320 research outputs found

    Evaluation of Sweet Grain Sorghum Silage for Dairy Cows as an Alternative to Irrigated Maize Silage

    Get PDF
    Under European dairy cattle rearing conditions, whole plant maize silage is the main part of the dairy cow\u27s diet especially during the winter season. Nevertheless maize production can be limited in some areas because summer rainfall is insufficient and so irrigation is necessary. Grain sorghum hybrids, and especially sweet sorghum types, are potentially of great interest to avoid this water consumption (Lemaire et al., 1996, Legarto, 2000). For this reason we evaluated in 2003 the benefits and limits of a sweet grain sorghum silage for dairy milk production, compared to an irrigated maize silage. We paid particularl attention to forage quality and yield, environmental effects and animal performance

    Hemodynamic and antifibrotic effects of a selective liver nitric oxide donor V-PYRRO/NO in bile duct ligated rats.

    Get PDF
    AIM: To assess whether a liver specific nitric oxide (NO) donor (V-PYRRO/NO) would prevent the development of portal hypertension and liver fibrosis in rats with bile duct ligation (BDL). METHODS: Treatment (placebo or V-PYRRO/NO 0.53 micromol/kg per hour) was administered i.v. to rats 2 d before BDL (D-2) and maintained until the day of hemodynamic measurement (D26). Intra-hepatic NO level was estimated by measuring liver cGMP level. Effects of V-PYRRO/NO on liver fibrosis and lipid peroxidation were also assessed. RESULTS: Compared to placebo treatment, V-PYRRO/NO improved splanchnic hemodynamics in BDL rats: portal pressure was significantly reduced by 27% (P<0.0001) and collateral circulation development was almost completely blocked (splenorenal shunt blood flow by 74%, P=0.007). Moreover, V-PYRRO/NO significantly prevented liver fibrosis development in BDL rats (by 30% in hepatic hydroxyproline content and 31% in the area of fibrosis, P<0.0001 respectively), this effect being probably due to a decrease in lipid peroxidation by 44% in the hepatic malondialdehyde level (P=0.007). Interestingly, we observed a significant and expected increase in liver cGMP, without any systemic hemodynamic effects (mean arterial pressure, vascular systemic resistance and cardiac output) in both sham-operated and BDL rats treated with V-PYRRO/NO. This result is in accordance with studies on V-PYRRO/NO metabolism showing a specific release of NO in the liver. CONCLUSION: Continuous administrations of V-PYRRO/NO in BDL rats improved liver fibrosis and splanchnic hemodynamics without any noxious systemic hemo-dynamic effects

    The X-ray Flux Distribution of Sagittarius A* as Seen by Chandra

    Get PDF
    We present a statistical analysis of the X-ray flux distribution of Sgr A* from the Chandra X-ray Observatory's 3 Ms Sgr A* X-ray Visionary Project (XVP) in 2012. Our analysis indicates that the observed X-ray flux distribution can be decomposed into a steady quiescent component, represented by a Poisson process with rate Q=(5.24±0.08)×103Q=(5.24\pm0.08)\times10^{-3} cts s1,^{-1}, and a variable component, represented by a power law process (dN/dFFξ,dN/dF\propto F^{-\xi}, ξ=1.920.02+0.03\xi=1.92_{-0.02}^{+0.03}). This slope matches our recently-reported distribution of flare luminosities. The variability may also be described by a log-normal process with a median unabsorbed 2-8 keV flux of 1.80.6+0.9×10141.8^{+0.9}_{-0.6}\times10^{-14} erg s1^{-1} cm2^{-2} and a shape parameter σ=2.4±0.2,\sigma=2.4\pm0.2, but the power law provides a superior description of the data. In this decomposition of the flux distribution, all of the intrinsic X-ray variability of Sgr A* (spanning at least three orders of magnitude in flux) can be attributed to flaring activity, likely in the inner accretion flow. We confirm that at the faint end, the variable component contributes ~10% of the apparent quiescent flux, as previously indicated by our statistical analysis of X-ray flares in these Chandra observations. Our flux distribution provides a new and important observational constraint on theoretical models of Sgr A*, and we use simple radiation models to explore the extent to which a statistical comparison of the X-ray and infrared can provide insights into the physics of the X-ray emission mechanism.Comment: 13 pages, 7 figures, accepted for publication in ApJ. Comments welcom

    Reimagining pheromone signalling in the model nematode Caenorhabditis elegans

    Get PDF
    Caenorhabditis elegans is an important, widely used developmental and genetic model. A pheromone has long been known to cause juvenile developmental arrest in C. elegans, a phenomenon that is common among nematodes more widely. Many novel effects of this pheromone are now being discovered—most recently, that exogenous supply of this pheromone controls adult worms reproduction. Here, we suggest that to properly understand and interpret these phenomena, C. elegans natural ecology must be considered, about which rather little is known. With this perspective, we suggest that C. elegans pheromone signalling evolves very locally, such that there are different dialects of pheromone signalling among ecological communities and among kin groups, and we also argue that pheromone signals may also evolve to be manipulative and dishonest. New approaches must be undertaken to study these phenomena in C. elegans. While model systems have been tremendously important tools in modern biological research, taking account of their natural history is necessary, and key, to properly understand and interpret laboratory-based discoveries.understand and interpret laboratory-based discoveries

    Mesenchymal and stemness circulating tumor cells in early breast cancer diagnosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Epithelial mesenchymal transition (EMT) is a crucial event likely involved in dissemination of epithelial cancer cells. This process enables them to acquire migratory/invasive properties, contributing to tumor and metastatic spread. To know if this event is an early one in breast cancer, we developed a clinical trial. The aim of this protocol was to detect circulating tumor cells endowed with mesenchymal and/or stemness characteristics, at the time of initial diagnosis. Breast cancer patients (n = 61), without visceral or bone metastasis were enrolled and analysis of these dedifferentiated circulating tumor cells (ddCTC) was realized.</p> <p>Methods</p> <p><it>AdnaGen </it>method was used for enrichment cell selection. Then, ddCTC were characterized by RT-PCR study of the following genes: PI3Kα, Akt-2, Twist1 (EMT markers) and ALDH1, Bmi1 and CD44 (stemness indicators).</p> <p>Results</p> <p>Among the studied primary breast cancer cohort, presence of ddCTC was detected in 39% of cases. This positivity is independant from tumor clinicopathological factors apart from the lymph node status.</p> <p>Conclusions</p> <p>Our data uniquely demonstrated that <it>in vivo </it>EMT occurs in the primary tumors and is associated with an enhanced ability of tumor cells to intravasate in the early phase of cancer disease. These results suggest that analysis of circulating tumor cells focused on cells showing mesenchymal or stemness characteristics might facilitate assessment of new drugs in clinical trials.</p

    Horizontal DNA transfer mechanisms of bacteria as weapons of intragenomic conflict

    Get PDF
    Horizontal DNA transfer (HDT) is a pervasive mechanism of diversification in many microbial species, but its primary evolutionary role remains controversial. Much recent research has emphasised the adaptive benefit of acquiring novel DNA, but here we argue instead that intragenomic conflict provides a coherent framework for understanding the evolutionary origins of HDT. To test this hypothesis, we developed a mathematical model of a clonally descended bacterial population undergoing HDT through transmission of mobile genetic elements (MGEs) and genetic transformation. Including the known bias of transformation toward the acquisition of shorter alleles into the model suggested it could be an effective means of counteracting the spread of MGEs. Both constitutive and transient competence for transformation were found to provide an effective defence against parasitic MGEs; transient competence could also be effective at permitting the selective spread of MGEs conferring a benefit on their host bacterium. The coordination of transient competence with cell-cell killing, observed in multiple species, was found to result in synergistic blocking of MGE transmission through releasing genomic DNA for homologous recombination while simultaneously reducing horizontal MGE spread by lowering the local cell density. To evaluate the feasibility of the functions suggested by the modelling analysis, we analysed genomic data from longitudinal sampling of individuals carrying Streptococcus pneumoniae. This revealed the frequent within-host coexistence of clonally descended cells that differed in their MGE infection status, a necessary condition for the proposed mechanism to operate. Additionally, we found multiple examples of MGEs inhibiting transformation through integrative disruption of genes encoding the competence machinery across many species, providing evidence of an ongoing "arms race." Reduced rates of transformation have also been observed in cells infected by MGEs that reduce the concentration of extracellular DNA through secretion of DNases. Simulations predicted that either mechanism of limiting transformation would benefit individual MGEs, but also that this tactic's effectiveness was limited by competition with other MGEs coinfecting the same cell. A further observed behaviour we hypothesised to reduce elimination by transformation was MGE activation when cells become competent. Our model predicted that this response was effective at counteracting transformation independently of competing MGEs. Therefore, this framework is able to explain both common properties of MGEs, and the seemingly paradoxical bacterial behaviours of transformation and cell-cell killing within clonally related populations, as the consequences of intragenomic conflict between self-replicating chromosomes and parasitic MGEs. The antagonistic nature of the different mechanisms of HDT over short timescales means their contribution to bacterial evolution is likely to be substantially greater than previously appreciated

    Gating of a pH-Sensitive K2P Potassium Channel by an Electrostatic Effect of Basic Sensor Residues on the Selectivity Filter

    Get PDF
    K+ channels share common selectivity characteristics but exhibit a wide diversity in how they are gated open. Leak K2P K+ channels TASK-2, TALK-1 and TALK-2 are gated open by extracellular alkalinization. The mechanism for this alkalinization-dependent gating has been proposed to be the neutralization of the side chain of a single arginine (lysine in TALK-2) residue near the pore of TASK-2, which occurs with the unusual pKa of 8.0. We now corroborate this hypothesis by transplanting the TASK-2 extracellular pH (pHo) sensor in the background of a pHo-insensitive TASK-3 channel, which leads to the restitution of pHo-gating. Using a concatenated channel approach, we also demonstrate that for TASK-2 to open, pHo sensors must be neutralized in each of the two subunits forming these dimeric channels with no apparent cross-talk between the sensors. These results are consistent with adaptive biasing force analysis of K+ permeation using a model selectivity filter in wild-type and mutated channels. The underlying free-energy profiles confirm that either a doubly or a singly charged pHo sensor is sufficient to abolish ion flow. Atomic detail of the associated mechanism reveals that, rather than a collapse of the pore, as proposed for other K2P channels gated at the selectivity filter, an increased height of the energetic barriers for ion translocation accounts for channel blockade at acid pHo. Our data, therefore, strongly suggest that a cycle of protonation/deprotonation of pHo-sensing arginine 224 side chain gates the TASK-2 channel by electrostatically tuning the conformational stability of its selectivity filter

    Three cases of bone metastases in patients with gastrointestinal stromal tumors

    Get PDF
    Gastrointestinal stromal tumors (GISTs) are rare, but represent the most common mesenchymal neoplasms of the gastrointestinal tract. Tumor resection is the treatment of choice for localized disease. Tyrosine kinase inhibitors (imatinib, sunitinib) are the standard therapy for metastatic or unresectable GISTs. GISTs usually metastasize to the liver and peritoneum. Bone metastases are uncommon. We describe three cases of bone metastases in patients with advanced GISTs: two women (82 and 54 years of age), and one man (62 years of age). Bones metastases involved the spine, pelvis and ribs in one patient, multiple vertebral bodies and pelvis in one, and the spine and iliac wings in the third case. The lesions presented a lytic pattern in all cases. Two patients presented with multiple bone metastases at the time of initial diagnosis and one patient after seven years during the follow-up period. This report describes the diagnosis and treatment of the lesions and may help clinicians to manage bones metastases in GIST patients

    The genome-wide dynamics of purging during selfing in maize

    Get PDF
    Self-fertilization (also known as selfing) is an important reproductive strategy in plants and a widely applied tool for plant genetics and plant breeding. Selfing can lead to inbreeding depression by uncovering recessive deleterious variants, unless these variants are purged by selection. Here we investigated the dynamics of purging in a set of eleven maize lines that were selfed for six generations. We show that heterozygous, putatively deleterious single nucleotide polymorphisms are preferentially lost from the genome during selfing. Deleterious single nucleotide polymorphisms were lost more rapidly in regions of high recombination, presumably because recombination increases the efficacy of selection by uncoupling linked variants. Overall, heterozygosity decreased more slowly than expected, by an estimated 35% to 40% per generation instead of the expected 50%, perhaps reflecting pervasive associative overdominance. Finally, three lines exhibited marked decreases in genome size due to the purging of transposable elements. Genome loss was more likely to occur for lineages that began with larger genomes with more transposable elements and chromosomal knobs. These three lines purged an average of 398 Mb from their genomes, an amount equivalent to three Arabidopsis thaliana genomes per lineage, in only a few generations
    corecore