged as an update equation that is of the same form as Equation 36.

Evaluating Equation 36 over the first few time steps, we see that noise accumulates over time:

 
 

  

   

       

         



1

1 0 0 0 0

2 1 1 0 0 1 0 0 1

3 2 2 0 0 1 2 0 0 1 2

n n nY Y ε

Y Y ε Y ε

Y Y ε Y ε ε Y ε ε

Y Y ε Y ε ε ε Y ε ε ε

�

         1 1 0 0 1 2 1...N N N NY Y ε Y ε ε ε ε� (41)


  0

0

N
N i

i
Y Y ε� (42)
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We can find the ensemble mean after a large number of time steps N , by taking the expected value of Equa-
tion 41, which is given by

                        1 1 0 0 1 2 1...N N N NE E E E E E E EY Y ε Y ε ε ε ε� (43)

The expected value of the noise term is given by

          0 1 2 1 0NE E E Eε ε ε ε� (44)

according to Equation  38 since the noise is drawn from a normal distribution with zero mean. As in 
Equation  44, we use the approximately equal () notation, because, in practice, a sample of comput-
er-generated, normally distributed random numbers will not have an identically zero mean. If the expect-
ed value of the noise term were non-zero, this would create a ‘drift’ or trend in the random walk. As in 
Equation 43, the expected value of NY  is the same as the expected value of the initial condition 0Y , that 
is,     0NE EY Y

Thus combining Equations 43 and 44 gives,

    0 .NE EY Y� (45)

Assuming that the initial conditions of Y  start from zero, i.e., 0 0Y , Equation 45 becomes

   0.NE Y� (46)

Thus, the ensemble mean does not change in time, which is the case for the following two examples, which 
apply Gaussian perturbations with zero mean.

Taking the variance of Equation 41 gives

var var var var var var varY Y Y
N N N                   1 1 0 0 1 2        

       

   


... var

var ...

var

N

N

1

0 2 2 2 2

0 2

Y

Y

   



� (47)

since the variance of each perturbation ensemble, nε , is independent and is given by

   2var nε� (48)

according to Equation 38 since the noise is drawn from a normal distribution with a standard deviation of  .

Assuming that the initial conditions of Y  once again start uniformly from zero, that is, 0 0Y , Equation 47 
becomes

    2 2var
Δ

N tN
t

Y� (49)

where 
Δ
tN
t
 is the number of time steps taken.

For the idealized simulations presented here, we apply ens 10,000N  member ensembles due to their com-
putational affordability, which greatly exceeds that of the realistic, ensemble simulations (with ens 1,000N )  
presented in Results. Figure 6 illustrates an ensemble simulation of the random walk governed by Equa-
tion 40 with ens 10,000N ,   0.1, and Δ 0.1t . Note that in the following examples we treat all varia-
bles as unitless. In Example #4, we present a dimensionally realistic simulation. The top panel of Figure 6 
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demonstrates that the variance of the ensemble of NY  grows as certain ensemble members become large (in 
absolute value) over time.

Each ensemble member in the top panel of Figure  6 is colored to improve the visibility of the individ-
ual model trajectories. Each model is colored based on its sorted position at the end of the simulation  
(  Δ 400t N t ), with red colors indicating large negative values of NY , blue colors representing large posi-
tive values of NY , and green colors representing near zero values of NY . Notice, that the color gradation ap-
pears relatively early in the simulation, e.g., (   Δ 25t N t ). In other words, the ranking of the ensemble 

members of NY  develops relatively quickly, and members maintain their rank throughout the course of the 
simulation. The bottom panel of Figure 6 shows the simulated ensemble variance,  var nY , based on the 
trajectories of Y  shown in the top panel, compared to the theoretical variance growth rate in Equation 49. 
Overall, the simulated ensemble variance agrees with the theoretical result, with only slight deviations from 
the trivial bias of computer-generated, normally distributed random numbers within a finite sample size.

Example #2: Damped random walk ensemble

The second model we consider is a damped random walk, which is given by


 

Δ Δ
dY Y
dt t T

� (50)
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Figure 6.  An ensemble simulation of the random walk governed by Equation 40 with ens 10,000N ,   0.1, and 
Δ 0.1t . The top panel shows the model trajectories of each member of the ensemble, which is colored based on its 

sorted position at the end of the simulation (  Δ 400t N t ), with red colors indicating large negative values of NY , blue 
colors representing large positive values of NY , and green colors representing near zero values of NY . The bottom panel 
shows the simulated ensemble variance (calculated from the trajectories of Yshown in the top panel) compared to the 
theoretical variance growth rate of  2 / Δt t.
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The governing Equation 50 includes additive noise as in Equation 39 plus an additional term (i.e., the sec-
ond term on the right-hand side) that represents damping. Recall, that the simplest ordinary differential 

equation exhibiting this form of damping is  
dY Y
dt

 for which the solution is an exponential decay, 

  0 expY Y t . The simplified, linear damping term in Equation 50 is analogous to that of the modified 
Yates et al. (2009) model presented here in Equations 5 and 8, which decreases the tendency for additional 
erosion or accretion while the beach is currently in an eroded or accreted state, respectively. The damping 
term in Equation 50 contains a parameter, ΔT , which represents the time scale of damping. Small or large 
values of ΔT  correspond to rapidly or slowly damped behavior, respectively.

The numerical model governing the evolution of Equation 50 becomes:

Y Y Y

Y Y Y

Y Y

n n n n

n n n n

n n n

t t T

t

T

t

T








 

 










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



1

1

1
1

  












�

  1n n nY Y ε� (51)

where   1 Δ / Δt T, which, in general, should be less than one as the model time step generally must be 
chosen to be less than the damping time scale, Δ Δt T . The alternative ( Δ Δt T ) will result in numerical 
instability. Thus,   1 and we will see a muted response in the ensemble trajectories of Equation 51 in 
comparison with Equation 36.

Evaluating Equation 51 over the first few time steps gives

 
 



    

      

 

       

         

1 0 0

2 1 1 0 0 1 2 0 0 1

3 2 2 2 0 0 1 2 3 0 2 0 1 2

....

Y Y ε

Y Y ε Y ε ε Y ε ε

Y Y ε Y ε ε ε Y ε ε ε
�

                 0 1 0 2 1 3 2 2 3 2 1...N N N N N N N NY Y ε ε ε ε ε ε� (52)

 


 


  

1
0 1

0

N
N N i N i

i
Y Y ε� (53)

Thus, since   1, then even though the noise becomes accumulated over time in Equation 52, we see that 
terms representing the older values of the additive noise and the initial conditions become increasingly 
damped by higher powers of . Note, that when   1, then   0p  as  p . Thus, the final state Y  is 
primarily determined by some combination of ‘recent’ perturbations. The memory the past state of Y  and 
past perturbations to it, ε, become lost after a certain time (which depends on the degree of damping). In 
Equation 52, the initial conditions in play only a transient role, because after many time steps   0N  and 
therefore the initial conditions are not remembered the final state. In other words, the ‘memory’ or influ-
ence of the initial condition decays exponentially with time or with the number of time steps, N .

We can estimate the number of time steps required for the initial conditions to be ‘forgotten’ by the follow-
ing analysis. If we assume that the initial conditions become negligible in Equation 52 when   0.01N , 
then we can rearrange this equation to calculate the number of time steps N  before the memory of the initial 
conditions are lost, which is given by
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For a typical value of damping of      
1dayΔ1 1 0.95

Δ 21days
t
T

, resulting in    10log 0.02, then the 

memory time scale is  100N  time steps.

This example illustrates the concept of “beach memory” that has been discussed in the literature (Jara 
et al. 2015, 2018; Reeve et al., 2014; Turki et al. 2012, 2013). Here, we define beach memory as the degree to 
which the current shoreline state “remembers” or “forgets” its past state and antecedent wave conditions. 
According to Equations  50 and  52, it is evident that the process that is directly responsible for limiting 
“beach memory” is some form of damping to the system, like that contained in the Yates et al. (2009) model.

We can calculate the variance of the ensemble at time step N , that is,  var NY , by taking the variance of 
Equation 52
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where we have applied the assumption that the initial conditions are uncorrelated with the additive noise. 
Further, we assume that the realizations of (white) noise are uncorrelated, and thus Equation 54 becomes:
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

 


  

12 20 1

0
var var var

N
N N i N i
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Y Y ε�

where we have applied the property that      2var varε ε . Next, applying    2var nε  and rearranging 
the exponents gives
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Note that because   is a constant, it can be taken outside of the summation.

Substituting 


 21
 in Equation 55 gives,

    
 





  
    
   


1

0 2

0

1 1var var
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In this case, since 


 2
1

 and   1, then   1. For simplicity, we assume that there is a value M N  that 

is sufficiently large so that 


 
 

 

1 0
M

 and Equation 56 becomes
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1var N
i

i
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which indicates that the ‘memory’ of the initial conditions has become lost. We can further modify Equa-
tion 57 by using an identity which says that the sum of reciprocal powers of any number   1 produces a 
convergent series solution given by










0

1 .
1i

i
� (58)

Thus, after substituting Equation 58, then Equation 57 can be written as

    


 
   

2 2
maxvar

1
NY� (59)

where  2
max represents the approximate maximum variance of the model ensemble. Unlike the behavior of 

the variance described in Equation 49 which grows over time, the behavior of the variance of the damped 
random walk, as described in Equation 59, is approximately bounded by  2

max. The maximum variance is de-
termined from a balance between the rate at which noise/variance is injected into the solution, e.g.,  , and 
the rate at which variance is removed through damping, e.g., via   1 on Equation 51 or via the coefficient 


  1 on Equation 59. This result is consistent with our intuition: large perturbations causing the current 

state to differ significantly from the background state will be suppressed by damping much more rapidly 
than small perturbations according to Equation 50. Consequently, all of the members of the ensemble will 
become driven to fall within an equilibrium range, which is approximately given by  max3 . Here,  max3
does not represent absolute bounds on the modeled position Y . However, based on the Gaussian statistics 
applied here, we expect that ∼99.7% of modeled position will fall within this equilibrium range (for the all 
of the following examples). Instantaneous deviations from this equilibrium range, while possible, will be 
quickly suppressed due to imbalance of damping relative to perturbations from the random walk.

Figure 7 illustrates an ensemble simulation of the damped random walk governed by Equation 50 with 
ens 10,000N ,   0.1, Δ 0.1t , and Δ 200ΔT t. The top panel of Figure 7 demonstrates that the spread 

of the ensemble nY  initially grows over time, but that eventually the ensemble settles into an equilibrium 
range given by  max3 . By the time that  40t , we see that the ensemble variance is very close to the the-
oretical upper limit. Each ensemble member in the top panel of Figure 7 is colored similarly to Figure 6, 
where the colors of individual simulations are based on their sorted position at the end of the simulation  
(  Δ 400t N t ), with red colors indicating large negative values of NY , blue colors representing large posi-
tive values of NY , and green colors representing near zero values of NY . Notice that the color gradation does 
not appear until relatively late in the simulation, in contrast to Figure 6. This indicates that the ensemble 
members of NY  can readily change their rank throughout the course of the simulation because any errant 
model trajectories are rapidly suppressed via damping. The bottom panel of Figure 7 shows the simulated 
ensemble variance,  var nY , computed from the trajectories of Y  shown in the top panel, compared to the 
theoretical variance growth rate in Equation  49 and the theoretical maximum variance in Equation  59. 
Overall, the simulated ensemble variance growth rates and limits agree with the theoretical results, with 
only slight deviations due to computer-generated biases in the random number generator.

Example #3: forced, damped random walk ensemble

The third model, which combines additive noise, damping, and forcing, is given by

 
  

Δ Δ Δ f

f tdY Y
dt t T T

� (60)
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where  f t  is a time series of forcing conditions and Δ fT  is the time scale associated with the adjustment 
of the solution Y  to the forcing. In Equation 60, a large value of Δ fT  means a slow, muted response to the 
forcing conditions and a small value of Δ fT  means a rapid, direct response to the forcing conditions.

A numerical model governing the evolution equation of Equation 60 is given by

Y Y Y f

Y Y Y f
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Evaluating Equation 61 over the first few time steps gives
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Figure 7.  An ensemble simulation of the damped random walk governed by Equation 50 with ens 10,000N ,   0.1,  
Δ 0.1t , and Δ 200ΔT t . The top panel shows that the model trajectories of each member of the ensemble, which 

are colored similarly to Figure 6, are roughly bounded by  max3 . The bottom panel shows the simulated ensemble 
variance, computed from the trajectories of Y  shown in the top panel, compared to the theoretical variance growth rate 
of  2 / Δt t  in the absence of damping, and the theoretical upper limit to the variance based on Equation 59. Although 
the variance grows initially at the expected rate, it quickly becomes bounded at the theoretical value due to the damping 
in the model.
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The only difference between Equations 52 and 53 and Equations 62 and 63 is the presence of the additional 
forcing terms.

Taking the variance of Equation 63 gives:
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Assuming that none of the variables on the RHS of Equation 64 are correlated with each other gives
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Assuming that the (white) noise is uncorrelated with itself, then Equation 65 becomes
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After assuming that  1 / 0N  (for a large value of N), Equation 66 becomes
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If the forcing term is uncorrelated with itself, then Equation 67 becomes
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We will return to this assumption later and address the case where the forcing is correlated with itself in 
the following example.

If the forcing term is also drawn from a normal distribution,   20, ff   then its variance is given by

   2var ,n
ff� (69)

then Equation 68 becomes
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Applying the converging series solution in Equation 58, Equation 70 becomes
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without the presence of the damping term, then Equation 71 becomes
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which again represents a linear growth in the variance with time (or with the number of time steps), albeit 
at a larger growth rate due to the presence of the additional variance generated by the forcing.

Figure 8 illustrates an ensemble simulation of the forced, damped random walk governed by Equation 60 
with ens 10,000N ,   0.1, Δ 0.1t , Δ 200ΔT t, and Δ 2ΔfT t. The forcing f  function is drawn from a 
normally distributed random number generator with zero mean and standard deviation   0.3f . The top 
panel of Figure 8 demonstrates that the spread of the ensemble of NY  initially grows over time, but that 
eventually the ensemble settles into an equilibrium range given by  ,max3 f . By the time that  40t , we 
see that the ensemble variance is very close to the theoretical upper limit. Each ensemble member in the 
top panel of Figure 8 is colored similarly to Figure 6, where the colors of individual simulations are based 
on their sorted position at the end of the simulation (  Δ 400t N t ), as in the previous simulations. Notice, 
that the color gradation does not appear until relatively late in the simulation, in contrast to Figure 6. Like 
in Figure 7, the ensemble members of NY  can readily change their position and rank throughout the course 
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of the simulation. The bottom panel of Figure 8 shows the simulated ensemble variance,  var NY , based 
on the trajectories of Y  shown in the top panel, compared to the theoretical variance growth rate in Equa-
tion 72 and the theoretical maximum variance in Equation 71. Overall, the simulated ensemble variance 
growth rates and limits agree with the theoretical results.

Figure 9 illustrates an identical simulation to Figure 9, except with uniform forcing, meaning that a single 
realization of the random forcing function is applied to each member of ensemble. Consequently, all of the 
members of the ensemble experience a consistent fluctuation throughout the course of the simulation, as 
shown in the top panel of Figure 10. Although the trajectories of the model ensembles are roughly bounded 
by  ,max3 f  in the top panel of Figure 10, the variance of the ensemble is roughly bounded by  2

max, based 
on Equation 59. The uniformly forced simulation does not include the additional variance due to the forcing 
as in Equation 71. Because there is no variance among the (uniform) model forcing throughout the ensem-
ble, then the variance of the ensemble is only driven by the variance generated from the combined noise 
and damping (as in Example #2). This example demonstrates that the single realization approach does not 
capture any intrinsic uncertainty in the forcing.

Figure 10 illustrates an identical simulation to Figure 10, except that the uniform forcing is applied across 
for each member of the ensemble for  200t  and then transitions to a random, ensemble (as in Figure 9) 
for  200t . The transition from a uniform forcing to an ensemble forcing is meant to represent the tran-
sition from a hindcast (with known forcing conditions) to an ensemble forecast (with unknown future 
forcing conditions). Hence, the variance of the ensemble forecast with stochastic forcing will be inherently 
larger than the variance of the hindcast. This is evident in the top panel of Figure 10, where the spread of 
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Figure 8.  An ensemble simulation of the forced, damped random walk governed by Equation 60 with ens 10,000N ,  
  0.1, Δ 0.1t , Δ 200ΔT t , and Δ 2ΔfT t. The forcing f , in this example, is drawn from a normally distributed 
random number generator with zero mean and standard deviation   0.3f . The top panel shows that the model 
trajectories of each member of the ensemble, which are colored similarly to Figures 6 and 7, are roughly bounded 
by  ,max3 f . The bottom panel shows the simulated ensemble variance, based on the trajectories of Yshown in the 
top panel, compared to the theoretical variance growth rate given in Equation 72 in the absence of damping, and the 
theoretical upper limit to the variance based on Equation 71.
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the model trajectories becomes much larger as the model transitions from a uniformly forced hindcast to 
an ensemble forecast at  200t . Once again, the bottom panel of Figure 10 shows the simulated ensemble 
variance based on the trajectories of Y  shown in the top panel. For  200t , the variance of the ensemble 
initially grows at the theoretical variance growth rate given in Equation 49 then stabilizes at the theoretical 
upper bound of  2

max, based on Equation 59. After the start of the random forcing at  200t , the variance 
of the model grows at the theoretical variance growth rate given in Equation 72 and then stabilizes at the 
theoretical upper bound of  2

,maxf , based on Equation 71. Overall, Figure 10 demonstrates the fundamental 
role that both uniform and ensemble forcing conditions play in the variance of the model.

Example #4: Idealized shoreline change ensemble based on Yates et  al. (2009)

In our final example, we return to the modified Yates et al. (2009) model in Equations 5–7 which is given by
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Figure 9.  An ensemble simulation of a uniformly forced, damped random walk governed by Equation 60 with 
ens 10,000N ,   0.1, Δ 0.1t , Δ 200ΔT t , and Δ 2ΔfT t. The forcing f , in this example, is drawn from a single 

realization of a normally distributed random number generator with zero mean and standard deviation   0.3f , which 
is applied uniformly across for each member of the ensemble. The top panel shows that the model trajectories of each 
member of the ensemble, which are colored similarly to Figures 6 and 7, are roughly bounded by  ,max3 f . The bottom 
panel shows the simulated ensemble variance, computed from the trajectories of Y  shown in the top panel, compared 
to the theoretical variance growth rate given in Equation 49 in the absence of damping, and the theoretical upper limit 
to the variance,  2

max, based on Equation 59. Note that the upper limit of the variance,  2
,maxf , given in Equation 71, 

pertains to a randomly forced ensemble. When all of the models are uniformly forced, then the variance contributed by 
the forcing is identically zero. Hence, the modeled variance is created only by the combination of noise and damping 
(i.e.,  2

max).
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where additive noise has also been included in the model.

Distributing the time-scale parameter into the forcing and damping terms in Equation 73 results in



2 2

2
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damping forcing

ˆ
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1 Δ
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s s s s

s s s
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� (74)

where the three terms on the right-hand side of Equation 74 represent damping, forcing, and additive noise, 
respectively.

The ensemble model equation based on Equation 74 is given by
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Figure 10.  An ensemble simulation of the forced, damped random walk governed by Equation 60 with ens 10,000N ,  
  0.1, Δ 0.1t , Δ 200ΔT t , and Δ 2ΔfT t. The forcing f , in this example, is drawn from a normally distributed 
random number generator with zero mean and variance   0.3f . The forcing is applied uniformly across for each 
member of the ensemble for t < 200 and is random for each member of the ensemble for t ≥ 200. The top panel shows 
that the model trajectories of each member of the ensemble, which are colored similarly to Figure 6 and Figure 7, 
are roughly bounded by  ,max3 f . The bottom panel shows the simulated ensemble variance, computed from the 
trajectories of Y  shown in the top panel, compared to the theoretical variance growth rate given in Equation 49 or 72 in 
the absence of damping, and the theoretical upper limit to the variance,  2

max, based on Equation 59 and  2
,maxF , based 

on Equation 71. Note that the overall variance of the model grows rapidly at the onset of the random forcing at t = 35 
and then stabilizes at the theoretical upper bound of  2

,maxf , based on Equation 71.
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   1 Δ
Δ

n n n nt
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Y Y f ε� (75)

which is similar to the governing equation of Example #3 (i.e., Equation  61), where   
Δ1
Δ ˆ

s

s

t
T H

H
. 

Here the damping term, , is not constant with time. However, here we approximate  as a constant 

  
Δ1
ΔHs

tf
T

, where  ˆ
s

Hs
s

f
H
H

 represents the time and ensemble average of the normalized wave 

height. In the example of Tairua beach,   7ˆ/ 0.H s ssf HH , where the best-fit, background wave height 
is found to be  1.22 mˆ

sH .

The forcing term in 75 is given by


 

2 2

2

ˆ
ˆ ˆΔ s s s

s s

H
H H
H Hf Y� (76)

Evaluating Equation 75 over N  time steps, like in Equation 63, gives
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Taking the variance of Equation 77 gives:
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Assuming that the noise is uncorrelated with the initial conditions, the forcing, and itself, Equation  78 
becomes

         

       

 

  

  


 

 
   

 

 
   

 





    
      

    
    

      
    

                     

 

 



21 12 20 1 1

0 0
21 1

2 0 2 1 1

0 0

1
0 2

0

Δvar var var var
Δ

Δvar var var
Δ

1 1 Δvar
Δ

N N
N N i N i i N i

i i

N NN i N i i N i

i i
N iN

i

t
T

t
T

t
T

Y Y ε f

Y ε f

Y 


 



 
 
 


2 1
1

0
var

N
i N i

i
f

�

   
 

 
 

 

      
         
       

 
21 1

0 2 1

0 0

1 1 Δvar var
Δ

N iN N
i N i

i i

t
T

Y f� (79)

Assuming that  1 / 0N , Equation 79 becomes
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If the forcing term, i.e., the last term on Equation 80, is correlated with itself, then we use a property of the 
variance that states:
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where iX  is a dummy variable, which represents the forcing function at a given time step. We approximate 
Equation 81 as
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where   1F  and the variance of the forcing function, which is generally a function of time, is approxi-

mated as a constant,  2var( )i XX  for all time steps i and
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is the ratio between the sum of the off diagonal elements and the sum of the diagonal elements (i.e., the 
trace) of the covariance matrix of the forcing function. Given an ensemble forcing function, it is straightfor-
ward to compute Γ prior to the simulation and apply this value to compute a heuristic value for the upper 
bound of the variance of the state NY .

Substituting Equation 82 into Equation 80, the variance of the state NY  becomes
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and applying a convergent series solution gives

var Y
N   





1

2

coefficient

associated

w/damping

additive nois ee

intrinsic variability

due to ensemble

forcin

 













t

T
F

f

2

2

gg conditions

  























 
F ,max
2

� (84)

VITOUSEK ET AL.

10.1029/2019JF005506

38 of 43



Journal of Geophysical Research: Earth Surface

The first term within the brackets in Equation 84 represents the variance contribution from the prescribed, 
‘additive noise’ to the model and the second term comes from the ‘intrinsic variability’ associated with the 
(self-correlated) ensemble forcing conditions. Without the presence of the damping term, then Equation 84 
becomes
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as in the case of Equation 72, but here Equation 85 includes the auto-correlation factor F. Notice, that the 
factor F accounts for the additional variance created from the covariance of the forcing function in time. 
In this example, the forcing function, Equation 76, which is exclusively driven by the wave height, will be 
highly correlated with itself, since wave heights generated from propagating storm events evolve over time 
scales of days.

Figure 11 illustrates an ensemble simulation of the idealized shoreline change model governed by Equa-
tion 73. Recall that this simulation is considered to be ‘idealized’, because the damping term is linearized 
as in Equation 74, and thus it differs from the (‘full’) simulations in Figures 3 and 4. In order to maintain 
consistency with the simulations presented in Results, the model in Figure 11 uses ens 1,000N ,   0.2 m,  

Δ 1 / 8 dayst , ˆ 0.8 msH  (which is the mean wave height of the wave ensemble at Tairua beach used 
in Figure 4), Δ 10 mY , and Δ 28 daysT . Unlike in Figure 4, the ensemble of wave forcing conditions 
used in the current simulation is not shown on Figure 11 in order to maintain visual consistency with Fig-
ures 6–10. In this case, the wave forcing conditions come from the same ensemble wave forcing conditions 
at Tairua beach used in Figure 4, for which  15F . The top panel of Figure 11 demonstrates that the spread 
of the ensemble nY  grows almost instantaneously but becomes relatively consistent throughout the simu-
lation. The top panel of Figure 11 depicts the equilibrium range given by  ,max3 F , based on Equation 84. 
However, the behavior of this model, unlike the previous idealized models, is clearly non-Gaussian due to 
the wave forcing ensemble. Hence, the Gaussian-based limits of  ,max3 F  (even though they are still pre-
sented on Figure 11 for reference) are not as physically meaningful as in the previous examples. Like previ-
ously, each ensemble member in the top panel of Figure 11 is colored similarly to the previous simulations 
in Appendix  A, where the colors of individual simulations are based on their sorted position at the end of 
the simulation. The color gradation in Figure 11 does not appear until very late in the simulation because 
the wave ensemble with the largest waves at the end of the simulation will dominate the final rank of the 
beach state across the ensemble. The bottom panel of Figure 11 shows the simulated ensemble variance, 

 var nY , computed from the trajectories of Y  shown in the top panel, compared to the theoretical variance 
growth rate in Equation 85 and the theoretical maximum variance in Equation 84. Overall, the simulated 
ensemble variance growth rates and limits agree with the theoretical results, with large, temporary devi-
ations from the theoretical constant due to the time-variability of the forcing (which is not accounted for 
in the theoretical result). Note that here the model variance exhibits some large spikes in model variance 
associated with large erosion events (shown on the top panel of Figure 11) caused by large wave-height 
events in certain members of the forcing ensemble. Overall, the agreement of the computed and theoretical 
variance is excellent in the case presented in Figure 11 and analogously in Figure 4. This validates the rel-
evance of Equation 85 for predicting the uncertainty across the wave forcing ensemble as further explored 
in the Discussion section.

Example #5: Idealized shoreline change ensemble based on ShoreFor

Finally, we present a brief analysis of an idealized ensemble shoreline change model based on ShoreFor 
(Davidson et al. 2013). The purpose of this example is to demonstrate that ShoreFor represents a purely 
forced model (without damping) where the right-hand side of the governing equation is only a function of 
the wave forcing conditions, like in Equation 11 in Methods. Based on the complete description of ShoreFor 
in Equation 9, we construct an idealized ShoreFor model as
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where nf  represents the wave forcing function (e.g., wave power in Equation 9), which includes the relevant 
modifying coefficients, and  1

eqΩ Ωn n represents the disequilibrium state. We apply an idealized memory 
decay function for 1

eqΩn , which represents a simplification of the complete function in Equation 10. We 
construct an idealized memory decay function as

   1 1 2
eqΩ 0.1Ω 0.01Ω .n n n� (87)

The memory decay function in Equation 87 only involves the previous two values of Ω. However, we inves-
tigate a general memory decay function (of arbitrary length) later in this section.

Combining Equations 86 and 87, we derive the update equation for the shoreline position as
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Evaluating Equation 88 over the first few time steps gives
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Figure 11.  An ensemble simulation of an idealized shoreline change model governed by Equation 73 with 
ens 1,000N ,   0.2 m, Δ 1 / 8 dayst , ˆ 0.8 msH , Δ 10 mY , and Δ 28 daysT . The forcing f , in this example (not 

shown), is the same the ensemble wave forcing used in the simulations shown in Figure 4. The top panel shows that 
the model trajectories of each member of the ensemble, which are colored similarly to the previous figures, are not well 
bounded by  ,max3 F , because unlike the previous examples, the behavior of the beach state is non-Gaussian owing to 
the wave forcing. The bottom panel shows the simulated ensemble variance, computed from the trajectories of Y shown 
in the top panel, compared to the theoretical variance growth rate given in Equation 85 in the absence of damping, and 
the theoretical upper limit to the variance, 

F , max
2 , based on Equation 84. Note that here the model variance exhibits 

some large fluctuations, the peaks of which are generally associated with large erosion events (shown on the top panel) 
caused by large wave-height events in certain members of the forcing ensemble.
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We generalize the result found in Equation 89, by using a generalized, 3-term memory decay function of 
the form

     1 1 2 3
eq 1 2 3Ω Ω Ω Ω .n n n nc c c� (90)

Combining the idealized ShoreFor governing equation in Equation 86 with the memory decay function in 
Equation 90 results in
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Further still, we generalize the result found in Equation 91, by applying a cN -term memory decay function 
of the form
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Combining the idealized ShoreFor governing equation in Equation 86 with the generalized, cN -term mem-
ory decay function in Equation 92 gives
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where  0 1c  and 1c  through Ncc  can be generated from an arbitrary decaying function, for example 
  1 2 30.1, 0.01, 0.001, etc.c c c

Notice that Equation 93 is purely determined by the generalized, time-varying forcing function,  nf , which 
represents a combination of the antecedent wave conditions ( f  and Ω) and the model parameters (c).

Thus, the ShoreFor model, as demonstrated in Equation 93, can be written entirely in terms of a forced, 
ordinary differential equation of the form

dY

dt
f t  

wave forcing

� (94)

as in Equation 11 in Methods.

Here, we do not seek to quantify the uncertainty of the idealized model presented in Equation 93, because 
the uncertainty is purely a function of the forcing term which can vary greatly from model to model. Ad-
ditionally, because Equations 93 and 94 lack any explicit form of shoreline-state-dependent damping, the 
uncertainty of this model will not be bounded as in the previous examples (#’s 2–4). Due to the lack of 
damping, the “beach memory” of Equation 93 is perfect. The initial condition in Equation 93, 0Y , is never 
‘forgotten’ as it is in Equations 53, 63, and 77. Thus, the preceding analysis demonstrates that ensemble vari-
ance of the idealized ShoreFor model (Equation 93) is allowed to grow without constraint at the direction of 
the specific forcing functions applied to it. Comparing ShoreFor, e.g., Equation 93, with Yates et al. (2009), 
e.g., Equation 77, we see that fundamental and “philosophical” differences exist between these two most 
popular equilibrium shoreline models.

Data Availability Statement
All wave, shoreline data, and code used here are available at https://coastalhub.science/data.
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