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Summary

Evolutionary theory explains phenotypic change as the

result of natural selection, with constraint limiting the direc-
tion, magnitude, and rate of response [1]. Constraint is par-

ticularly likely to govern evolutionary change when a trait
is at perceived upper or lower limits. Macroevolutionary

rates of floral-size change are unknown for any angiosperm
family, but it is predicted that rates should be diminished

near the upper size limit of flowers, as has been shown for
mammal body mass [2]. Our molecular results show that

rates of floral-size evolution have been extremely rapid in
the endoholoparasite Rafflesia, which contains the world’s

largest flowers [3]. These data provide the first estimates
of macroevolutionary rates of floral-size change and indicate

that in this lineage, floral diameter increased by an average
of 20 cm (and up to 90 cm)/million years. In contrast to our

expectations, it appears that the magnitude and rate of flo-
ral-size increase is greater for lineages with larger flowered

ancestors. This study suggests that constraints on rates of
floral-size evolution may not be limiting in Rafflesia, rein-

forcing results of artificial- and natural-selection studies in
other plants that demonstrated the potential for rapid size

changes [4–6].

*Correspondence: todd.barkman@wmich.edu
Results and Discussion

Rafflesia Species Exhibit Low Levels of Molecular

Divergence
Rafflesiaceae are composed of three genera of bizarre endo-
holoparasitic flowering plants, Rafflesia, Rhizanthes, and Sap-
ria, that are largely restricted to Southeast Asia [3, 7] and grow
as strands of cells embedded within host stem and root
tissues, emerging only as flowers during sexual reproduction.
Rafflesia produces the largest flower in the world (ca. 100 cm),
and within the genus, floral-size variation spans nearly one or-
der of magnitude (11–100+ cm) [3, 8]. In spite of this extensive
floral-size variation, an unexpected finding was revealed from
Bayesian-estimated divergence times and phylogenetic rela-
tionships [9]: species exhibit little DNA-sequence variation,
as indicated by the very short estimated branch lengths shown
in Figures 1 and 2. In fact, the Peninsular Malaysian species
R. kerrii and R. cantleyi are identical in sequence except for
one insertion in the nad1 B-C intron; yet their flowers differ in
diameter by 20 cm [3]. This analysis suggests that most closely
related Rafflesia species are found in the same geographic
region and that the genus is ca. 12 million years (My) old (Fig-
ure 2). However, most divergences among species are esti-
mated to have occurred within the last 1–2 My, and in several
instances, speciation appears to have occurred within the last
600,000 years, in both Indonesia and Peninsular Malaysia (Fig-
ure 2). The young-age estimates for speciation events within
Rafflesia are corroborated through alternative methodologies
that do not assume a strict molecular clock [10] (data not
shown). The divergence-time estimates for Rafflesia are prob-
ably not affected by differences in generation time either,
because various species appear to be similar [3], although
Rhizanthes and Sapria have not been studied. Repeating our
methods on independent collections and extractions pro-
duced the same results; thus, we are confident that the high
levels of similarity among species are not due to contamina-
tion. The low level of molecular variation within Rafflesia is sur-
prising, because both the nuclear rDNA internal transcribed
spacer (ITS) region and the nad1 B/C intron are usually variable
among closely related species [11–14]. The fact that the ITS is
so similar among these divergent species is particularly sur-
prising, because it is linked to the nuclear rDNA small subunit
of Rafflesia, which is the most rapidly evolving in all plants and
exhibits divergences ca. five times higher than those of non-
parasitic species [15, 16]. The same is also true for Rafflesia-
ceae mtDNA, which exhibits divergences ca. two times higher
than those of nonparasitic plants [16–18]. Low levels of molec-
ular divergence among recently evolved, morphologically
distinctive species have also been reported in several other
lineages [19–22].

Rates of Floral-Size Evolution Are Remarkably High

within Rafflesia
The flowers of Rafflesia are thought to mimic rotting flesh and
are 10–100 times larger in diameter than those of most other
flowering-plant genera. Because they represent the upper limit
of floral size, we expected that large flowers would have
evolved over long periods of time and probably only once
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during the history of the genus. Contrary to expectations,
these large flowers appear to have evolved rapidly, recently,
and repeatedly (Figure 2). A comparison of two models of trait
evolution [23] indicates that a model allowing the rate of floral-
size evolution in Rafflesiaceae to accelerate over time is a bet-
ter fit to the data than is one implying gradual and constant
change (likelihood-ratio test = 9.5, 1 df, p = 0.002). To more
precisely determine the timing of this acceleration, we investi-
gated whether a model allowing the rate of floral-size evolution
to be different between the Rafflesia clade, (which has large
floral sizes that vary substantially in diameter) and the rest of
the family (which have smaller flowers [< 25 cm] that do not
vary much in size) is better than a model assigning one rate
to the whole tree (Figure 1) [24]. In this case, the best-fit model
of floral-size evolution assigns to the Rafflesia clade a rate that
is twenty times higher than the separate rate estimated for the
rest of the family (difference between the Akaike Information
Criterion of the two models being compared = 5.9).

To further investigate the history of floral-diameter change in
Rafflesia, we estimated ancestral states through a novel
Bayesian approach [25]. An advantage of the Bayesian
approach implemented here is that uncertainty of ancestral
states is estimated (Figure 2 panels) and can be explicitly in-
corporated into subsequent analyses. These estimates show
that the evolutionary history of the genus is mostly one of small
floral-size changes, until the last 1–2 My (Figure 2). Within this
window of time, ancestors ranged from ca. 30–40 cm in diam-
eter on average (after back log transformation), persisted
throughout numerous speciation events, over both long and
short periods of time, then gave rise to species much larger
and smaller in diameter. Remarkably, it appears that large
flowers (> 60 cm) have evolved multiple times from smaller-
flowered ancestors in Indonesia, Borneo, and Peninsular
Malaysia (Figure 2). In fact, a statistical test [26] indicates
that trees constraining the large-flowered species (> 60 cm di-
ameter) to be monophyletic at node A, D, or F are significantly
worse than the optimal tree shown in Figure 2 (Shimodaira-
Hasegawa Test significant at p < 0.005 in all cases).

Figure 1. Chronogram Showing Relationships

and Divergence Times among the Three Genera

of Rafflesiaceae

In spite of considerable variation in floral size

within Rafflesia, very little molecular variation is

observed, as indicated by the short branch

lengths. Grey bars at nodes represent the 95%

highest posterior density interval of divergence-

time estimates. Posterior probabilities for all

nodes except those within Rafflesia are shown.

Details of divergence times and relationships

with posterior probabilities for clades within Raf-

flesia are shown in Figure 2. Images for represen-

tative species of the three genera are shown.

Estimates of net rates of floral-size
evolution were obtained by calculating
the amount of flower-size change occur-
ring during the elapsed time shown
on each branch in Figure 2. An average
overall rate of floral-size change of
4 cm/My is estimated to have occurred
in Rafflesia. Interestingly, ancestral-size
estimates reveal that there have been
many decreases (avg. 11 cm/My) and

increases (avg. 20 cm/My) in floral size over the 12 My of Raf-
flesia evolutionary history. The maximum average rate of floral-
size increase is calculated for the R. arnoldii and R. kerrii
branches that have evolved at 58 cm and 90 cm/My, respec-
tively, since diverging from their ancestors. A previous study
of Rafflesiaceae suggested that a large increase in the rate
of floral-size evolution occurred in the lineage separating the
family from the rest of Malpighiales and that there was no ev-
idence for rate differences among Rafflesia, Rhizanthes, and
Sapria [27]. Perhaps because the branching relationships
among Rafflesiaceae species were not estimated in that study,
the large shift in evolutionary rate reported here for Rafflesia
was not detected. Furthermore, although a large change in
floral size occurred along the lineage leading to the ancestor
of Rafflesiaceae, it occurred over 46 My [27]; a net rate of ca.
0.41 cm/My. Clearly, the more recent evolutionary changes in
Rafflesia are very high and indicate that the evolutionary
history of floral-size change in the genus is dynamic. In this
context, it is fascinating that a wide range of floral sizes has
evolved without much apparent concomitant evolutionary
change on the part of the host, because a number of very
differently sized Rafflesia species parasitize the same host
species [3, 8]. However, Rafflesia does appear to exhibit
typical life-history tradeoffs, with large-flowered species gen-
erally producing fewer flowers than small-flowered species [3].
Other parasites do not produce particularly large flowers, so it
does not appear that the heterotrophic lifestyle of parasitic
plants alone accounts for the rapid evolution of large flowers.
Instead, it may be that the carrion-fly-pollination syndrome
results in selection for large floral-display sizes, because other
genera with some of the largest flowers or inflorescences in the
world (Aristolochia, Stapelia, and various Araceae, including
Amorphophallus) are also sapromyophilous.

Large-Flowered Ancestors Have Given Rise

to Descendants with Even Larger Flowers
Because the flowers of Rafflesia represent the upper limit of
floral size, we predicted that rates of change should be
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Figure 2. Expanded Chronogram Showing Phylogenetic Relationships and Divergence Times for the Rafflesia Clade Shown in Figure 1

Posterior probabilities of 0.8 or greater are shown at each node. Grey bars at nodes represent the 95% highest posterior density interval of divergence-time

estimates with nodes placed at the mean posterior divergence-time estimate. Most speciation events are estimated to have occurred within the last 2 My.

Shown in each labeled panel are the posterior distributions of ancestral floral diameters estimated for each labeled node, with mean sizes listed above. Al-

though ancestral states were estimated with ln-transformed data, all sizes shown have been back log transformed. Ancestral floral sizes are inferred to have

been more or less static over time, with mean sizes ranging from 27–37 cm for most of the history of the genus, with net changes along each branch less than

7 cm on average. However, within the last 1–2 My, large floral-size increases and decreases have occurred from these intermediate-sized ancestors. Species

names shown in black are mostly found in Indonesia (Sumatra and Java), red are found in Peninsular Malaysia and Thailand, blue are restricted to Borneo, and

green are endemic to the Philippines. Ranges of floral diameter are shown next to each extant species. Grey floral outlines are ancestral, black are extant.
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decreased for large ancestors, as has been demonstrated for
mammal body mass [2]. In the case of Rafflesia flowers, if con-
straints limit responses to selection [28], then rates of change
toward larger flowers should be low. Rates of floral-diameter
evolution were calculated in darwins [29, 30] which utilize
log-transformed data, so that comparisons could be made
across each branch independently on the tree shown in
Figures 1 and 2. Figure 3 (triangles) shows a surprising pattern
of the relationship between ancestral flower size and rate of
floral-size change: the rate of floral-size enlargement in-
creases as the flower size of the ancestor increases (Spear-
man’s rank correlation coefficient = 0.71, p = 0.002). The rela-
tionship of ancestral flower size and floral-size change (instead
of change over time) also indicates that larger ancestral
flowers have given rise to larger descendants (Figure S1, avail-
able online). The apparent relationship between rate of change
and ancestral floral size is not necessarily due to the short time
intervals over which large magnitudes of change have oc-
curred. If rates of change occurring within the last 0.6–1.6
My—the window of time within which most speciation events
have occurred—are compared, the positive relationship
between higher net rates of change in darwins and larger
ancestral floral size is still observed. Uncertainty in the ances-
tral-state estimation shown in Figure 2 and use of an Ornstein-
Uhlenbeck process [31] to model stabilizing selection did not
affect the conclusions drawn, either (Figures S2 and S3,
respectively). Thus, Rafflesia species appear to be free from
constraint, allowing for rapid change even at the apparent
upper limit of floral diameter. This raises the possibility
that 100 cm may not be the upper limit for flower size in angio-
sperms.

The deceptive carrion-fly-pollinated flowers of Rafflesia are
thought to mimic rotting corpses [3, 32]. Thus, the rapid
changes reported here could be due to selection favoring the
mimicking of differently sized corpses corresponding to

Figure 3. Relationship of Net Rate of Floral-Size

Change in Absolute Value of Darwins to log-

Transformed Ancestral Floral Diameter for Each

Branch in Figures 1 and 2

Mean rates of floral-size increase and decrease,

with standard errors, are represented by trian-

gles and circles, respectively. Rates of floral-

size change are higher for larger ancestral floral

sizes (Spearman’s rank correlation coefficient =

0.71, p = 0.002). Rates for branches descending

from shared nodes A, B, D, and F are labeled so

that their paired, divergent rates of change can

be compared. Best-fit exponential trend lines

are shown for both floral-size increases (solid)

and decreases (dashed). Darwins are calculated

with the following formula: ln(descendant floral

size) 2 ln(ancestral floral size) / elapsed time in

My. Rates of change for trait values that increase

over time are positive, whereas those that de-

crease are negative.

carrion-fly species’ differing innate pref-
erences for carcass size [33, 34]. In addi-
tion to size differences, Rafflesia species
also differ in pigmentation patterns,
wart patterning, and scent, and these
characters may also be under selection,
because they may indicate alternative
stages of decay to which different

carrion-fly species may specialize. Alternatively, selection for
reproductive isolation by character displacement for avoid-
ance of gamete wastage may be responsible for some of the
variation observed, particularly in regions of sympatry [35].
Consistent with this idea is the pattern of floral-size divergence
observed for the largely sympatric species pairs that have
undergone rapid, simultaneous increases and decreases
from intermediately sized ancestors (Figures 2 and 3, nodes
A, B, D, and F). In this case, selection could promote flower-
size divergence, because small-bodied insects would not
effectively pollinate large flowers [32, 36], and vice versa,
even though the same flies might visit flowers of all sizes. Ex-
perimental manipulations aimed at testing between these hy-
potheses are needed. In contrast, it does not appear likely
that differences in ploidy level or altitudinal distribution could
have driven the floral-size changes in this lineage, because
chromosome number does not vary among large- and small-
flowered species [37] and altitude is not correlated with floral
size (r = 20.12, p = 0.7). Environmental factors, like host-vine
physiological state, could contribute to floral variation within
and among species, but systematic data for assessing the
impact of this variable are lacking.

In conclusion, it should be expected that investigation of
the thousands of recently evolved tips of the Tree of Life
will reveal many instances of rapid trait diversification. Theo-
retically, the ability of a lineage to respond adaptively de-
pends on the strength of selection balanced by some level
of constraint. Artificial- and natural-selection studies have
shown that responses to selection can be quite rapid and
provide evidence that, at least in the short term, constraint
may not be limiting trait evolution [38, 39]. Furthermore, the
implicit notion that rates of change may be decreased near
the theoretical upper limit for a trait need not be invoked be-
cause, as our data indicate, apparent bounds can be rapidly
surpassed.
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Experimental Procedures

Taxon and Gene Sampling

To study floral-size evolution in Rafflesia, we sampled 15 out of the ca. 20

extant species from throughout Rafflesia’s geographic range, as well as

representatives of the related genera Rhizanthes and Sapria. Table S1

shows all taxa sampled, voucher information, and GenBank accession

numbers for all sequences used in this study. A total of 6130 aligned nucle-

otides from the combined nuclear (ITS) and mitochondrial (matR, atp6, and

nad1 B-C) markers were compared. All DNA sequences were generated

with standard molecular methods. Additional details are provided in

Supplemental Data.

Phylogenetic Analyses

BEAST (ver. 1.4.6) [9] was used for estimating the posterior-probability dis-

tribution of divergence times at each node in the Rafflesiaceae phylogeny

via a most recent common ancestor (MRCA) approach. This Bayesian

approach is desirable because phylogenetic uncertainty can be accounted

for with the set of topologies contained within the posterior-probability

distribution for divergence-time estimation [40].

BayesTraits [25] was used for estimating the posterior-probability distri-

bution of ancestral states. For all species, we scored log-transformed floral

diameters according to the minimum reported value for the known range. We

obtained 1000 trees from the set of topologies and branch lengths generated

by BEAST during divergence-time estimation and used them for ancestral-

state estimation via the Markov Chain Monte Carlo (MCMC) approach.

We used the software program Continuous [23, 41] for maximum-likelihood

parameter estimation to determine the optimum value of the scaling parame-

ter, delta. This parameter is used to detect whether the rate of trait evolution

has been constant or has changed over time. A value of delta significantly

greater than 1.0 indicates that the rate of evolution has accelerated over

time whereas a value of 1.0 is consistent with a constant rate of change. We

next used Brownie [24] to implement a censored approach to compare

two rate models. In the first model, a single rate of evolution was applied to

the entire tree. In the second model, one rate of evolution was estimated for

the Rafflesia clade and a second rate was estimated for all other branches

in the tree. For these tests we used the topology and mean branch lengths

shown in Figure 1. Further details on all phylogenetic analyses are provided

in Supplemental Data.

Rate Calculations in Darwins

We used the darwin [29] as a measure of the net rates of evolutionary change

along each branch of the Rafflesiaceae phylogeny shown in Figures 1 and 2.

This measure is obtained by dividing estimated floral-size change (in log

units) along a branch by the estimated elapsed time, in My, along the

same branch. To obtain estimates of floral-size change on each branch of

the Rafflesiaceae phylogeny, ancestral-state values were subtracted from

descendant-state values obtained from the MCMC analysis implemented

in BayesTraits to yield a distribution of net change.

Statistics

Prior to determining the relationship between variables, we checked data

for bivariate normality. If the data were normal, we used the Pearson prod-

uct-moment correlation coefficient. If the data were not normal, the Spear-

man’s rank correlation was used. In our specific case of comparing the

relationship between darwins and ancestral floral size, we did not log trans-

form the rates to achieve normality, because the numerator was already log

transformed (see above).

Supplemental Data

Supplemental Data include Supplemental Experimental Procedures and can

be found with this article online at http://www.current-biology.com/cgi/

content/full/18/19/1508/DC1/.
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