16 research outputs found

    Gamma and proton irradiation effects and thermal stability of electrical characteristics of metal-oxide-silicon capacitors with atomic layer deposited Al<inf>2</inf>O<inf>3</inf> dielectric

    Get PDF
    The radiation hardness and thermal stability of the electrical characteristics of atomic layer deposited Al2O3 layers to be used as passivation films for silicon radiation detectors with slim edges are investigated. To directly measure the interface charge and to evaluate its change with the ionizing dose, metal-oxide-silicon (MOS) capacitors implementing differently processed Al2O3 layers were fabricated on p-type silicon substrates. Qualitatively similar results are obtained for degradation of capacitance-voltage and current-voltage characteristics under gamma and proton irradiations up to equivalent doses of 30 Mrad and 21.07 Mrad, respectively. While similar negative charge densities are initially extracted for all non-irradiated capacitors, superior radiation hardness is obtained for MOS structures with alumina layers grown with H2O instead of O3 as oxidant precursor. Competing effects between radiation-induced positive charge trapping and hydrogen release from the H2O-grown Al2O3 layers may explain their higher radiation resistance. Finally, irradiated and non-irradiated MOS capacitors with differently processed Al2O3 layers have been subjected to thermal treatments in air at temperatures ranging between 100 °C and 200 °C and the thermal stability of their electrical characteristics has been evaluated. Partial recovery of the gamma-induced degradation has been noticed for O3-grown MOS structures. This can be explained by a trapped holes emission process, for which an activation energy of 1.38 ± 0.15 eV has been extracted.Peer reviewe

    Laser drilling of micro-hole arrays in tantalum

    No full text
    X ray collimator optics for space application require an array of high aspect ratio holes of 60:1 with a minimal tantalum (Ta) thickness of >= 2 mm and a very high open area fraction (hole versus wall fraction) of 70% to achieve high collimator efficiency. Each collimator with a drilled area of 110 mm x 70 mm contains several million holes and need a fast drilling process. Laser percussion drilling was performed using an IR pulsed disk laser in a 1 and 2 mm thick Ta plate. A tightly spaced hexagonal closed packed pattern was used to maximize open area fraction with hole-to-hole spacing as small as 80 mu m. However, this resulted in a high concentration of debris and a thick recast layer on the remaining walls between the holes. Different process gases were investigated to minimize debris formation and reduce the recast layer thickness. Ramping of pulse energy during the drill cycle was investigated to minimize the adhesion between the substrate and recast layer. Chemical etching was used to remove the debris and recast from the top surface and the inside of the laser-drilled holes. Hole cross sections showed that a high aspect ratio was achieved with a hole diameter of about empty set50 mu m in 2 mm thick Ta. To achieve the shortest drilling time of 200 ms per hole, the process parameters were optimized and a hybrid nozzle, with both horizontal and vertical gas flow, was developed and implemented

    Thick silicon strip detector Compton imager

    No full text

    Her Majesty's Treasury Information on privatisation in the UK

    No full text
    SIGLEAvailable from British Library Document Supply Centre-DSC:f99/2384 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Update on scribe–cleave–passivate (SCP) slim edge technology for silicon sensors: Automated processing and radiation resistance

    No full text
    We pursue scribe–cleave–passivate (SCP) technology for making “slim edge” sensors. The goal is to reduce the inactive region at the periphery of the devices while maintaining their performance. In this paper we report on two aspects of the current efforts. The first one involves fabrication options for mass production. We describe the automated cleaving tests and a simplified version of SCP post-processing of n-type devices. Another aspect is the radiation resistance of the passivation. We report on the radiation tests of n- and p-type devices with protons and neutrons
    corecore