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ABSTRACT

We present a statistical analysis of the X-ray flux distribution of Sgr A∗ from the Chandra X-Ray Observatory’s
3 Ms Sgr A∗ X-ray Visionary Project in 2012. Our analysis indicates that the observed X-ray flux distribution
can be decomposed into a steady quiescent component, represented by a Poisson process with rate Q =
(5.24 ± 0.08) × 10−3 counts s−1, and a variable component, represented by a power law process (dN/dF ∝ F−ξ ,
ξ = 1.92+0.03

−0.02). This slope matches our recently reported distribution of flare luminosities. The variability may also
be described by a log-normal process with a median unabsorbed 2–8 keV flux of 1.8+0.8

−0.6 × 10−14 erg s−1 cm−2

and a shape parameter σ = 2.4 ± 0.2, but the power law provides a superior description of the data. In this
decomposition of the flux distribution, all of the intrinsic X-ray variability of Sgr A∗ (spanning at least three orders
of magnitude in flux) can be attributed to flaring activity, likely in the inner accretion flow. We confirm that at
the faint end, the variable component contributes ∼10% of the apparent quiescent flux, as previously indicated
by our statistical analysis of X-ray flares in these Chandra observations. Our flux distribution provides a new and
important observational constraint on theoretical models of Sgr A∗, and we use simple radiation models to explore
the extent to which a statistical comparison of the X-ray and infrared can provide insights into the physics of the
X-ray emission mechanism.
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1. INTRODUCTION

After over a decade of multiwavelength monitoring of Sgr A∗,
the supermassive black hole at the center of the Galaxy,
significant uncertainties regarding the physics of its X-ray
emission persist. Observationally, the X-ray emission seen
by Chandra, XMM-Newton, NuSTAR, and Swift appears to
be composed of a steady quiescent background interrupted
roughly daily by flares (e.g., Baganoff et al. 2001, 2003;
Goldwurm et al. 2003; Porquet et al. 2003; Eckart et al. 2004;
Bélanger et al. 2005; Eckart et al. 2006; Porquet et al. 2008;
Trap et al. 2011; Nowak et al. 2012; Neilsen et al. 2013;
Degenaar et al. 2013; Barrière et al. 2014). The quiescent flux
is exceedingly faint, corresponding to a 2–10 keV luminosity
LX ≈ 3.5 × 1033 erg s−1 � 10−11LEdd, where the Eddington
luminosity LEdd is the canonical maximum luminosity from an
accreting 4.1 × 106 M� black hole. Presently (for a recent
review, see Yuan & Narayan 2014), the quiescent X-ray source is
understood as thermal plasma emission from an accretion flow
extending out to the Bondi radius (Quataert 2002; Baganoff
et al. 2003; Yuan et al. 2003; Liu et al. 2004; Xu et al. 2006;

17 Hubble Fellow.

Wang et al. 2013). Sgr A∗ appears to owe its low luminosity
to a combination of extremely radiatively inefficient accretion
(Narayan et al. 1995; Quataert & Gruzinov 2000; Yuan et al.
2003, 2012; Blandford & Begelman 1999) and an outflow that
removes ∼99% of the inflowing matter before it reaches the
event horizon (see Wang et al. 2013, and references therein).

The origin of the X-ray flares is somewhat more elusive, a fact
best illustrated by reference to the panoply of models suggested
to produce them, which include particle acceleration and/or
heating via magnetic reconnection or other stochastic processes
in the inner accretion flow or base of an outflow (e.g., Markoff
et al. 2001; Liu & Melia 2002; Yuan et al. 2003; Liu et al.
2004), as well as the tidal vaporization of asteroids (Čadež et al.
2008; Kostić et al. 2009; Zubovas et al. 2012). The X-rays them-
selves have been attributed to direct synchrotron, synchrotron
self-Compton (SSC; in which infrared-emitting electrons in-
verse Compton scatter the infrared synchrotron photons), or
other inverse Compton scenarios, in which either the IR pho-
tons are upscattered by submillimeter (sub-millimeter) emitting
electrons or the sub-millimeter photons are upscattered by the
IR-emitting electrons (Markoff et al. 2001; Liu & Melia 2002;
Liu et al. 2004; Yuan et al. 2003, 2004, 2009; Eckart et al.
2004, 2006, 2009; Marrone et al. 2008; Dodds-Eden et al. 2009;

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/78061622?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1088/0004-637X/799/2/199
mailto:jneilsen@space.mit.edu


The Astrophysical Journal, 799:199 (11pp), 2015 February 1 Neilsen et al.

Yusef-Zadeh et al. 2009, 2012; Witzel et al. 2012; Nowak et al.
2012; Barrière et al. 2014).

Part of the reason for the model degeneracy is the significant
interstellar absorption toward the Galactic center, which makes
it difficult to confirm or exclude curvature in the X-ray spectrum
over the narrow bandpasses of Chandra and XMM-Newton. In
addition, it has proven difficult to acquire truly simultaneous
sub-millimeter, IR, and X-ray observations of a large number
of flares. Presently, however, synchrotron models with cooling
breaks appear to be slightly favored over inverse Compton and
SSC scenarios, given the absence of significant curvature out to
∼60 keV in a NuSTAR spectrum of a bright flare (Barrière et al.
2014; see also Dodds-Eden et al. 2009; Dibi et al. 2014). But
even if the model degeneracy remains, the abundance of models
reveals these flares to be astrophysically significant, by far the
closest example of supermassive black hole variability. With
connections to the fundamental plane (and thus active galactic
nuclei (AGNs), blazars, and even X-ray binaries; Merloni et al.
2003; Falcke et al. 2004; Markoff 2005; Plotkin et al. 2012),
these flares may be our best opportunity to understand Sgr A∗
in the context of other accreting systems.

Thus an alternative approach may be required to provide
deeper insight into the radiation physics of Sgr A∗. For example,
a multiwavelength statistical analysis that takes advantage of
the wealth of available data may be a more powerful way
to reveal correlations between wavelength bands and physical
processes. A great deal has already been learned from statistical
investigations of the Galactic center in the near infrared (NIR),
where flares are at least four times more common (e.g., Genzel
et al. 2003; Eckart et al. 2006). For example, Meyer et al.
(2009) reported a break in the NIR power spectrum at a
timescale of ∼150 minutes, which is consistent with a linear
scaling between break frequency and black hole mass in relation
to the AGN studied by Uttley & McHardy (2005; see also
McHardy et al. 2006; Meyer et al. 2008, 2014; Do et al. 2009).
Dodds-Eden et al. (2011, hereafter D11) analyzed five years of
Very Large Telescope (VLT) Ks-band observations of Sgr A∗
and reported that the distribution of infrared flux FIR could be
described by a log-normal distribution (Equation (4)) with a
median flux of ∼1 mJy, breaking to a power-law tail at high
flux (�5 mJy, ∼ F−2.7

IR ). Mirroring the X-ray band, they argued
that this implies two states of infrared emission (quiescent and
flaring). However, in a subsequent analysis of a larger VLT
data set, Witzel et al. (2012, hereafter W12) found that the flux
distribution was consistent with a pure power law (∼ F−4.2

IR ). In
either case, it appears that Sgr A∗ is continuously variable over
long and short timescales in the NIR.

Thanks to the 2012 Chandra X-ray Visionary Project18 on
Sgr A∗ (hereafter the XVP, a 3 Ms campaign to observe the
Galactic center at high spectral/spatial resolution and high
cadence), we have made a number of recent advances in
understanding the black hole’s X-ray emission, most recently
demonstrating that the quiescent emission cannot be produced
by a cluster of coronally active stars (Wang et al. 2013, and
references therein). The Chandra data include the brightest
known X-ray flare from Sgr A∗ (Nowak et al. 2012), as well as
dozens of others (nearly tripling the number of observed flares).
Based on our analysis of the luminosity and fluence distributions
of these flares (Neilsen et al. 2013), we estimated that (1)
detectable flares constitute approximately one-third of the total
X-ray emission on timescales of 3 Ms, and (2) undetected flares

18 http://www.sgra-star.com

likely contribute �10% of the quiescent emission. It can also
be demonstrated that when extrapolated to very high luminosity
(LX � 1039 erg s−1), our flare luminosity distribution is broadly
consistent with the historical frequency of extreme outbursts of
Sgr A∗ (e.g., Ponti et al. 2010; Clavel et al. 2013).

In addition, in the XVP data we now have a statistical
sample of X-ray fluxes that approaches what is available at
NIR wavelengths. We can therefore apply similar statistical
techniques as a complementary approach to observationally
expensive multiwavelength campaigns; by comparing statistics
between wavebands, we can search for connections and new
insights into the radiation mechanisms of the black hole. In
this context, we have undertaken an analysis of the X-ray flux
distribution of Sgr A∗. In this paper, we address the X-ray light
curves from a new perspective: rather than dividing the data
into “quiescent” and “flare” states, we suppose that the emission
in each time bin is the sum of two continuous processes, one
associated with the quiescent accretion flow and one associated
with the flaring, active (variable) region close to the black
hole. We briefly describe the data in Section 2 and detail our
analysis in Section 3. Flux distribution in hand, we present
preliminary considerations of radiation mechanisms in light of
our results and the NIR results in Section 4, and summarize in
Section 5.

2. OBSERVATIONS

For the details of the Chandra observations and our data re-
duction and analysis methods, we refer the reader to Neilsen
et al. (2013). Briefly, our data consist of 38 high spatial/spectral
resolution Chandra HETGS observations of Sgr A∗ from 2012.
We restrict our analysis to the 2012 data set, with its unique
combination of the HETGS spectral resolution, observing ca-
dence, and uniform calibration. From each observation, we
extract 2–8 keV light curves in 300 s bins (taking detected
counts from the inner 1.′′25 of the zeroth order image and the
±1st diffraction orders; see Figure 1 of Neilsen et al. 2013).
The typical X-ray flare duration is ∼3 ks, so most detectable
flares are well resolved by these data. However, as discussed
in Nowak et al. (2012) and Neilsen et al. (2013), the X-ray
light curve of Sgr A∗ may exhibit substructure on timescales
shorter than 300 s (see also D. Haggard et al., in preparation),
so the count rates reported here should be considered aver-
ages over 300 s, analogous to the (shorter) integration times in
the NIR. We base our flux calculations (2–8 keV) on the re-
sults of Nowak et al. (2012): the quiescent unabsorbed flux is
0.45 × 10−12 erg s−1 cm−2 and the average unabsorbed flux of
the brightest flare is 21.6 × 10−12 erg s−1 cm−2. We perform
all our analysis in the Interactive Spectral Interpretation System
(ISIS; Houck & Denicola 2000; Houck 2002).

3. THE X-RAY FLUX DISTRIBUTION

In order to determine the NIR flux distribution of Sgr A∗, W12
used Kolmogorov–Smirnov (K-S) tests to evaluate the goodness
of fit for a range of power-law indices. Here, because we are
interested in the fluxes in excess of the quiescent background
emission from the Galactic center, we adopt a modified version
of this technique. Since we incorporate every 300 s time bin
from the 3 Ms XVP campaign, our present analysis samples all
flares, even those too short or too faint to be identified by our
detection algorithms (Neilsen et al. 2013).
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Figure 1. Chandra X-ray count rate distribution of Sgr A∗ from 2013, defined
as the fraction of time bins with a count rate greater than or equal to a given
rate (black). We model this distribution as the sum of a Poisson process with
rate Q to represent the quiescent emission at low flux, and a variable process
to represent the flare emission. In the top panel, we model the variable process
as a power law with index ξ . The solid gray curves represent simulated data
with quiescent count rates and power law indices drawn at random from the
joint probability distribution of ξ and Qpl in Figure 2. The blue dotted and red
dashed curves represent sample pure Poisson and pure power-law processes,
respectively, with Qpl and ξ set to their most probable values. In the bottom
panel, we present a log-normal model for the variable process, with location
parameter μ and shape parameter σ. Again, the gray curves represent synthetic
data, the dotted blue line represents a pure Poisson process, and the dash-dotted
green line represents a pure log-normal process. See Section 3 for details.

3.1. Observed Flux Distribution

Following W12, we analyze a (complementary) cumulative
distribution function (CDF), i.e., the fraction of count rates
greater than or equal to a given rate:

f�(r) = 1

M

M∑
i=1

if(ri � r), (1)

where ri are the count rates and M = 9964 is the number of data
points (a data point being the count rate in one 300 s time bin).
X-ray count rates are preferable to flux as an observable because
they are not model-dependent. The resulting empirical CDF of
Sgr A∗ from 2012 is shown in black in Figure 1. For reference,
the blue dotted line is the CDF for a Poisson distribution with a
rate Q ∼ 5.24 × 10−3 counts s−1 (see below). It is apparent that
the lowest count rates (r � 0.02 counts s−1) are dominated by
this Poisson component. Although we cannot define quiescence
based on the count rate alone, this figure supports our previous

estimate that �90% of the quiescent emission can be described
as a Poisson process. At higher count rates, there is also a clear
excess above the quiescent Poisson noise. The sharp break at
the bright end of the CDF is likely a feature of the empirical
CDF itself, which must converge to 1/M at the highest count
rate bin.

To study the intrinsic flux distribution, we must be able
to predict count rates given an intrinsic flux. Since there is
no conclusive evidence19 for significant variations in the flare
spectrum (Porquet et al. 2008; Nowak et al. 2012; Neilsen et al.
2013; Degenaar et al. 2013; Barrière et al. 2014), we can use the
light curve analysis from Neilsen et al. (2013) and the spectral
analysis of the brightest flare from Nowak et al. (2012) to convert
any unabsorbed flare flux F from our models into a model flare
count rate r (i.e., above the quiescent background). Specifically,

r(F ) ≈ 1

Δt
prand

[
P

(
F
P−1(rmax)

Fmax

)
Δt

]
, (2)

where Δt = 300 s is the bin time, Fmax = 21.6 ×
10−12 erg s−1 cm−2 is the mean unabsorbed flux of the brightest
flare, rmax ∼ 0.13 counts s−1 is the mean observed count rate of
the brightest flare, prand is a Poisson random number generator
to incorporate counting noise, and P represents the suppression
of the count rate due to photon pileup (Davis 2001; Neilsen
et al. 2013). The result is approximate because we have ne-
glected the contribution of the quiescent background to pileup.
For the very low count rates involved here, pileup is still fairly
linear in the count rate, and we estimate that the approximation
is good to within 1%, so that any errors are at a level well below
the counting noise.

3.2. Power-law Excess

To model the excess flare emission, we first consider a
power law model, since a scale-free representation simplifies
our investigation of the radiation mechanism (Section 4). For an
excess flux F in units of 10−12 erg s−1 cm−2:

P (F ) =
{
kF−ξ : F1 � F � F2

0 : otherwise
, (3)

where P (F ) is the probability of an excess flux F, the lower
bound F1 = 0.04 is well below our detection limit (F ∼ 0.25),
the upper bound F2 = 41 corresponds to the maximum observed
count rate of ∼0.23 counts s−1, and k = (1− ξ )/(F 1−ξ

1 −F
1−ξ

2 )
is a normalization constant. F1 = 0.04 leads to the best match
to our data (compared to other values between 0.01 and 0.1),
and should be far enough below our detection limit and the
upper limit F2 that the bounded power law model is effectively
scale-free in practice. We consider two ways to test this model:
statistical tests using synthetic (simulated) data and maximum
likelihood methods, specifically Markov Chain Monte Carlo
(MCMC).

3.2.1. Synthetic Data

To use synthetic data, we modify the technique used by W12:
as they did, we generate a power law random variable according
to the probability distribution in Equation (3). Here, however,
we also apply Equation (2) to convert fluxes to counts, then

19 Both Degenaar et al. (2013) and Barrière et al. (2014) present suggestive
evidence for spectral variations between flares (∼90%–95% confidence), but
we are not aware of any highly significant detections.
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Figure 2. Probability contours in the ξ − Qpl plane for the power law analysis.
The black contours contain 68%, 90%, 95%, and 99.7% of the ensemble of
walkers in our MCMC run. The red dashed contours are lines of constant
p-value from our Anderson–Darling tests, corresponding to confidence levels
of 68%, 90%, 95%, and 99.7%. The results are weakly sensitive to the
methods used.

compare the sum of the power-law process and a Poisson process
(representing the quiescent emission, which is not seen in the
NIR) to the observed data. Instead of a K-S test, we use a two-
sample Anderson–Darling test (A-D; Anderson & Darling 1945;
Pettitt 1976; Scholz & Stephens 1987), which is more sensitive
to the tails of the tested distributions (a valuable property given
the proportion of values at high fluxes in our data). We refer the
reader to Scholz & Stephens (1987), particularly their example
in Section 7, for the details of calculating the test statistic in
the presence of ties, as well as a table of percentile points
and significance levels p. Outside the range of this table, we
use a linear extrapolation of log(p/(1 − p)), similar to the
implementation in the R statistical package.20

We repeat this test for a grid of 101 evenly spaced values
of ξ between 1.75 and 2.2 and 101 evenly spaced values of
Qpl between 0.0048 and 0.0058 counts s−1, inclusive (the sub-
script pl indicates quantities found in the power-law analysis).
Outside these ranges, additional tests indicate that the match
probabilities are negligible. For each pair (ξ,Qpl), we generate
1000 simulated data sets including counting noise and record
the average p-value from our A-D tests with the observed data.
The contours of constant p-value are shown as dashed red lines
in Figure 2. The highest p-values (∼0.5) are returned in the
vicinity of Qpl ∼ 5.26 × 10−3 counts s−1 and ξ ∼ 1.93. Next,
we confirm this model using a more detailed MCMC analysis.

3.2.2. Maximum Likelihood

For the models considered here, in which the data are treated
as the sum of two random processes with significant counting
noise, the likelihood function is not trivial to write down.
For details, see Appendix A, but briefly the probability of

20 http://www.inside-r.org/packages/cran/adk/docs/adk.test. As noted there by
Scholz, very large and very small p values should be treated as approximate,
but “this should not strongly affect any decisions regarding the tested
hypothesis.”
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Figure 3. MCMC PDFs for the quiescent rate Qpl (top) and the power-law index
ξ (bottom) marginalized over ξ and Q, respectively. Both distributions are well
behaved. Note that as probability densities, these curves integrate to 1.

observing n counts is a convolution of the Poisson distribution
(representing the quiescent emission) and a piled-up power
law with counting noise (here representing the flare emission).
The power-law term can be calculated analytically, so the log-
likelihood easily calculated. This makes the problem ideal for
MCMC. We have implemented the parallel stretch from emcee
(Foreman-Mackey et al. 2013) in ISIS. We use an ensemble
of 300 walkers—150 per free parameter—initially distributed
uniformly throughout a suitably wide region of parameter space
(1.5 � ξ � 2.5, 0.004 � Qpl counts−1 s � 0.007). The walkers
are evolved for 3000 steps, and we discard the first 600 (we
estimate that the average autocorrelation time is �50 steps).
In order to keep the acceptance fraction below 0.5, we set the
a-parameter, which determines the size of the stretch move at
each step (see Foreman-Mackey et al. 2013; Goodman & Weare
2010), to 4. We assume uniform priors for all parameters.

In Figure 2, we show the contours (black) in the ξ − Qpl
plane that contain 68%, 90%, 95%, and 99.7% of the resulting
ensemble of walkers, which agrees well with the p-value
contours from the A-D analysis. There is clearly a small
correlation between ξ and Qpl, but both parameters are well
constrained and the correlation is smaller than in the A-D
analysis. The probability density functions (PDFs) for ξ and
Qpl are presented in Figure 3. We find ξ = 1.92+0.03

−0.02 and
Qpl = (5.24 ± 0.08)×10−3 counts s−1 (these values correspond
to the 16th, 50th, and 84th percentiles of the marginalized
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distributions21). To demonstrate that the ensemble is able to
reproduce the observed CDF, we draw 100 random (ξ,Qpl)
pairs from the probability distribution shown in Figure 2 and
use them to generate simulated Poisson-plus-power-law data
(converting power law fluxes to counts using Equation (2)). The
associated CDFs for the simulated data sets, shown in gray in
the top panel of Figure 1, match the data very well at all count
rates. Note that if we allow F1 to vary as well, the result is
F1 = 0.04 ± 0.02 and there is no significant change in the other
parameters, although the error bars are somewhat larger.

3.3. Log-normal Excess

It is worth exploring alternatives to the power law model, and
the log-normal is a natural choice. Tilted accretion disk models
of Sgr A∗ tend to produce NIR flux distributions that are well
described by a log-normal model (Dexter & Fragile 2013). A
log-normal flux distribution is expected for an exponentiated
damped random walk process (Meyer et al. 2014), and damped
random walk models can successfully describe Sgr A∗’s sub-
millimeter variability (see Dexter et al. 2014, and references
therein).

Ideally, we would compare the power law model to a model
of the same form as used by Dodds-Eden et al. (2011), i.e., a log-
normal distribution at low flux transitioning to a power law at
high flux. But since the power law already provides a satisfactory
description of the bright end of the X-ray flux distribution and
the faint end is dominated by the quiescent Poisson process, and
the more complicated function form would have an additional
three free parameters, we focus on a pure log-normal process
for the time being.

We proceed as in Section 3.2, replacing the power law random
distribution with a log-normal probability distribution:

P (F ) = 1√
2πσF

exp

(
− (ln F − μ)2

2σ 2

)
. (4)

With F scaled to 10−12 erg s−1 cm−2, μ and σ are dimension-
less. As explained in Dodds-Eden et al. (2011), this log-normal
distribution has a median flux of exp(μ) × 10−12 erg s−1 cm−2

and a multiplicative standard deviation of exp(σ ).

3.3.1. Synthetic Data

For the synthetic log-normal analysis, we calculate A-D test
statistics over a 101 × 101 grid covering −6 � μ � −2 (corre-
sponding to median fluxes for the log-normal component from
∼2.5 × 10−15 erg s−1 cm−2 to ∼1.4 × 10−13 erg s−1 cm−2), and
1 � σ � 5; we fix Q at Qln = 0.00526 counts s−1, which corre-
sponds to the peak p-value in the synthetic power-law analysis.
All the μ values tested here correspond to median fluxes for the
log-normal process that lie below our detection limit. This is
not a weakness of the log-normal analysis, rather it is a generic
property of the high flux tail: the observed excess represents
only a few percent of the data bins and only a fraction of the
variable process (regardless of the model; see Figure 1). Indeed,
while all the simulated fluxes in both models are positive, most
are so small that the most likely discrete count rate for both the
power law and the log-normal components is 0 counts s−1.

We present the resulting p-value contours in red in Figure 4.
μ and σ are strongly correlated, with the peak match probability
around μ ∼ −2.7 ≡ 6.6 × 10−14 erg s−1 cm−2 and σ ∼ 1.7.

21 http://dan.iel.fm/emcee/current/user/line/#the-generative-probabilistic-
model
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The p-values are somewhat lower than in the power-law analysis
(this can be seen from the contours themselves, which contain
very little probability above the 68% confidence line). While
this result is suggestive, our likelihood analysis is better suited
to determining the relative utility of the power law and log-
normal models.

3.3.2. Maximum Likelihood

The MCMC analysis for the log-normal model is very similar
to that of the power-law model, although the likelihood function
is somewhat more difficult to write down (Appendix B). Here,
a = 3 is sufficient to keep the acceptance fraction below 0.5.
Once again, we use 150 walkers per free parameter, this time
initializing them to be uniformly distributed between 0.005 �
Qln counts−1 s �0.007, −6 � μ � −2 and 1 � σ � 4.

As the log-normal process typically contributes somewhat
less flux (see Section 3.5) than the power-law process, the
quiescent count rate Qln is slightly higher than Qpl:Qln =
(5.7 ± 0.1) × 10−3 counts s−1. The log-normal component has
a median flux 1.8+0.8

−0.6 × 10−14 erg s−1 cm−2 (μ = −4.0 ± 0.4)

5
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Figure 5. MCMC PDFs for the quiescent rate Qln (top) and the log-normal
location parameter μ (middle) and shape parameter σ (bottom), marginalized
over the other parameters. There are a few small islands of probability away
from the peaks, but otherwise these distributions look similar to slightly skewed
Gaussians. See text for details.

and a multiplicative standard deviation σ = 2.4 ± 0.2. As
noted above, most of the probability mass of the log-normal
distribution lies below our detection limit.

The log-normal contours and PDFs are shown in black in
Figures 4 and 5. Although there was good qualitative and
quantitative agreement between the MCMC and A-D results

in the power-law analysis, it does appear that these methods
have different sensitivities: here there is much less overlap
in the A-D contours and the MCMC contours: the synthetic
data analysis prefers a higher median flux and a smaller
multiplicative standard deviation, perhaps to reduce the number
of simulated bins brighter than the highest-flux data point. If
we fix Qln = 0.00526 counts s−1, the new MCMC contours lie
between the A-D contours and the original MCMC contours, so
it seems that the discrepancy is due in part to our choice to fix
Qln in the synthetic analysis.

As in Section 3.2.2, we draw random samples from the
(Qln, μ, σ ) ensemble, use them to generate simulated data sets,
and plot the CDFs in the bottom panel of Figure 1. Again,
the simulated data appear to be in fairly good agreement with
the observed CDF over most of the observed count rates. The
only noticeable difference with respect to the power-law process
is at the high flux end, where the data and the log-normal
component diverge slightly. This is not entirely unexpected: the
power law has an advantage over the log-normal in matching the
turnover seen in the data at high flux (the former is bounded by
definition, while the latter is not). A power law not bounded
at the high flux end would behave comparably to the log-
normal component here. Ultimately, however, this difference
is significant enough to select the power law as a formally
superior model: via the Akaike information criterion, due to
the difference in log-likelihoods (∼6) and the number of free
parameters, the likelihood of the power-law model relative to
the log-normal model is �1300. At face value, it seems that
the log-normal model can effectively be ruled out for failing to
perform as well as the power law at capturing the behavior of
the very brightest flares from Sgr A∗ (but see Section 3.4).

3.4. A Note on Correlations in the Data

In this work, we are interested in the shape of the flux
distribution (leaving the origin of that shape for future work),
and we are able to reproduce the observed CDF using models
and synthetic data with no explicit correlation. Although the
well-studied flares are clearly indicative of correlated fluxes,
our treatment here has precedent, as both D11 and W12 first
analyzed the functional form of the NIR flux distribution
without reference to correlations in the data. W12 subsequently
demonstrated that correlated synthetic light curves (generated
using the structure function and power spectrum) provided a
superior description of the flux distribution. For the moment,
we note that our use of uncorrelated synthetic data to match
the flux distribution does not necessarily imply that the actual
fluxes are uncorrelated. In fact, our bounded power-law model
could be considered a proxy for a more comprehensive timing
analysis (e.g., structure functions and damped random walks;
W12; Dexter et al. 2014), and the log-normal model should
similarly not be considered complete (or definitively ruled out)
until such correlations are accounted for. We will undertake this
task in future work.

3.5. Undetected Flares in Quiescence

We can also use our decomposition of the flux distribution
into a steady component and a variable component to address
the contribution of undetected flares to the quiescent emission
from the inner 1.′′25 of the Galaxy. Here, we use the same
random (Qpl, ξ ) and (Qln, μ, σ ) samples as in Figure 1 to
create synthetic data sets. For each data set, we calculate the
fraction of the observed counts contributed by the variable
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Figure 6. Mean cumulative fraction of the counts attributable to power-law and
log-normal processes as a function of count rate for 100 data sets drawn from the
peak of the joint probability distributions. The power law typically contributes
∼12% in the lowest count rate bin, but contributes ∼30% of the total counts; the
log-normal contributes a total of ∼20%–25% of the counts. These contributions
from the variable processes are as expected from our statistical analysis of the
flares (i.e., a ∼10% contribution at low flux; Neilsen et al. 2013).

process in each simulated time bin. In Figure 6, we show the
cumulative fractional contributions of the power-law and log-
normal processes, i.e., the fraction of the counts at or below a
given count rate that can be attributed to the variable component.

Unsurprisingly, the low flux bins are dominated by the
Poisson process. The power-law process contributes a total of
∼12% of the counts in bins with one count and less than 20% of
the counts out to count rates of ∼0.02 counts s−1 (corresponding
to nearly 4× the baseline quiescent count rate Qpl). In general,
the log-normal component contributes somewhat less than the
power law, but the dependence on count rate is very similar.
We may also note that the value of Qpl is only ∼84% of the
average count rate outside the flares (Neilsen et al. 2013), so
that the remaining flux must come from flares in our analysis.
This accounting (i.e., a ∼10%–15% contribution of undetected
flares to the steady background emission) is consistent with the
extrapolation of the observed flare distribution to low fluence
and the power spectrum and the distribution of waiting times
between photons in quiescence (Neilsen et al. 2013), as well
as the quiescent spectrum (Wang et al. 2013) and the surface
brightness distribution of Sgr A∗ (Shcherbakov & Baganoff
2010).

4. RADIATION MECHANISMS

In the preceding section, we demonstrate that the X-ray flux
distribution of Sgr A∗ is consistent with a Poisson process,
representing the steady thermal emission from the quiescent
accretion flow, plus a power-law process representing flare
emission from within ∼tens of gravitational radii from the
black hole (e.g., Barrière et al. 2014). The flaring may also be
consistent with a log-normal variability process, but the power
law provides a superior description. As previous analyses have
found evidence of a power-law flux distribution in the NIR
(D11, W12), here we make a preliminary consideration of the

extent to which a statistical comparison of the X-ray and NIR
flux distributions can provide insight into the X-ray radiation
mechanism. We proceed with the following formalism. The
flux distribution (specifically, the differential flux distribution)
is defined:

P (Fλ) ≡ dN

dFλ

, (5)

and the cumulative flux distribution (i.e., the continuous exten-
sion of Equation (1)) is given by:

N�(Fλ) ≡
∫ ∞

Fλ

P (fλ)dfλ, (6)

where Fλ is the flux at wavelength λ and dN/dFλ is the number
of times per unit flux that Sgr A∗ is observed with flux Fλ at
wavelength λ. Given an infrared flux distribution P (FIR), we
may ask what any given radiation mechanism predicts for the
X-ray flux distribution P (FX). The IR is dominated by optically
thin synchrotron emission (e.g., Hornstein et al. 2007); for a
one-zone model, the flux is:

FS
ν ∝ neR

3B1+αν−α, (7)

where ne is the IR-emitting electron density, R is the size of the
emitting region, B is the magnetic field, ν is the frequency, and
α is the spectral index in the optically thin regime (e.g., Rybicki
& Lightman 1979). For fluxes associated with detectable X-ray
emission, we suppose the NIR flux distribution can be described
as a power law with index q, i.e., P (FIR) ∝ F

−q

IR . A parallel
analysis could be performed to explore other functional forms
for the flux distributions.

First, we derive a general result in the case of a power law
relationship between the X-ray and IR, i.e., FX ∝ F

β

IR, where
β �= 0 is some constant. Under this condition, we have

P (FX) ≡ dN

dFX
(8)

∝F
1−β

IR

dN

dFIR
(9)

∝F
1−β−q

IR (10)

∝F
−(q+β−1)/β
X . (11)

In other words, if the infrared flux distribution is a power law
with index q and FX ∝ F

β

IR, the X-ray flux distribution will be
a power law with index ξ = (q + β − 1)/β. It can also be seen
that the index of the cumulative distribution in the X-ray is 1/β
times that in the NIR.

In general, β is not trivial to derive from first principles, even
in a one-zone model. For instance, the synchrotron flux FS

IR (see
Equation (7) above) depends on several physical parameters,
and the response of the X-ray to any variations in FIR will be
sensitive to which of the synchrotron parameters vary, as well as
their time dependence and the X-ray emission mechanism (see,
e.g., Dodds-Eden et al. 2010; Yusef-Zadeh et al. 2009; Eckart
et al. 2012). This sort of detailed time-dependent modeling
of individual flares is beyond the scope of this paper, and is
furthermore not easily applied to a statistical analysis of the flux
distribution.

However, it can still be enlightening to consider the multi-
wavelength flux distribution in this context. For a simple, illus-
trative example, let us consider a scenario in which the X-ray
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emission is the high-energy tail of the synchrotron radiation ob-
served in the IR. Since the synchrotron cooling time at X-ray
frequencies is much shorter than the duration of the flares, ra-
diative losses are likely very important (Kardashev et al. 1962;
Yuan et al. 2003). Indeed, modeling the spectral energy distribu-
tion of a single bright flare, Dodds-Eden et al. (2009) found that
synchrotron models required a cooling break (at an intermediate
frequency νc ∼ 1015 Hz) in order to avoid violating their upper
limits on the mid-IR flux. Such a break could also explain why
the flare spectra may appear to be slightly steeper in the X-ray
than in the NIR (see Hornstein et al. 2007; Barrière et al. 2014).
In this model, assuming that νc is in the optical or UV, the X-ray
flux is given by

FX ≈ FIR

(
νc

νIR

)−α (
νX

νc

)−(α+1/2)

(12)

∝FIRν1/2
c . (13)

If νc has a power-law dependence on the IR flux, then
there is some β for which νc ∼ F

2β−2
IR , so that FX ∝ F

β

IR and
Equation (11) applies.

Observationally, since ξ � q, we use Equation (11) to
infer β � 1. For the specific case of the cooling break in
Equation (13), β � 1 implies that νc is either independent
of or increases with FIR. This is counterintuitive because νc

and the synchrotron flux (Equation (7)) decrease and increase,
respectively, with both B and R (for νc; see, e.g., Equation (3) in
Dodds-Eden et al. 2009). However, β � 1 can be understood in
the context of more sophisticated models of the time-dependent
emission. For instance, Dodds-Eden et al. (2010) modeled the
light curve of a single flare with a temporary increase in ne,
anticorrelated with changes in the magnetic field (producing
both an increase in flux and β > 1). Such correlations
might be expected for magnetic reconnection events, and can
be accounted for in self-consistent simulations of the plasma
parameters during flares (e.g., Dibi et al. 2014; S. Dibi et al., in
preparation).

It is less straightforward to apply similar analytical consider-
ations to the other proposed X-ray emission mechanisms (i.e.,
SSC and external Comptonization scenarios). Consider the SSC
case. In the Thomson scattering limit for a homogeneous sphere
of low optical depth (see Bloom & Marscher 1996; Marrone
et al. 2008, and references therein), the SSC flux from first-
order scattering is proportional to the synchrotron flux times
the Thomson optical depth, which is proportional to the product
neR:

F SSC
ν ∝ n2

eR
4B1+αν−α. (14)

If the IR variability could be attributed to power-law vari-
ations in either ne or R in this scenario, one could write
down β and predict the X-ray flux distribution. However,
we have already established that it is likely that flares in-
volve possibly correlated variations of several parameters.
Furthermore, in the model of Dodds-Eden et al. (2009),
the SSC flux peaked in or near the X-ray, so that the
assumptions used to derive Equation (14) may not ap-
ply. A complete treatment, beyond the scope of this paper,
would require integrating over the distributions of seed pho-
tons and electrons and allowing for variations in physical
parameters.

The situation for external Comptonization scenarios is sim-
ilar. If the X-ray emission is produced by IR photons scatter-
ing off sub-millimeter-emitting electrons, we might expect the

X-ray and IR to be related more or less linearly. If instead the
sub-millimeter photons scatter off IR-emitting electrons, there
need not be any correlation between the X-ray and infrared.
However, the accuracy of these conclusions depends on the sim-
ilarity of the plasma properties and evolution at sub-millimeter
and IR wavelengths.

5. CONCLUSION

Perhaps it should come as no surprise that in the 15 yr since
Baganoff et al. (2001, 2003) discovered the incredibly faint
counterpart of Sgr A∗ with Chandra, it has proven difficult
to pin down the underlying radiation physics of this elusive
X-ray source. To date, there is still no consensus as to the
X-ray emission mechanism or the underlying physical pro-
cess(es) responsible for the variability. However, there appears
to be some grounds for optimism, as the statistical behavior of
the X-ray emission appears to mirror that of the NIR, at least
qualitatively. For instance, at both wavelengths, the source is
continuously “on” and its flux distribution is partially or fully
consistent with a power law distribution (e.g., Dodds-Eden et al.
2011; Witzel et al. 2012; Meyer et al. 2014, and references
therein for the NIR).

Although no clear correlation has been found between the
peak flux of flares observed simultaneously in NIR and X-rays
(Trap et al. 2011), the flare peaks are typically simultaneous
within observational uncertainties (see Yusef-Zadeh et al. 2012,
and references therein). Furthermore, flares at both wavelengths
exhibit significant fast variations on short timescales (NIR: 47 s,
Dodds-Eden et al. 2009; X-ray: ∼100 s, Nowak et al. 2012;
Barrière et al. 2014), indicating that excursions to high flux
come from compact regions (within ≈10 Schwarzschild radii of
the black hole in the case of the X-ray flares; Barrière et al. 2014).
The emission at different wavelengths need not be produced by
the same electrons (e.g., Hornstein et al. 2007), but it is plausible
that these variable processes share a common physical origin.

Thus, the excellent data now available present a new and
exciting opportunity to gain insight into the origin of the mul-
tiwavelength variability of Sgr A∗. In this paper, we have ex-
plored the total X-ray flux distribution from the inner 1.′′25 of the
Galaxy using statistical methods previously applied to Sgr A∗’s
NIR emission. Rather than focusing on individual flares, we
approach the radiation physics of Sgr A∗ from a different per-
spective, looking for connections between emission at different
wavebands once we understand the statistical behavior of each
waveband separately.

As is evident from Figure 1, the X-ray emission is domi-
nated22 by the faint steady quiescent source and diffuse back-
ground. Our analysis of the flux distribution confirms the steadi-
ness of the quiescent emission: roughly 85%–90% of it is
consistent with a Poisson process, i.e., it exhibits no detectable
intrinsic variability at all (see also Neilsen et al. 2013). To the
extent that this thermal plasma emission from large scales (e.g.,
Wang et al. 2013) is constant in time, all the X-ray variability
from Sgr A∗ can be attributed to non-thermal flaring.

The variable source, likely located in the inner accretion
flow, is typically an order of magnitude fainter than the ther-
mal plasma, but our statistical analysis indicates that it can be
described by a single variability process over a dynamic range
of three orders of magnitude in flux. At the faint end (below

22 Over timescales of 3 Ms. Since bright flares dominate the flare fluence
(Neilsen et al. 2013), in principle one could simply observe until the integrated
flare emission surpasses the quiescent source.
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our flare detection limit), the variable source contributes the
remaining ∼10%–15% of the flux during quiescent/steady in-
tervals; at the bright end, flares can exceed the steady back-
ground by factors of 100 or more (Nowak et al. 2012; Porquet
et al. 2003, 2008). Both a power-law process (Equation (3)) with
index ξ = 1.92+0.03

−0.02 and a log-normal process (Equation (4))
with location parameter μ = −4.0 ± 0.4 and shape parameter
σ = 2.4±0.2 are consistent with the observed excess above the
quiescent emission, but the power law provides a significantly
better description of the data. Notably, ξ appears to be the same
as the power law index of the distribution of flare luminosities
(1.9+0.3

−0.4; Neilsen et al. 2013). This result makes sense if the
variable process is the sum of many discrete flares, but more
work is required to know if this is a unique interpretation.

Our results place a strong observational constraint on the-
oretical models of the multiwavelength variability of Sgr A∗.
In addition to the flare SED and the variable X-ray/NIR ratio,
any viable model must be able to reproduce the distribution of
fluxes in both the NIR and the X-ray independently. Even the
one-zone models considered in Section 4 can begin to inform
our understanding of the relationship between the NIR and X-
ray emission, but it is instructive to note why (in addition to
the limited power of one-zone models) a complete answer may
require more than simple analytical considerations. The primary
reasons are physical:

1. Even given an X-ray emission mechanism, the X-ray
variability can only be predicted analytically from the NIR
variability if the origin of the NIR variability is known.

2. The NIR power law is probably not attributable to a
single parameter with a power law distribution. Instead,
the synchrotron flux likely varies due to non-power-law
variations of multiple parameters (as in the time-dependent
analysis of Dodds-Eden et al. 2010).

Self-consistent calculations of the particle distribution during
flares (Dibi et al. 2014) can overcome these difficulties, and
we will analyze the multiwavelength flux distribution in the
context of these calculations in future work (S. Dibi et al.,
in preparation). It may also be possible to understand the
variability in light of other simulations of the accretion flow
(e.g., Mościbrodzka & Falcke 2013).

In addition, several factors complicate multiwavelength sta-
tistical analyses of Sgr A∗:

1. There is disagreement in the literature over the functional
form of the NIR flux distribution, which leads to different
estimates of the index q of the power-law portion (i.e.,
q = 2.7, D11; q = 4.2, W12). This is particularly relevant
in the context of Equation (11).

2. Any deviations from a pure power-law distribution break
the scale-free nature of our calculations, so that in order to
validate the comparison performed in Section 4, we would
need to know which NIR fluxes correspond to which X-ray
fluxes. This may not be problematic, as deviations from
a power law (Dodds-Eden et al. 2011) have only been
reported at NIR fluxes that are not typically associated with
detectable X-ray flares (�5 mJy; see also Marrone et al.
2008).

3. The flux distribution may not be completely stationary on
timescales of individual observations. W12 argue that the
two-state flux distribution of D11 (i.e., lognormal at low
flux, power law at high flux) is biased by a single bright
flare. Such behavior might be expected if the power law
is an aggregate effect of isolated flares in distinct regions

of the accretion flow. Caution is therefore merited when
comparing X-ray and NIR flux measurements taken over
different time intervals and at different epochs (particularly
because the X-ray flux distribution is consistent with several
functional forms).

4. A related issue is that the characteristic timescales of the
X-ray variability process are unknown. Although the near
simultaneity of X-ray and NIR flares suggests that the
two are fundamentally related, an empirical confirmation
of similar variability timescales would lend significant
credence to any multiwavelength statistical analysis of the
radiation mechanisms at work in Sgr A∗. We intend to
perform this computationally demanding measurement in
the near future.

In short, there is still more work to be done to understand
the shape of the flux distributions at different wavelengths and
their relationships to each other. These points highlight the
need for continued coordinated multiwavelength campaigns on
Sgr A∗ (specifically, simultaneous observations). By tracking
simultaneous variations in the X-ray and IR, we can make
a direct measurement of the IR/X-ray flux scaling, free of
any lingering concerns about observations taken at different
epochs. Strictly simultaneous observations would also break
the degeneracy related to the functional form of the NIR/X-ray
flux distributions, since the same model or parameterization can
be applied to both wavebands. Although complicated somewhat
by frequency-dependent lags (e.g., Marrone et al. 2008; Falcke
et al. 2009, and references therein), the addition of radio/sub-
millimeter variability statistical analyses (e.g., Dexter et al.
2014) will paint a more comprehensive picture of variability
in the Galactic center.

Although we must leave the question of the primary X-ray
radiation mechanism of Sgr A∗ for future work, a statistical
approach is still promising. Our clear and precise measurement
of the X-ray flux distribution is a critical first step, and our
analysis provides a new and strong observational constraint
for theoretical models of Sgr A∗. With the advances described
above, the prospects for revealing the physics of variable X-ray
emission in Sgr A∗ in the near future remain strong.
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APPENDIX A

POISSON/POWER LAW LIKELIHOOD FUNCTION

In order to use maximum likelihood methods, we naturally
must be able to write down the likelihood function. In general,
for the sum of two random variables X and Y, the probability
of observing a value of n given parameters θX and θY is a
convolution:

P(n|θX, θY ) =
n∑

j=0

PX(j |θX)PY (n − j |θY ), (A1)

and for a data set D with M measurements ni, the likelihood is:

P(D|θX, θY ) =
M∏
i=1

P(ni |θX, θY ). (A2)

Below, we calculate the likelihood function using the models
described in the main text.

As described in Section 3.2, we first model the light curve as
the sum of a Poisson process and a power-law process. The
Poisson process has parameter Λ ≡ (300 s)Q, where Q is
the quiescent count rate, and the well-known probability of
observing n counts is:

Pp(n|Q) = Λne−Λ

n!
. (A3)

The power-law probability is given by Equation (3), with
P (F ) ∝ F−ξ on the interval [F1, F2]. In order to use this
power law in Equation (A1), we must convert to counts, include
the effects of pileup, and add counting noise. The latter two
requirements make this a non-trivial likelihood function to
write down.

First, we set out (and remind the reader of) some variables.
As before, n shall be the number of observed counts and F
shall be a power-law flux. We shall use c to denote the counts
implied by applying the flux/counts scaling from the brightest
flare (Section 3; see also Nowak et al. 2012) to F, and m shall
be the result of applying pileup effects to c. In this scheme, F,
c, and m are continuous variables, while n is discrete. To add
counting noise, we need to find the probability of observing n
counts given m counts in the piled-up power-law process and
then integrate over all values of m:

Ppl(n|ξ ) =
∫ m2

m1

P (n|m)P (m|ξ )dm. (A4)

Here m1 and m2 are the upper and lower limits of the integral
calculated by scaling the bounds for the power law F1 and F2 to
counts and then applying our pileup model. The complication is
that P(m|ξ ) is not a power law. Based on our analysis of pileup
in these data (Nowak et al. 2012; Neilsen et al. 2013), we have
determined that c(m) can be approximated to within 0.5% over
the observed range of count rates as:

c(m) = A1m
A2eA3m, (A5)

with A1 = 0.9761415, A2 = 1.004234, and A3 =
0.002401043. Then

Ppl(m|ξ ) = dN

dm
(A6)

= dN

dc

dc

dm
(A7)

= Kpl(A1m
A2eA3m)1−ξ (A3 + A2/m). (A8)

The normalization constant Kpl is easily found to be:

Kpl = (ξ − 1)(
A1m

A2
1 eA3m1

)1−ξ − (
A1m

A2
2 eA3m2

)1−ξ
. (A9)

Finally, we can write the probability of observing n counts in
the power law as

Ppl(n|ξ ) ∝ Kpl

∫ m2

m1

mne−m

n!
(A1m

A2eA3m)1−ξ (A3 + A2/m)dm

(A10)

≡ KplA
1−ξ

1

n!

∫ m2

m1

mA−1e−Bm(A3 + A2/m)dm (A11)

= KplA
1−ξ

1

n!
[A3B

−A[Γ(A,m1B) − Γ(A,m2B)]

+ A2B
−A+1[Γ(A − 1,m1B) − Γ(A − 1,m2B)]] (A12)

= KplA
1−ξ

1 B−A

n!
[A3[Γ(A,m1B) − Γ(A,m2B)]

+ A2B[Γ(A − 1,m1B) − Γ(A − 1,m2B)]]. (A13)

For simplicity, we have made the substitutions A ≡ n +
A2(1− ξ ) + 1 and B = 1−A3(1− ξ ). Γ is the upper incomplete
gamma function. It turns out that Equation (A13) itself is not
normalized, so we need divide by a sum over all plausible values
of n,

Ppl(n|ξ ) ← Ppl(n|ξ )∑i=150
i=0 Ppl(i|ξ )

. (A14)

To test this formula, we generated random numbers to
represent ξ, F1, and F2 (4.34, 0.76, and 88.24, respectively),
drew 10 million random numbers from the associated power-
law distribution, and incorporated pileup and counting noise.
The distribution of the resulting counts is shown in black in
Figure 7, and is very well matched by Equation (A14) (red).
With confidence in the power law probability, we can easily
use Equations (A1) and (A2) to calculate the logarithm of the
likelihood given any particular set of parameters.

APPENDIX B

POISSON/LOG-NORMAL LIKELIHOOD FUNCTION

For the log-normal model, the situation is very similar, except
for the obvious substitution in Equation (A8). Here, with the
definition κ = F/c, we have:

Pln(m|μ, σ ) = dN

dF

dF

dc

dc

dm
(B1)

= Kln√
2πσF

exp

[
− (ln F − μ)2

2σ 2

]
κA1m

A2eA3m

(
A3 +

A2

m

)
(B2)
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Power law with counting noise
(ξ, F1, F2, m1, m2) =

(4.34, 0.76, 88.24, 1.49, 134.54)
Equation A14

Figure 7. Probability of a given count rate for a randomly selected power law
with counting noise and pileup (black) and Equation (A14) (red). The random
data are well reproduced by the formula.

= Kln√
2πσ

exp

[
− (ln (κA1m

A2eA3m) − μ)2

2σ 2

] (
A3 +

A2

m

)
.

(B3)

The normalization Kln can be found for a finite interval
[m1,m2] :

2

[
erf

(
ln (κA1m

A2
2 eA3m2 ) − μ√

2σ

)

− erf

(
ln (κA1m

A2
1 eA3m1 ) − μ√

2σ

)]−1

. (B4)

In the limit a → 0, b → ∞,Kln ≈ 1. Unfortunately, the
probability of observing n counts in the log-normal component,
i.e.,

Pln(n|μ, σ ) ∝
∫ m2

m1

mne−m

n!

Kln√
2πσ

× exp

[
− (ln (κA1m

A2eA3m) − μ)2

2σ 2

] (
A3 +

A2

m

)
dm, (B5)

cannot be calculated analytically. Instead, we estimate
Pln(n|μ, σ ) empirically by generating 2.5 million log-normal
random fluxes for each (μ, σ ) pair, converting to piled-up
counts, and adding counting noise. It is only necessary to es-
timate this quantity for n between 0 and 69. The rest of the
likelihood calculation proceeds as in Appendix A.
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