43,131 research outputs found

    Photosynthetic responses of three common mosses from continental Antarctica

    Get PDF
    Predicting the effects of climate change on Antarctic terrestrial vegetation requires a better knowledge of the ecophysiology of common moss species. In this paper we provide a comprehensive matrix for photosynthesis and major environmental parameters for three dominant Antarctic moss species (Bryum subrotundifolium, B. pseudotriquetrum and Ceratodon purpureus). Using locations in southern Victoria Land, (Granite Harbour, 77°S) and northern Victoria Land (Cape Hallett, 72°S) we determined the responses of net photosynthesis and dark respiration to thallus water content, thallus temperature, photosynthetic photon flux densities and CO2 concentration over several summer seasons. The studies also included microclimate recordings at all sites where the research was carried out in field laboratories. Plant temperature was influenced predominantly by the water regime at the site with dry mosses being warmer. Optimal temperatures for net photosynthesis were 13.7°C, 12.0°C and 6.6°C for B. subrotundifolium, B. pseudotriquetrum and C. purpureus, respectively and fall within the known range for Antarctic mosses. Maximal net photosynthesis at 10°C ranked as B. subrotundifolium > B. pseudotriquetrum > C. purpureus. Net photosynthesis was strongly depressed at subzero temperatures but was substantial at 0°C. Net photosynthesis of the mosses was not saturated by light at optimal water content and thallus temperature. Response of net photosynthesis to increase in water content was as expected for mosses although B. subrotundifolium showed a large depression (60%) at the highest hydrations. Net photosynthesis of both B. subrotundifolium and B. pseudotriquetrum showed a large response to increase in CO2 concentration and this rose with increase in temperature; saturation was not reached for B. pseudotriquetrum at 20°C. There was a high level of variability for species at the same sites in different years and between different locations. This was substantial enough to make prediction of the effects of climate change very difficult at the moment

    Primitive model electrolytes. A comparison of the HNC approximation for the activity coefficient with Monte Carlo data

    Full text link
    Accuracy of the mean activity coefficient expression (Hansen-Vieillefosse-Belloni equation), valid within the hypernetted chain (HNC) approximation, was tested in a wide concentration range against new Monte Carlo (MC) data for +1:-1 and +2:-2 primitive model electrolytes. The expression has an advantage that the excess chemical potential can be obtained directly, without invoking the time consuming Gibbs-Duhem calculation. We found the HNC results for the mean activity coefficient to be in good agreement with the machine calculations performed for the same model. In addition, the thermodynamic consistency of the HNC approximation was tested. The mean activity coefficients, calculated via the Gibbs-Duhem equation, seem to follow the MC data slightly better than the Hansen-Vieillefosse-Belloni expression. For completeness of the calculation, the HNC excess internal energies and osmotic coefficients are also presented. These results are compared with the calculations based on other theories commonly used to describe electrolyte solutions, such as the mean spherical approximation, Pitzer's extension of the Debye-H\"uckel theory, and the Debye-H\"uckel limiting law.Comment: 15 pages, 6 figure

    Does shade improve light interception efficiency? A comparison among seedlings from shade-tolerant and -intolerant temperate deciduous tree species

    Get PDF
    • Here, we tested two hypotheses: shading increases light interception efficiency (LIE) of broadleaved tree seedlings, and shade-tolerant species exhibit larger LIEs than do shade-intolerant ones. The impact of seedling size was taken into account to detect potential size-independent effects on LIE. LIE was defined as the ratio of mean light intercepted by leaves to light intercepted by a horizontal surface of equal area. • Seedlings from five species differing in shade tolerance (Acer saccharum, Betula alleghaniensis, A. pseudoplatanus, B. pendula, Fagus sylvatica) were grown under neutral shading nets providing 36, 16 and 4% of external irradiance. Seedlings (1- and 2-year-old) were three-dimensionally digitized, allowing calculation of LIE. • Shading induced dramatic reduction in total leaf area, which was lowest in shade-tolerant species in all irradiance regimes. Irradiance reduced LIE through increasing leaf overlap with increasing leaf area. There was very little evidence of significant size-independent plasticity of LIE. • No relationship was found between the known shade tolerance of species and LIE at equivalent size and irradiance

    Implementation of an extended ZINB model in the study of low levels of natural gastrointestinal nematode infections in adult sheep

    Get PDF
    Background: In this study, two traits related with resistance to gastrointestinal nematodes (GIN) were measured in 529 adult sheep: faecal egg count (FEC) and activity of immunoglobulin A in plasma (IgA). In dry years, FEC can be very low in semi-extensive systems, such as the one studied here, which makes identifying animals that are resistant or susceptible to infection a difficult task. A zero inflated negative binomial model (ZINB) model was used to calculate the extent of zero inflation for FEC; the model was extended to include information from the IgA responses. Results: In this dataset, 64 % of animals had zero FEC while the ZINB model suggested that 38 % of sheep had not been recently infected with GIN. Therefore 26 % of sheep were predicted to be infected animals with egg counts that were zero or below the detection limit and likely to be relatively resistant to nematode infection. IgA activities of all animals were then used to decide which of the sheep with zero egg counts had been exposed and which sheep had not been recently exposed. Animals with zero FEC and high IgA activity were considered resistant while animals with zero FEC and low IgA activity were considered as not recently infected. For the animals considered as exposed to the infection, the correlations among the studied traits were estimated, and the influence of these traits on the discrimination between unexposed and infected animals was assessed. Conclusions: The model presented here improved the detection of infected animals with zero FEC. The correlations calculated here will be useful in the development of a reliable index of GIN resistance that could be of assistance for the study of host resistance in studies based on natural infection, especially in adult sheep, and also the design of breeding programs aimed at increasing resistance to parasites

    Ab Initio studies of the atomic structure and electronic density of states of pure and hydrogenated a-Si

    Full text link
    We propose a method to simulate a-Si and a-Si:H using an ab initio approach based on the Harris functional and thermally amorphisized periodically continued cells with at least 64 atoms, and calculate their radial distribution functions. Hydrogen incorporation was achieved via diffusive random addition. The electronic density of states (DOS) is obtained using density functional theory with the aid of both the Harris-functional and Kohn-Sham-LDA approaches. Two time steps are used, 2.44 and 10 fs for the pure, and 0.46 and 2 fs for the hydrogenated, to see their effect on the topological and DOS structure of the samples. The calculated long time-step radial features of a-Si are in very good agreement with experiment whereas for a-Si:H the short time-step partial and total radial features agree well; for the long time-step simulation molecular hydrogen appears during annealing.The long time-step a-Si has a well defined gap with two dangling bonds, that clears and increases upon hydrogen addition and relaxation, as expected. The short time-step structures have more defects, both dangling and floating bonds, that are less characteristic of a good sample; however the radial structures of a-Si:H are in better agreement with experiment indicating that the experimental work was done on defective samples.Comment: 11 pages, RevTeX, 16 figures, submitted to Phys. Rev. B 16 June 200

    On the superconducting nature of the Bi-II phase of elemental Bismuth

    Full text link
    The superconductivity in the Bi-II phase of elemental Bismuth (transition temperature Tc3.92T_{\rm c}\simeq3.92 K at pressure p2.80p\simeq 2.80 GPa) was studied experimentally by means of the muon-spin rotation as well as theoretically by using the Eliashberg theory in combination with Density Functional Theory calculations. Experiments reveal that Bi-II is a type-I superconductor with a zero temperature value of the thermodynamic critical field Bc(0)31.97B_{\rm c}(0)\simeq31.97~mT. The Eliashberg theory approach provides a good agreement with the experimental TcT_{\rm c} and the temperature evolution of BcB_{\rm c}. The estimated value for the retardation (coupling) parameter kBTc/ωln0.07k_{\rm B}T_{\rm c}/\omega_{\rm ln} \approx 0.07 (ωln\omega_{\rm ln} is the logarithmically averaged phonon frequency) suggests that Bi-II is an intermediately-coupled superconductor.Comment: 6 pages, 2 figure
    corecore