125 research outputs found

    The Choice of the Filtering Method in Microarrays Affects the Inference Regarding Dosage Compensation of the Active X-Chromosome

    Get PDF
    The hypothesis of dosage compensation of genes of the X chromosome, supported by previous microarray studies, was recently challenged by RNA-sequencing data. It was suggested that microarray studies were biased toward an over-estimation of X-linked expression levels as a consequence of the filtering of genes below the detection threshold of microarrays.To investigate this hypothesis, we used microarray expression data from circulating monocytes in 1,467 individuals. In total, 25,349 and 1,156 probes were unambiguously assigned to autosomes and the X chromosome, respectively. Globally, there was a clear shift of X-linked expressions toward lower levels than autosomes. We compared the ratio of expression levels of X-linked to autosomal transcripts (X∶AA) using two different filtering methods: 1. gene expressions were filtered out using a detection threshold irrespective of gene chromosomal location (the standard method in microarrays); 2. equal proportions of genes were filtered out separately on the X and on autosomes. For a wide range of filtering proportions, the X∶AA ratio estimated with the first method was not significantly different from 1, the value expected if dosage compensation was achieved, whereas it was significantly lower than 1 with the second method, leading to the rejection of the hypothesis of dosage compensation. We further showed in simulated data that the choice of the most appropriate method was dependent on biological assumptions regarding the proportion of actively expressed genes on the X chromosome comparative to the autosomes and the extent of dosage compensation.This study shows that the method used for filtering out lowly expressed genes in microarrays may have a major impact according to the hypothesis investigated. The hypothesis of dosage compensation of X-linked genes cannot be firmly accepted or rejected using microarray-based data

    The scorpionfly (Panorpa cognata) genome highlights conserved and derived features of the peculiar dipteran X chromosome.

    Get PDF
    Many insects carry an ancient X chromosome - the Drosophila Muller element F - that likely predates their origin. Interestingly, the X has undergone turnover in multiple fly species (Diptera) after being conserved for more than 450 MY. The long evolutionary distance between Diptera and other sequenced insect clades makes it difficult to infer what could have contributed to this sudden increase in rate of turnover. Here, we produce the first genome and transcriptome of a long overlooked sister-order to Diptera: Mecoptera. We compare the scorpionfly Panorpa cognata X-chromosome gene content, expression, and structure, to that of several dipteran species as well as more distantly-related insect orders (Orthoptera and Blattodea). We find high conservation of gene content between the mecopteran X and the dipteran Muller F element, as well as several shared biological features, such as the presence of dosage compensation and a low amount of genetic diversity, consistent with a low recombination rate. However, the two homologous X chromosomes differ strikingly in their size and number of genes they carry. Our results therefore support a common ancestry of the mecopteran and ancestral dipteran X chromosomes, and suggest that Muller element F shrank in size and gene content after the split of Diptera and Mecoptera, which may have contributed to its turnover in dipteran insects

    Sex, sex chromosomes and gene expression

    Get PDF
    The X chromosome has fewer testis-specific genes than autosomes in many species. This bias is commonly attributed to X inactivation in spermatogenesis but a recent paper in BMC Biology provides evidence against X inactivation in Drosophila and proposes that somatic tissue- and testis- but not ovary-specific genes tend not to be located on the X chromosome. Here, we discuss possible mechanisms underlying this bias, including sexual antagonism and dosage compensation

    No Excess Gene Movement Is Detected off the Avian or Lepidopteran Z Chromosome

    Get PDF
    Most of our knowledge of sex-chromosome evolution comes from male heterogametic (XX/XY) taxa. With the genome sequencing of multiple female heterogametic (ZZ/ZW) taxa, we can now ask whether there are patterns of evolution common to both sex chromosome systems. In all XX/XY systems examined to date, there is an excess of testis-biased retrogenes moving from the X chromosome to the autosomes, which is hypothesized to result from either sexually antagonistic selection or escape from meiotic sex chromosome inactivation (MSCI). We examined RNA-mediated (retrotransposed) and DNA-mediated gene movement in two independently evolved ZZ/ZW systems, birds (chicken and zebra finch) and lepidopterans (silkworm). Even with sexually antagonistic selection likely operating in both taxa and MSCI having been identified in the chicken, we find no evidence for an excess of genes moving from the Z chromosome to the autosomes in either lineage. We detected no excess for either RNA- or DNA-mediated duplicates, across a range of approaches and methods. We offer some potential explanations for this difference between XX/XY and ZZ/ZW sex chromosome systems, but further work is needed to distinguish among these hypotheses. Regardless of the root causes, we have identified an additional, potentially inherent, difference between XX/XY and ZZ/ZW systems

    Convergent recombination suppression suggests role of sexual selection in guppy sex chromosome formation.

    Get PDF
    Sex chromosomes evolve once recombination is halted between a homologous pair of chromosomes. The dominant model of sex chromosome evolution posits that recombination is suppressed between emerging X and Y chromosomes in order to resolve sexual conflict. Here we test this model using whole genome and transcriptome resequencing data in the guppy, a model for sexual selection with many Y-linked colour traits. We show that although the nascent Y chromosome encompasses nearly half of the linkage group, there has been no perceptible degradation of Y chromosome gene content or activity. Using replicate wild populations with differing levels of sexually antagonistic selection for colour, we also show that sexual selection leads to greater expansion of the non-recombining region and increased Y chromosome divergence. These results provide empirical support for longstanding models of sex chromosome catalysis, and suggest an important role for sexual selection and sexual conflict in genome evolution

    Sex-Biased Expression of MicroRNAs in Schistosoma mansoni

    Get PDF
    Schistosomiasis is an important neglected tropical disease caused by digenean helminth parasites of the genus Schistosoma. Schistosomes are unusual in that they are dioecious and the adult worms live in the blood system. MicroRNAs play crucial roles during gene regulation and are likely to be important in sex differentiation in dioecious species. Here we characterize 112 microRNAs from adult Schistosoma mansoni individuals, including 84 novel microRNA families, and investigate the expression pattern in different sexes. By deep sequencing, we measured the relative expression levels of conserved and newly identified microRNAs between male and female samples. We observed that 13 microRNAs exhibited sex-biased expression, 10 of which are more abundant in females than in males. Sex chromosomes showed a paucity of female-biased genes, as predicted by theoretical evolutionary models. We propose that the recent emergence of separate sexes in Schistosoma had an effect on the chromosomal distribution and evolution of microRNAs, and that microRNAs are likely to participate in the sex differentiation/maintenance process

    How to make a sex chromosome

    Get PDF
    Sex chromosomes can evolve once recombination is halted between a homologous pair of chromosomes. Owing to detailed studies using key model systems, we have a nuanced understanding and a rich review literature of what happens to sex chromosomes once recombination is arrested. However, three broad questions remain unanswered. First, why do sex chromosomes stop recombining in the first place? Second, how is recombination halted? Finally, why does the spread of recombination suppression, and therefore the rate of sex chromosome divergence, vary so substantially across clades? In this review, we consider each of these three questions in turn to address fundamental questions in the field, summarize our current understanding, and highlight important areas for future work
    corecore