13 research outputs found

    Construction of data streams applications from functional, non-functional and resource requirements for electric vehicle aggregators. the COSMOS vision

    Get PDF
    COSMOS, Computer Science for Complex System Modeling, is a research team that has the mission of bridging the gap between formal methods and real problems. The goal is twofold: (1) a better management of the growing complexity of current systems; (2) a high quality of the implementation reducing the time to market. The COSMOS vision is to prove this approach in non-trivial industrial problems leveraging technologies such as software engineering, cloud computing, or workflows. In particular, we are interested in the technological challenges arising from the Electric Vehicle (EV) industry, around the EV-charging and control IT infrastructure

    Vanadium oxide supported on porous clay heterostructure for the partial oxidation of hydrogen sulphide to sulfur

    Full text link
    Vanadium oxide supported on porous clay heterostructures (PCH) catalysts have been synthesized, characterized and evaluated in the selective oxidation of H2S to elemental sulfur. The catalysts were characterized by XRD, adsorption-desorption of N-2 at -196 degrees C, diffuse reflectance UV-vis, H-2-TPR, Raman spectroscopy and XPS. The catalysts with higher vanadium content are more active and selective, exhibiting a H2S conversion close to 70% after 360h on stream with a high selectivity toward elemental sulfur and a low formation of undesired SO2. The catalysts with V2O5 crystallites have shown a higher activity and resistance to the deactivation. The analysis of the spent catalyst has revealed the formation of V4O9 crystals during the catalytic test, which has been reported as the active phase in the selective oxidation of the H2S. (C) 2015 Elsevier B.V. All rights reserved.The authors would like to thank the DGICYT in Spain (Projects CTQ2012-37925-C03-01, CTQ2012-37925-C03-03 and FEDER funds, and MAT2010-19837-C06-05) and project of Excellence of Junta de Andalucia (project P12-RNM-1565) for financial support. A. Natoli thanks to SECAT (Spain) for a grant.Soriano Rodríguez, MD.; Cecilia, JA.; Natoli, A.; Jimenez-Jimenez, J.; López Nieto, JM.; Rodriguez Castellon, E. (2015). Vanadium oxide supported on porous clay heterostructure for the partial oxidation of hydrogen sulphide to sulfur. Catalysis Today. 254:36-42. https://doi.org/10.1016/j.cattod.2014.12.022S364225

    Elucidating the structure of the W and Mn sites on the Mn-Na2WO4/SiO2 catalyst for the oxidative coupling of methane (OCM) at real reaction temperatures

    No full text
    [EN] The performance of the Mn-NaWO/SiO catalyst for oxidative coupling of methane (OCM) has been ascribed to crystalline phases that are not present at reaction temperatures (>700 °C). The evolution of W and Mn sites structure was monitored via in situ TPO-XRD, -Raman, and -XANES spectroscopies. TPO-XRD shows that the crystalline phases identified on the Mn-NaWO/SiO, NaWO/SiO, and WO/SiO catalysts at room temperature do not exist at relevant OCM temperatures. The γ → β → α-WO, α → β-cristobalite, and cubic → orthorhombic → molten-NaWO phase transitions occur upon heating. TPO-Raman spectra show that the bond order of W sites with octahedral (O) and tetrahedral (T) symmetry changes during the δ → γ → β → α-WO and cubic → orthorhombic → molten-NaWO transitions, respectively. TPO-XANES spectra show that bond order changes are due to distortion degree variations because all samples preserve essentially W valence and O-Mn sites are always present on Mn-NaWO/SiO catalyst. Steady-state OCM tests show that O-W sites are inactive and T-W sites are less distorted and more active towards methane activation in the presence of O-Mn sites.This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES)- Finance Code 001. We acknowledge the Brazilian Synchrotron Light Laboratory (LNLS) at the National Center for Research in Energy and Materials (CNPEM) for making available beam-time under proposal XAFS2-20190152. C.A.O-B gratefully acknowledge the financial support of the CAPES (process No. 88887.368574/2019-00) and Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) (process No. E-26/200.785/2019) for scholarship grant. The Raman system was acquired with Spanish Ministry grant EQC2018-004839-P and co-funded by CSIC

    Fungal Planet description sheets: 1182–1283

    Get PDF
    Novel species of fungi described in this study include those from various countries as follows: Algeria, Phaeoacremonium adelophialidum from Vitis vinifera. Antarctica, Comoclathris antarctica from soil. Australia, Coniochaeta salicifolia as endophyte from healthy leaves of Geijera salicifolia, Eremothecium peggii in fruit of Citrus australis, Microdochium ratticaudae from stem of Sporobolus natalensis, Neocelosporium corymbiae on stems of Corymbia variegata, Phytophthora kelmanii from rhizosphere soil of Ptilotus pyramidatus, Pseudosydowia backhousiae on living leaves of Backhousia citriodora, Pseudosydowia indooroopillyensis, Pseudosydowia louisecottisiae and Pseudosydowia queenslandica on living leaves of Eucalyptus sp. Brazil, Absidia montepascoalis from soil. Chile, Ilyonectria zarorii from soil under Maytenus boaria. Costa Rica, Colletotrichum filicis from an unidentified fern. Croatia, Mollisia endogranulata on deteriorated hardwood. Czech Republic, Arcopilus navicularis from tea bag with fruit tea, Neosetophoma buxi as endophyte from Buxus sempervirens, Xerochrysium bohemicum on surface of biscuits with chocolate glaze and filled with jam. France, Entoloma cyaneobasale on basic to calcareous soil, Fusarium aconidiale from Triticum aestivum, Fusarium juglandicola from buds of Juglans regia. Germany, Tetraploa endophytica as endophyte from Microthlaspi perfoliatum roots. India, Castanediella ambae on leaves of Mangifera indica, Lactifluus kanadii on soil under Castanopsis sp., Penicillium uttarakhandense from soil. Italy, Penicillium ferraniaense from compost. Namibia, Bezerromyces gobabebensis on leaves of unidentified succulent, Cladosporium stipagrostidicola on leaves of Stipagrostis sp., Cymostachys euphorbiae on leaves of Euphorbia sp., Deniquelata hypolithi from hypolith under a rock, Hysterobrevium walvisbayicola on leaves of unidentified tree, Knufia hypolithi and Knufia walvisbayicola from hypolith under a rock, Lapidomyces stipagrostidicola on leaves of Stipagrostis sp., Nothophaeotheca mirabibensis (incl. Nothophaeotheca gen. nov.) on persistent inflorescence remains of Blepharis obmitrata, Paramyrothecium salvadorae on twigs of Salvadora persica, Preussia procaviicola on dung of Procavia sp., Sordaria equicola on zebra dung, Volutella salvadorae on stems of Salvadora persica. Netherlands, Entoloma ammophilum on sandy soil, Entoloma pseudocruentatum on nutrient poor (acid) soil, Entoloma pudens on plant debris, amongst grasses. New Zealand, Amorocoelophoma neoregeliae from leaf spots of Neoregelia sp., Aquilomyces metrosideri and Septoriella callistemonis from stem discolouration and leaf spots of Metrosideros sp., Cadophora neoregeliae from leaf spots of Neoregelia sp., Flexuomyces asteliae (incl. Flexuomyces gen. nov.) and Mollisia asteliae from leaf spots of Astelia chathamica, Ophioceras freycinetiae from leaf spots of Freycinetia banksii, Phaeosphaeria caricis-sectae from leaf spots of Carex secta. Norway, Cuphophyllus flavipesoides on soil in semi-natural grassland, Entoloma coracis on soil in calcareous Pinus and Tilia forests, Entoloma cyaneolilacinum on soil semi-natural grasslands, Inocybe norvegica on gravelly soil. Pakistan, Butyriboletus parachinarensis on soil in association with Quercus baloot. Poland, Hyalodendriella bialowiezensis on debris beneath fallen bark of Norway spruce Picea abies. Russia, Bolbitius sibiricus on а moss covered rotting trunk of Populus tremula, Crepidotus wasseri on debris of Populus tremula, Entoloma isborscanum on soil on calcareous grasslands, Entoloma subcoracis on soil in subalpine grasslands, Hydropus lecythiocystis on rotted wood of Betula pendula, Meruliopsis faginea on fallen dead branches of Fagus orientalis, Metschnikowia taurica from fruits of Ziziphus jujube, Suillus praetermissus on soil, Teunia lichenophila as endophyte from ITS nrDNA barcodes LSU new taxa systematicsFungal Planet description sheets: 1182–1283publishedVersio

    Fungal Planet description sheets: 1182–1283

    No full text
    Novel species of fungi described in this study include those from various countries as follows: Algeria, Phaeoacremonium adelophialidum from Vitis vinifera. Antarctica, Comoclathris antarctica from soil. Australia, Coniochaeta salicifolia as endophyte from healthy leaves of Geijera salicifolia, Eremothecium peggii in fruit of Citrus australis, Microdochium ratticaudae from stem of Sporobolus natalensis, Neocelosporium corymbiae on stems of Corymbia variegata, Phytophthora kelmanii from rhizosphere soil of Ptilotus pyramidatus, Pseudosydowia backhousiae on living leaves of Backhousia citriodora, Pseudosydowia indooroopillyensis, Pseudosydowia louisecottisiae and Pseudosydowia queenslandica on living leaves of Eucalyptus sp. Brazil, Absidia montepascoalis from soil. Chile, Ilyonectria zarorii from soil under Maytenus boaria. Costa Rica, Colletotrichum filicis from an unidentified fern. Croatia, Mollisia endogranulata on deteriorated hardwood. Czech Republic, Arcopilus navicularis from tea bag with fruit tea, Neosetophoma buxi as endophyte from Buxus sempervirens, Xerochrysium bohemicum on surface of biscuits with chocolate glaze and filled with jam. France, Entoloma cyaneobasale on basic to calcareous soil, Fusarium aconidiale from Triticum aestivum, Fusarium juglandicola from buds of Juglans regia. Germany, Tetraploa endophytica as endophyte from Microthlaspi perfoliatum roots. India, Castanediella ambae on leaves of Mangifera indica, Lactifluus kanadii on soil under Castanopsis sp., Penicillium uttarakhandense from soil. Italy, Penicillium ferraniaense from compost. Namibia, Bezerromyces gobabebensis on leaves of unidentified succulent, Cladosporium stipagrostidicola on leaves of Stipagrostis sp., Cymostachys euphorbiae on leaves of Euphorbia sp., Deniquelata hypolithi from hypolith under a rock, Hysterobrevium walvisbayicola on leaves of unidentified tree, Knufia hypolithi and Knufia walvisbayicola from hypolith under a rock, Lapidomyces stipagrostidicola on leaves of Stipagrostis sp., Nothophaeotheca mirabibensis (incl. Nothophaeotheca gen. nov.) on persistent inflorescence remains of Blepharis obmitrata, Paramyrothecium salvadorae on twigs of Salvadora persica, Preussia procaviicola on dung of Procavia sp., Sordaria equicola on zebra dung, Volutella salvadorae on stems of Salvadora persica. Netherlands, Entoloma ammophilum on sandy soil, Entoloma pseudocruentatum on nutrient poor (acid) soil, Entoloma pudens on plant debris, amongst grasses. New Zealand, Amorocoelophoma neoregeliae from leaf spots of Neoregelia sp., Aquilomyces metrosideri and Septoriella callistemonis from stem discolouration and leaf spots of Metrosideros sp., Cadophora neoregeliae from leaf spots of Neoregelia sp., Flexuomyces asteliae (incl. Flexuomyces gen. nov.) and Mollisia asteliae from leaf spots of Astelia chathamica, Ophioceras freycinetiae from leaf spots of Freycinetia banksii, Phaeosphaeria caricis-sectae from leaf spots of Carex secta. Norway, Cuphophyllus flavipesoides on soil in semi-natural grassland, Entoloma coracis on soil in calcareous Pinus and Tilia forests, Entoloma cyaneolilacinum on soil semi-natural grasslands, Inocybe norvegica on gravelly soil. Pakistan, Butyriboletus parachinarensis on soil in association with Quercus baloot. Poland, Hyalodendriella bialowiezensis on debris beneath fallen bark of Norway spruce Picea abies. Russia, Bolbitius sibiricus on а moss covered rotting trunk of Populus tremula, Crepidotus wasseri on debris of Populus tremula, Entoloma isborscanum on soil on calcareous grasslands, Entoloma subcoracis on soil in subalpine grasslands, Hydropus lecythiocystis on rotted wood of Betula pendula, Meruliopsis faginea on fallen dead branches of Fagus orientalis, Metschnikowia taurica from fruits of Ziziphus jujube, Suillus praetermissus on soil, Teunia lichenophila as endophyte from ITS nrDNA barcodes LSU new taxa systematic
    corecore