266 research outputs found

    Advantages and disadvantages of different nasal CPAP systems in newborns

    Get PDF
    Objective: To compare three different systems of continuous positive airway pressure (CPAP): the naso-pharyngeal tube and two-prong systems in newborns, focusing on duration of CPAP, side effects and cost. Design: Randomized clinical study. Patients: Between July 2000 and September 2001 newborns were randomized to three different CPAP systems. Forty infants in two weight groups (>2500g and 1250-2500g; 20 patients in each group) were included. Results: In the group >2500g the median duration of CPAP was 1.1days (range 0.25-14.3days). The median time on a naso-pharyngeal CPAP was 1day (range 0.25-14.3days), on Hudson prongs 1.6days (range 0.5-3.3days) and on the Infant Flow system 0.7days (range 0.3-13.6days; p>0.05 for comparison between groups, Fisher's exact test). With naso-pharyngeal CPAP, 2 patients developed moderate nasal injuries. On Hudson, 2 patients developed moderate and three mild nasal injuries. One patient on the Infant Flow showed mild and one moderate nasal injuries. In the weight group 1250-2500g the median duration of CPAP was 1.1days (range 0.1-7.0days). The median time on the naso-pharyngeal tube was 0.9days (range 0.1-7days), on Hudson prongs 1.1days (range 0.7-6.6days) and on the Infant Flow system 1.3days (range 0.25-5.9days; p>0.05 for comparison between groups, Fisher's exact test). With a naso-pharygeal tube, one infant developed mild and one moderate nasal injuries. On Hudson prongs, two had moderate nasal injuries. On Infant Flow, one newborn showed a severe nasal injury and two mild injuries. None of the patients developed a pneumothorax. Conclusion: The naso-pharyngeal tube is an easy, safe and economical CPAP system usable with every common ventilator. For very low birth weight newborns, a prong system may have advantage

    Administration of Steroids in Pediatric Cardiac Surgery: Impact on Clinical Outcome and Systemic Inflammatory Response

    Get PDF
    Cardiopulmonary bypass (CPB) is associated with a systemic inflammatory response. Pre-bypass steroid administration may modulate the inflammatory response, resulting in improved postoperative recovery. We performed a prospective study in the departments of cardiovascular surgery and pediatric intensive care medicine of two university hospitals that included 50 infants who underwent heart surgery. Patients received either prednisolone (30 mg/kg) added to the priming solution of the cardiopulmonary bypass circuit (steroid group) or no steroids (nonsteroid group). Clinical outcome parameters include therapy with inotropic drugs, oxygenation, blood lactate, glucose, and creatinine, and laboratory parameters of inflammation include leukocytes, C-reactive protein, and interleukin-8. Postoperative recovery (e.g., the number, dosage, and duration of inotropic drugs as well as oxygenation) was similar in patients treated with or without steroids when corrected for the type of cardiac surgery performed. After CPB, there was an inflammatory reaction, especially in patients with a long CPB time. Postoperative plasma levels of interleukin-8 were correlated with the duration of CPB time (r = 0.62, p < 0.001). Administration of steroids had no significant impact on the laboratory parameters of inflammation. Administration of prednisolone into the priming solution of the CPB circuit had no measurable influence on postoperative recovery and did not suppress the inflammatory respons

    BioDrugScreen: a computational drug design resource for ranking molecules docked to the human proteome

    Get PDF
    BioDrugScreen is a resource for ranking molecules docked against a large number of targets in the human proteome. Nearly 1600 molecules from the freely available NCI diversity set were docked onto 1926 cavities identified on 1589 human targets resulting in >3 million receptor–ligand complexes requiring >200 000 cpu-hours on the TeraGrid. The targets in BioDrugScreen originated from Human Cancer Protein Interaction Network, which we have updated, as well as the Human Druggable Proteome, which we have created for the purpose of this effort. This makes the BioDrugScreen resource highly valuable in drug discovery. The receptor–ligand complexes within the database can be ranked using standard and well-established scoring functions like AutoDock, DockScore, ChemScore, X-Score, GoldScore, DFIRE and PMF. In addition, we have scored the complexes with more intensive GBSA and PBSA approaches requiring an additional 120 000 cpu-hours on the TeraGrid. We constructed a simple interface to enable users to view top-ranking molecules and access purchasing and other information for further experimental exploration

    Administration of Steroids in Pediatric Cardiac Surgery: Impact on Clinical Outcome and Systemic Inflammatory Response

    Full text link
    Cardiopulmonary bypass (CPB) is associated with a systemic inflammatory response. Pre-bypass steroid administration may modulate the inflammatory response, resulting in improved postoperative recovery. We performed a prospective study in the departments of cardiovascular surgery and pediatric intensive care medicine of two university hospitals that included 50 infants who underwent heart surgery. Patients received either prednisolone (30 mg/kg) added to the priming solution of the cardiopulmonary bypass circuit (steroid group) or no steroids (nonsteroid group). Clinical outcome parameters include therapy with inotropic drugs, oxygenation, blood lactate, glucose, and creatinine, and laboratory parameters of inflammation include leukocytes, C-reactive protein, and interleukin-8. Postoperative recovery (e.g., the number, dosage, and duration of inotropic drugs as well as oxygenation) was similar in patients treated with or without steroids when corrected for the type of cardiac surgery performed. After CPB, there was an inflammatory reaction, especially in patients with a long CPB time. Postoperative plasma levels of interleukin-8 were correlated with the duration of CPB time (r = 0.62, p < 0.001). Administration of steroids had no significant impact on the laboratory parameters of inflammation. Administration of prednisolone into the priming solution of the CPB circuit had no measurable influence on postoperative recovery and did not suppress the inflammatory respons

    Placental transfusion: a review

    Get PDF
    Recently there have been a number of studies and presentations on the importance of providing a placental transfusion to the newborn. Early cord clamping is an avoidable, unphysiologic intervention that prevents the natural process of placental transfusion. However, placental transfusion, although simple in concept, is affected by multiple factors, is not always straightforward to implement, and can be performed using different methods, making this basic procedure important to discuss. Here, we review three placental transfusion techniques: delayed cord clamping, intact umbilical cord milking and cut-umbilical cord milking, and the evidence in term and preterm newborns supporting this practice. We will also review several factors that influence placental transfusion, and discuss perceived risks versus benefits of this procedure. Finally, we will provide key straightforward concepts and implementation strategies to ensure that placental-to-newborn transfusion can become routine practice at any institution

    Molecular Profiling Reveals Diversity of Stress Signal Transduction Cascades in Highly Penetrant Alzheimer's Disease Human Skin Fibroblasts

    Get PDF
    The serious and growing impact of the neurodegenerative disorder Alzheimer's disease (AD) as an individual and societal burden raises a number of key questions: Can a blanket test for Alzheimer's disease be devised forecasting long-term risk for acquiring this disorder? Can a unified therapy be devised to forestall the development of AD as well as improve the lot of present sufferers? Inflammatory and oxidative stresses are associated with enhanced risk for AD. Can an AD molecular signature be identified in signaling pathways for communication within and among cells during inflammatory and oxidative stress, suggesting possible biomarkers and therapeutic avenues? We postulated a unique molecular signature of dysfunctional activity profiles in AD-relevant signaling pathways in peripheral tissues, based on a gain of function in G-protein-coupled bradykinin B2 receptor (BKB2R) inflammatory stress signaling in skin fibroblasts from AD patients that results in tau protein Ser hyperphosphorylation. Such a signaling profile, routed through both phosphorylation and proteolytic cascades activated by inflammatory and oxidative stresses in highly penetrant familial monogenic forms of AD, could be informative for pathogenesis of the complex multigenic sporadic form of AD. Comparing stimulus-specific cascades of signal transduction revealed a striking diversity of molecular signaling profiles in AD human skin fibroblasts that express endogenous levels of mutant presenilins PS-1 or PS-2 or the Trisomy 21 proteome. AD fibroblasts bearing the PS-1 M146L mutation associated with highly aggressive AD displayed persistent BKB2R signaling plus decreased ERK activation by BK, correctible by gamma-secretase inhibitor Compound E. Lack of these effects in the homologous PS-2 mutant cells indicates specificity of presenilin gamma-secretase catalytic components in BK signaling biology directed toward MAPK activation. Oxidative stress revealed a JNK-dependent survival pathway in normal fibroblasts lost in PS-1 M146L fibroblasts. Complex molecular profiles of signaling dysfunction in the most putatively straightforward human cellular models of AD suggest that risk ascertainment and therapeutic interventions in AD as a whole will likely demand complex solutions

    Role of the Mannose Receptor (CD206) in Innate Immunity to Ricin Toxin

    Get PDF
    The entry of ricin toxin into macrophages and certain other cell types in the spleen and liver results in toxin-induced inflammation, tissue damage and organ failure. It has been proposed that uptake of ricin into macrophages is facilitated by the mannose receptor (MR; CD206), a C-type lectin known to recognize the oligosaccharide side chains on ricin’s A (RTA) and B (RTB) subunits. In this study, we confirmed that the MR does indeed promote ricin binding, uptake and killing of monocytes in vitro. To assess the role of MR in the pathogenesis of ricin in vivo, MR knockout (MR−/−) mice were challenged with the equivalent of 2.5× or 5× LD50 of ricin by intraperitoneal injection. We found that MR−/− mice were significantly more susceptible to toxin-induced death than their age-matched, wild-type control counterparts. These data are consistent with a role for the MR in scavenging and degradation of ricin, not facilitating its uptake and toxicity in vivo

    Sequestration of free cholesterol in cell membranes by prions correlates with cytoplasmic phospholipase A2 activation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The transmissible spongiform encephalopathies (TSEs), otherwise known as the prion diseases, occur following the conversion of the normal cellular prion protein (PrP<sup>C</sup>) to an alternatively folded isoform (PrP<sup>Sc</sup>). The accumulation of PrP<sup>Sc </sup>within the brain leads to neurodegeneration through an unidentified mechanism. Since many neurodegenerative disorders including prion, Parkinson's and Alzheimer's diseases may be modified by cholesterol synthesis inhibitors, the effects of prion infection on the cholesterol balance within neuronal cells were examined.</p> <p>Results</p> <p>We report the novel observation that prion infection altered the membrane composition and significantly increased total cholesterol levels in two neuronal cell lines (ScGT1 and ScN2a cells). There was a significant correlation between the concentration of free cholesterol in ScGT1 cells and the amounts of PrP<sup>Sc</sup>. This increase was entirely a result of increased amounts of free cholesterol, as prion infection reduced the amounts of cholesterol esters in cells. These effects were reproduced in primary cortical neurons by the addition of partially purified PrP<sup>Sc</sup>, but not by PrP<sup>C</sup>. Crucially, the effects of prion infection were not a result of increased cholesterol synthesis. Stimulating cholesterol synthesis via the addition of mevalonate, or adding exogenous cholesterol, had the opposite effect to prion infection on the cholesterol balance. It did not affect the amounts of free cholesterol within neurons; rather, it significantly increased the amounts of cholesterol esters. Immunoprecipitation studies have shown that cytoplasmic phospholipase A<sub>2 </sub>(cPLA<sub>2</sub>) co-precipitated with PrP<sup>Sc </sup>in ScGT1 cells. Furthermore, prion infection greatly increased both the phosphorylation of cPLA<sub>2 </sub>and prostaglandin E<sub>2 </sub>production.</p> <p>Conclusion</p> <p>Prion infection, or the addition of PrP<sup>Sc</sup>, increased the free cholesterol content of cells, a process that could not be replicated by the stimulation of cholesterol synthesis. The presence of PrP<sup>Sc </sup>increased solubilisation of free cholesterol in cell membranes and affected their function. It increased activation of the PLA<sub>2 </sub>pathway, previously implicated in PrP<sup>Sc </sup>formation and in PrP<sup>Sc</sup>-mediated neurotoxicity. These observations suggest that the neuropathogenesis of prion diseases results from PrP<sup>Sc </sup>altering cholesterol-sensitive processes. Furthermore, they raise the possibility that disturbances in membrane cholesterol are major triggering events in neurodegenerative diseases.</p

    Humanized Rag1−/−γc−/− Mice Support Multilineage Hematopoiesis and Are Susceptible to HIV-1 Infection via Systemic and Vaginal Routes

    Get PDF
    Several new immunodeficient mouse models for human cell engraftment have recently been introduced that include the Rag2−/−γc−/−, NOD/SCID, NOD/SCIDγc−/− and NOD/SCIDβ2m−/− strains. Transplantation of these mice with CD34+ human hematopoietic stem cells leads to prolonged engraftment, multilineage hematopoiesis and the capacity to generate human immune responses against a variety of antigens. However, the various mouse strains used and different methods of engrafting human cells are beginning to illustrate strain specific variations in engraftment levels, duration and longevity of mouse life span. In these proof-of-concept studies we evaluated the Balb/c-Rag1−/−γ−/− strain for engraftment by human fetal liver derived CD34+ hematopoietic cells using the same protocol found to be effective for Balb/c-Rag2−/−γc−/− mice. We demonstrate that these mice can be efficiently engrafted and show multilineage human hematopoiesis with human cells populating different lymphoid organs. Generation of human cells continues beyond a year and production of human immunoglobulins is noted. Infection with HIV-1 leads to chronic viremia with a resultant CD4 T cell loss. To mimic the predominant sexual viral transmission, we challenged humanized Rag1−/−γc−/− mice with HIV-1 via vaginal route which also resulted in chronic viremia and helper T cell loss. Thus these mice can be further exploited for studying human pathogens that infect the human hematopoietic system in an in vivo setting
    corecore