11,456 research outputs found

    E-learning as a Vehicle for Knowledge Management

    Get PDF
    Nowadays, companies want to learn from their own experiences and to be able to enhance that experience with best principles and lessons learned from other companies. Companies emphasise the importance of knowledge management, particularly the relationship between knowledge and learning within an organisation. We feel that an e-learning environment may contribute to knowledge management on the one hand and to the learning need in companies on the other hand. In this paper, we report on the challenges in designing and implementing an e-learning environment. We identify the properties from a pedagogical view that should be supported by an e-learning environment. Then, we discuss the challenges in developing a system that includes these properties

    Literature review of physical and chemical pretreatment processes for lignocellulosic biomass

    Get PDF
    Different pretreatment technologies published in public literature are described in terms of the mechanisms involved, advantages and disadvantages, and economic assessment. Pretreatment technologies for lignocellulosic biomass include biological, mechanical, chemical methods and various combinations thereof. The choice of the optimum pretreatment process depends very much on the objective of the biomass pretreatment, its economic assessment and environmental impact. Only a small number of pretreatment methods has been reported as being potentially cost-effective thus far. These include steam explosion, liquid hot water, concentrated acid hydrolysis and dilute acid pretreatments

    A rapid transition from ice covered CO2–rich waters to a biologically mediated CO2 sink in the eastern Weddell Gyre

    Get PDF
    Circumpolar Deep Water (CDW), locally called Warm Deep Water (WDW), enters the Weddell Gyre in the southeast, roughly at 25° E to 30° E. In December 2002 and January 2003 we studied the effect of entrainment of WDW on the fugacity of carbon dioxide (fCO2) and dissolved inorganic carbon (DIC) in Weddell Sea surface waters. Ultimately the fCO2 difference across the sea surface drives air-sea fluxes of CO2. Deep CTD sections and surface transects of fCO2 were made along the Prime Meridian, a northwest-southeast section, and along 17° E to 23° E during cruise ANT XX/2 on FS Polarstern. Upward movement and entrainment of WDW into the winter mixed layer had significantly increased DIC and fCO2 below the sea ice along 0° W and 17° E to 23° E, notably in the southern Weddell Gyre. Nonetheless, the ice cover largely prevented outgassing of CO2 to the atmosphere. During and upon melting of the ice, biological activity rapidly reduced surface water fCO2 by up to 100 µatm, thus creating a sink for atmospheric CO2. Despite the tendency of the surfacing WDW to cause CO2 supersaturation, the Weddell Gyre may well be a CO2 sink on an annual basis due to this effective mechanism involving ice cover and ensuing biological fCO2 reduction. Dissolution of calcium carbonate (CaCO3) in melting sea ice may play a minor role in this rapid reduction of surface water fCO2

    Polarization effects on the effective temperature of an ultracold electron source

    Get PDF
    The influence has been studied of the ionization laser polarization on the effective temperature of an ultracold electron source, which is based on near-threshold photoionization. This source is capable of producing both high-intensity and high-coherence electron pulses, with applications in for example electron diffraction experiments. For both nanosecond and femtosecond photoionization, a sinusoidal dependence of the temperature on polarization angle has been found. For most experimental conditions, the temperature is minimal when the polarization coincides with the direction of acceleration. However, surprisingly, for nanosecond ionization a regime exists when the temperature is minimal when the polarization is perpendicular to the acceleration direction. This shows that in order to create electron bunches with the highest transverse coherence length, it is important to control the polarization of the ionization laser. The general trends and magnitudes of the temperature measurements are described by a model, based on the analysis of classical electron trajectories; this model further deepens our understanding of the internal mechanisms during the photoionization process. Furthermore, for nanosecond ionization, charge oscillations as a function of laser polarization have been observed; for most situations the oscillation amplitude is small

    Thomson scattering in a low-pressure neon mercury positive column

    Get PDF
    The electron density and the electron temperature in a low-pressure neon mercury positive column are determined using Thomson scattering. Special attention has been given to the stray light reduction in the Thomson scattering setup. The results are obtained in a discharge tube with a 26 mm diam, 10 mbar of neon, a mercury pressure inbetween 0.14 and 0.85 Pa, and an electric current ranging from 100 to 400 mA. The systematic error in the electron density is 15%–45%, the statistical error is 25%–35%. The total error in the electron temperature is 15%–35%. ©2001 American Institute of Physics

    Spectral geometry as a probe of quantum spacetime

    Full text link
    Employing standard results from spectral geometry, we provide strong evidence that in the classical limit the ground state of three-dimensional causal dynamical triangulations is de Sitter spacetime. This result is obtained by measuring the expectation value of the spectral dimension on the ensemble of geometries defined by these models, and comparing its large scale behaviour to that of a sphere (Euclidean de Sitter). From the same measurement we are also able to confirm the phenomenon of dynamical dimensional reduction observed in this and other approaches to quantum gravity -- the first time this has been done for three-dimensional causal dynamical triangulations. In this case, the value for the short-scale limit of the spectral dimension that we find is approximately 2. We comment on the relevance of these results for the comparison to asymptotic safety and Horava-Lifshitz gravity, among other approaches to quantum gravity.Comment: 25 pages, 6 figures. Version 2: references to figures added, acknowledgment added

    Tracer Measurements in Growing Sea Ice Support Convective Gravity Drainage Parameterizations

    Get PDF
    Gravity drainage is the dominant process redistributing solutes in growing sea ice. Modeling gravity drainage is therefore necessary to predict physical and biogeochemical variables in sea ice. We evaluate seven gravity drainage parameterizations, spanning the range of approaches in the literature, using tracer measurements in a sea ice growth experiment. Artificial sea ice is grown to around 17 cm thickness in a new experimental facility, the Roland von Glasow air‐sea‐ice chamber. We use NaCl (present in the water initially) and rhodamine (injected into the water after 10 cm of sea ice growth) as independent tracers of brine dynamics. We measure vertical profiles of bulk salinity in situ, as well as bulk salinity and rhodamine in discrete samples taken at the end of the experiment. Convective parameterizations that diagnose gravity drainage using Rayleigh numbers outperform a simpler convective parameterization and diffusive parameterizations when compared to observations. This study is the first to numerically model solutes decoupled from salinity using convective gravity drainage parameterizations. Our results show that (1) convective, Rayleigh number‐based parameterizations are our most accurate and precise tool for predicting sea ice bulk salinity; and (2) these parameterizations can be generalized to brine dynamics parameterizations, and hence can predict the dynamics of any solute in growing sea ic

    Comparative investigation into the effect of fertigation and of broadcast fertilization on the yield and nitrate content of lettuce (Lactuca sativa L.).

    Get PDF
    Three [unnamed] cultivars were grown successively during March to May, June to July, and July to August 1983 on a sandy soil. For each of these field experiments the treatments were: no N application, and fertilization with various amounts of ammonium nitrate, either as split applications via irrigation water or as a single broadcast application. Fertigation increased the availability and uptake of N and increased the nitrate content of the crop compared with broadcast fertilization. A second-degree polynomial model fitted the fertilization:NO3-content data. In the first cropping, yield was significantly higher when N was applied by fertigation compared with broadcast application, but in the following croppings there was no significant difference. However, it is suggested that the yield difference in the first cropping may be related to the very wet spring conditions (a 56 mm rain surplus compared with 105 and 116 mm deficits in the following two experiments) when leaching of NO3 from the upper soil layer would be expected. (Abstract retrieved from CAB Abstracts by CABI’s permission
    corecore