63 research outputs found

    Combined experimental and theoretical study on the elastic electron scattering cross sections of ethanol

    Get PDF
    Combined theoretical and experimental studies on the elastic scattering of electrons on ethanol were performed in the energy range of 30–800 eV. The differential elastic electron scattering cross sections (DCS) of ethanol were measured for scattering angles of 30° to 150° using the relative flow technique and nitrogen (N2) as the reference gas. From these experimental DCS, integral elastic and momentum transfer cross sections were estimated. The comparison of the experimental results from the present work to those of other groups showed good agreement within the experimental uncertainty. In addition to the experimental determination, the DCS of ethanol were calculated by applying the independent atomic model with screening-corrected additivity rule and the modified independent atomic model. These theoretical calculations reproduced the experimental data well within the experimental uncertainty, with agreement better at high electron energies as was expected. Graphical abstract: [Figure not available: see fulltext.

    Experimental benchmark data for Monte Carlo simulated radiation effects of gold nanoparticles. Part I: Experiment and raw data analysis

    Get PDF
    Electron emission spectra of gold nanoparticles (AuNPs) after photon interaction were measured over the energy range between 50 eV and 9500 eV to provide reference data for Monte Carlo radiation-transport simulations. Experiments were performed with the HAXPES spectrometer at the PETRA III high-brilliance beamline P22 at DESY (Hamburg, Germany) for photon energies below and above each of the gold L-edges, i.e., at 11.9 keV, 12.0 keV, 13.7 keV, 13.8 keV, 14.3 keV, and 14.4 keV. The study focused on a sample with gold nanoparticles with an average diameter of 11.0 nm on a thin carbon foil. Additional measurements were performed on a sample with 5.3 nm gold nanoparticles and on reference samples of gold and carbon foils. Further measurements were made to calibrate the photon flux monitor, to characterize the transmission function of the electron spectrometer and to determine the size of the photon beam. This allowed the determination of the absolute values of the spectral particle radiance of secondary electrons per incident photon flux. The paper presents the experimental and raw data analysis procedures, reviews the data obtained for the nanoparticle samples and discusses their limitations.Comment: 18 pages, 13 Figures, 6 Tables plus 4 Supplements with altogether 14 pages, 16 figures, 2 table

    Experimental benchmark data for Monte Carlo simulated radiation effects of gold nanoparticles. Part II: Comparison of measured and simulated electron spectra from gold nanofoils

    Full text link
    Electron emission spectra of a thin gold foil after photon interaction were measured over the energy range between 50 eV and 9500 eV to provide reference data for Monte Carlo radiation-transport simulations. Experiments were performed with the HAXPES spectrometer at the PETRA III high-brilliance beamline P22 at DESY (Hamburg, Germany) for photon energies just below and above each of the gold L-edges, i.e., at 11.9 keV, 12.0 keV, 13.7 keV, 13.8 keV, 14.3 keV, and 14.4 keV. The data were analyzed to obtain the absolute values of the particle radiance of the emitted electrons per incident photon flux. Simulations of the experiment were performed using the Monte Carlo radiation-transport codes Penelope and Geant4. Comparison of the measured and simulated results shows good qualitative agreement. When simulation results are convolved with curves that take into account the effect of lifetime broadening, line shapes of photoelectron and Auger peaks similar to those observed experimentally are obtained. On an absolute scale, the experiments tend to give higher electron radiance values at the lower photon energies studied as well as at the higher photon energies for electron energies below the energy of the Au L3 photoelectron. This is attributed to the linear polarization of the photon beam in the experiments which is not considered in the simulation codes.Comment: Revised manuscript after peer review, 13 pages, 9 figure

    Experimental benchmark data for Monte Carlo simulated radiation effects of gold nanoparticles. Part II: comparison of measured and simulated electron spectra from gold nanofoils

    Get PDF
    Electron emission spectra of a thin gold foil after photon interaction were measured over the energy range between 50 eV and 9500 eV to provide reference data for Monte Carlo radiation-transport simulations. Experiments were performed with the HAXPES spectrometer at the PETRA III high-brilliance beamline P22 at DESY (Hamburg, Germany) for photon energies just below and above each of the gold L-edges, that is, at 11.9 keV, 12.0 keV, 13.7 keV, 13.8 keV, 14.3 keV, and 14.4 keV. The data were analyzed to obtain the absolute values of the particle radiance of the emitted electrons per incident photon flux. Simulations of the experiment were performed using the Penelope and Geant4 Monte Carlo radiation-transport codes. Comparison of the measured and simulated results shows good qualitative agreement. On an absolute scale, the experiments tend to produce higher electron radiance values at the lower photon energies studied as well as at the higher photon energies for electron energies below the energy of the Au L3 photoelectron. This is attributed to the linear polarization of the photon beam in the experiments, something which is not considered in the simulation codes

    Kinematically Complete Study of Low-Energy Electron-Impact Ionization of Neon: Internormalized Cross Sections in Three-Dimensional Kinematics

    Get PDF
    Low-energy (E0 0=65eV) electron-impact single ionization of Ne (2p) has been investigated to thoroughly test state-of-the-art theoretical approaches. The experimental data were measured using a reaction microscope, which can cover nearly the entire 4π solid angle for the secondary electron emission energies ranging from 2 to 8 eV, and projectile scattering angles ranging from 8.5⁰ to 20.0⁰. The experimental triple-differential cross sections are internormalized across all measured scattering angles and ejected energies. The experimental data are compared to predictions from a hybrid second-order distorted-wave Born plus R-matrix approach, the distorted-wave Born approximation with the inclusion of postcollision interaction (PCI), a three-body distorted-wave approach (3DW), and a B-spline R-matrix (BSR) with pseudostates approach. Excellent agreement is found between the experiment and predictions from the 3DW and BSR models, for both the angular dependence and the relative magnitude of the cross sections in the full three-dimensional parameter space. The importance of PCI effects is clearly visible in this low-energy electron-impact ionization process

    Low-energy (E₀ = 65 eV) Electron-Impact Ionization of Neon: Internormalized Triple-Differentical Cross Sections in 3D Kinematics

    Get PDF
    We present a combined experimental and theoretical study on the low-energy (E0 = 65 eV) electron- impact ionization of neon. The experimental data are compared to predictions from a hybrid second-order distorted-wave Born plus R-matrix approach (DWB2-RM), the distorted-wave Born approximation with inclusion of post-collision interaction (DWBA-PCI), a three-body distorted-wave approach (3DW), and a B-spline R-matrix (BSR) with pseudostates approach. Excellent agreement is found between experiment and the 3DW and BSR theories. The importance of PCI effects is clearly visible in this low-energy electron-impact ionization process

    A Case Report of Carbon Monoxide Poisoning Induced Cardiomyopathy Complicated with Left Ventricular Thrombus

    Get PDF
    The heart and the brain, most oxygen-dependent organs, may be severely affected after carbon monoxide (CO) exposure. CO induced cardiotoxicity may occur as a consequence of moderate to severe CO poisoning, including angina attack, myocardial infarct, arrhythmias, and heart failure. We present a rare case of CO poisoning induced cardiomyopathy with left ventricular (LV) thrombus. It is thought that LV thrombus may have been caused severely decreased LV function with dyskinesis. After short-term anticoagulant therapy, echocardiography findings revealed complete recovery of LV dyskinesis and resolution of LV thrombus

    A Nanopore Structured High Performance Toluene Gas Sensor Made by Nanoimprinting Method

    Get PDF
    Toluene gas was successfully measured at room temperature using a device microfabricated by a nanoimprinting method. A highly uniform nanoporous thin film was produced with a dense array of titania (TiO2) pores with a diameter of 70∼80 nm using this method. This thin film had a Pd/TiO2 nanoporous/SiO2/Si MIS layered structure with Pd-TiO2 as the catalytic sensing layer. The nanoimprinting method was useful in expanding the TiO2 surface area by about 30%, as confirmed using AFM and SEM imaging. The measured toluene concentrations ranged from 50 ppm to 200 ppm. The toluene was easily detected by changing the Pd/TiO2 interface work function, resulting in a change in the I–V characteristics

    Efficacy of two different self-expanding nitinol stents for atherosclerotic femoropopliteal arterial disease (SENS-FP trial): study protocol for a randomized controlled trial

    Get PDF
    BACKGROUND: There have been few randomized control trials comparing the incidence of stent fracture and primary patency among different self-expanding nitinol stents to date. The SMART™ CONTROL stent (Cordis Corp, Miami Lakes, Florida, United States) has a peak-to-valley bridge and inline interconnection, whereas the COMPLETE™-SE stent (Medtronic Vascular, Santa Rosa, California, United States) crowns have been configured to minimize crown-to-crown interaction, increasing the stent's flexibility without compromising radial strength. Further, the 2011 ESC (European society of cardiology) guidelines recommend that dual antiplatelet therapy with aspirin and a thienopyridine such as clopidogrel should be administered for at least one month after infrainguinal bare metal stent implantation. Cilostazol has been reported to reduce intimal hyperplasia and subsequent repeat revascularization. To date, there has been no randomized study comparing the safety and efficacy of two different antiplatelet regimens, clopidogrel and cilostazol, following successful femoropopliteal stenting. METHODS/DESIGN: The primary purpose of our study is to examine the incidence of stent fracture and primary patency between two different major representative self-expanding nitinol stents (SMART™ CONTROL versus COMPLETE™-SE) in stenotic or occlusive femoropopliteal arterial lesion. The secondary purpose is to examine whether there is any difference in efficacy and safety between aspirin plus clopidogrel versus aspirin plus cilostazol for one month following stent implantation in femoropopliteal lesions. This is a prospective, randomized, multicenter trial to assess the efficacy of the COMPLETE™-SE versus SMART™ CONTROL stent for provisional stenting after balloon angioplasty in femoropopliteal arterial lesions. The study design is a 2x2 randomization design and a total of 346 patients will be enrolled. The primary endpoint of this study is the rate of binary restenosis in the treated segment at 12 months after intervention as determined by catheter angiography or duplex ultrasound. DISCUSSION: This trial will provide powerful insight into whether the design of the COMPLETE™-SE stent is more fracture-resistant or effective in preventing restenosis compared with the SMART™ CONTROL stent. Also, it will determine the efficacy and safety of aspirin plus clopidogrel versus aspirin plus cilostazol in patients undergoing stent implantation in femoropopliteal lesions. TRIAL REGISTRATION: Registered on 2 April 2012 with the National Institutes of Health Clinical Trials Registry (ClinicalTrials.gov identifier# NCT01570803)

    25th annual computational neuroscience meeting: CNS-2016

    Get PDF
    The same neuron may play different functional roles in the neural circuits to which it belongs. For example, neurons in the Tritonia pedal ganglia may participate in variable phases of the swim motor rhythms [1]. While such neuronal functional variability is likely to play a major role the delivery of the functionality of neural systems, it is difficult to study it in most nervous systems. We work on the pyloric rhythm network of the crustacean stomatogastric ganglion (STG) [2]. Typically network models of the STG treat neurons of the same functional type as a single model neuron (e.g. PD neurons), assuming the same conductance parameters for these neurons and implying their synchronous firing [3, 4]. However, simultaneous recording of PD neurons shows differences between the timings of spikes of these neurons. This may indicate functional variability of these neurons. Here we modelled separately the two PD neurons of the STG in a multi-neuron model of the pyloric network. Our neuron models comply with known correlations between conductance parameters of ionic currents. Our results reproduce the experimental finding of increasing spike time distance between spikes originating from the two model PD neurons during their synchronised burst phase. The PD neuron with the larger calcium conductance generates its spikes before the other PD neuron. Larger potassium conductance values in the follower neuron imply longer delays between spikes, see Fig. 17.Neuromodulators change the conductance parameters of neurons and maintain the ratios of these parameters [5]. Our results show that such changes may shift the individual contribution of two PD neurons to the PD-phase of the pyloric rhythm altering their functionality within this rhythm. Our work paves the way towards an accessible experimental and computational framework for the analysis of the mechanisms and impact of functional variability of neurons within the neural circuits to which they belong
    corecore