24 research outputs found

    Accelerated Rates of Floral Evolution at the Upper Size Limit for Flowers

    Get PDF
    SummaryEvolutionary theory explains phenotypic change as the result of natural selection, with constraint limiting the direction, magnitude, and rate of response [1]. Constraint is particularly likely to govern evolutionary change when a trait is at perceived upper or lower limits. Macroevolutionary rates of floral-size change are unknown for any angiosperm family, but it is predicted that rates should be diminished near the upper size limit of flowers, as has been shown for mammal body mass [2]. Our molecular results show that rates of floral-size evolution have been extremely rapid in the endoholoparasite Rafflesia, which contains the world's largest flowers [3]. These data provide the first estimates of macroevolutionary rates of floral-size change and indicate that in this lineage, floral diameter increased by an average of 20 cm (and up to 90 cm)/million years. In contrast to our expectations, it appears that the magnitude and rate of floral-size increase is greater for lineages with larger flowered ancestors. This study suggests that constraints on rates of floral-size evolution may not be limiting in Rafflesia, reinforcing results of artificial- and natural-selection studies in other plants that demonstrated the potential for rapid size changes [4–6]

    The genus Balanophora (Balanophoraceae) in Sabah, Malaysia

    No full text

    Mitochondrial DNA suggests at least 11 origins of parasitism in angiosperms and reveals genomic chimerism in parasitic plants

    No full text
    Abstract Background Some of the most difficult phylogenetic questions in evolutionary biology involve identification of the free-living relatives of parasitic organisms, particularly those of parasitic flowering plants. Consequently, the number of origins of parasitism and the phylogenetic distribution of the heterotrophic lifestyle among angiosperm lineages is unclear. Results Here we report the results of a phylogenetic analysis of 102 species of seed plants designed to infer the position of all haustorial parasitic angiosperm lineages using three mitochondrial genes: atp1, coxI, and matR. Overall, the mtDNA phylogeny agrees with independent studies in terms of non-parasitic plant relationships and reveals at least 11 independent origins of parasitism in angiosperms, eight of which consist entirely of holoparasitic species that lack photosynthetic ability. From these results, it can be inferred that modern-day parasites have disproportionately evolved in certain lineages and that the endoparasitic habit has arisen by convergence in four clades. In addition, reduced taxon, single gene analyses revealed multiple horizontal transfers of atp1 from host to parasite lineage, suggesting that parasites may be important vectors of horizontal gene transfer in angiosperms. Furthermore, in Pilostyles we show evidence for a recent host-to-parasite atp1 transfer based on a chimeric gene sequence that indicates multiple historical xenologous gene acquisitions have occurred in this endoparasite. Finally, the phylogenetic relationships inferred for parasites indicate that the origins of parasitism in angiosperms are strongly correlated with horizontal acquisitions of the invasive coxI group I intron. Conclusion Collectively, these results indicate that the parasitic lifestyle has arisen repeatedly in angiosperm evolutionary history and results in increasing parasite genomic chimerism over time.</p

    Mitochondrial DNA suggests at least 11 origins of parasitism in angiosperms and reveals genomic chimerism in parasitic plants-8

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "Mitochondrial DNA suggests at least 11 origins of parasitism in angiosperms and reveals genomic chimerism in parasitic plants"</p><p>http://www.biomedcentral.com/1471-2148/7/248</p><p>BMC Evolutionary Biology 2007;7():248-248.</p><p>Published online 21 Dec 2007</p><p>PMCID:PMC2234419.</p><p></p>38). Green branches are non-parasitic, orange branches are mostly hemiparasitic, and red branches are holoparasitic lineages. Some parasites have long estimated branch lengths for these 3 combined genes; however, even some non-parasites, like , have long branch lengths as well. ML bootstrap support values (BP) are shown above all nodes with values >50
    corecore