96 research outputs found
On Evidence-based Risk Management in Requirements Engineering
Background: The sensitivity of Requirements Engineering (RE) to the context
makes it difficult to efficiently control problems therein, thus, hampering an
effective risk management devoted to allow for early corrective or even
preventive measures. Problem: There is still little empirical knowledge about
context-specific RE phenomena which would be necessary for an effective
context- sensitive risk management in RE. Goal: We propose and validate an
evidence-based approach to assess risks in RE using cross-company data about
problems, causes and effects. Research Method: We use survey data from 228
companies and build a probabilistic network that supports the forecast of
context-specific RE phenomena. We implement this approach using spreadsheets to
support a light-weight risk assessment. Results: Our results from an initial
validation in 6 companies strengthen our confidence that the approach increases
the awareness for individual risk factors in RE, and the feedback further
allows for disseminating our approach into practice.Comment: 20 pages, submitted to 10th Software Quality Days conference, 201
Structural insights into RNA processing by the human RISC-loading complex.
Targeted gene silencing by RNA interference (RNAi) requires loading of a short guide RNA (small interfering RNA (siRNA) or microRNA (miRNA)) onto an Argonaute protein to form the functional center of an RNA-induced silencing complex (RISC). In humans, Argonaute2 (AGO2) assembles with the guide RNA-generating enzyme Dicer and the RNA-binding protein TRBP to form a RISC-loading complex (RLC), which is necessary for efficient transfer of nascent siRNAs and miRNAs from Dicer to AGO2. Here, using single-particle EM analysis, we show that human Dicer has an L-shaped structure. The RLC Dicer's N-terminal DExH/D domain, located in a short 'base branch', interacts with TRBP, whereas its C-terminal catalytic domains in the main body are proximal to AGO2. A model generated by docking the available atomic structures of Dicer and Argonaute homologs into the RLC reconstruction suggests a mechanism for siRNA transfer from Dicer to AGO2
Ground truth deficiencies in software engineering: when codifying the past can be counterproductive
Many software engineering tools build and evaluate their models based on historical data to support development and process decisions. These models help us answer numerous interesting questions, but have their own caveats. In a real-life setting, the objective function of human decision-makers for a given task might be influenced by a whole host of factors that stem from their cognitive biases, subverting the ideal objective function required for an optimally functioning system. Relying on this data as ground truth may give rise to systems that end up automating software engineering decisions by mimicking past sub-optimal behaviour. We illustrate this phenomenon and suggest mitigation strategies to raise awareness
Naming the pain in requirements engineering : Contemporary problems, causes, and effects in practice
Requirements Engineering (RE) has received much attention in research and practice due to its importance to software project success. Its interdisciplinary nature, the dependency to the customer, and its inherent uncertainty still render the discipline difficult to investigate. This results in a lack of empirical data. These are necessary, however, to demonstrate which practically relevant RE problems exist and to what extent they matter. Motivated by this situation, we initiated the Naming the Pain in Requirements Engineering (NaPiRE) initiative which constitutes a globally distributed, bi-yearly replicated family of surveys on the status quo and problems in practical RE. In this article, we report on the qualitative analysis of data obtained from 228 companies working in 10 countries in various domains and we reveal which contemporary problems practitioners encounter. To this end, we analyse 21 problems derived from the literature with respect to their relevance and criticality in dependency to their context, and we complement this picture with a cause-effect analysis showing the causes and effects surrounding the most critical problems. Our results give us a better understanding of which problems exist and how they manifest themselves in practical environments. Thus, we provide a first step to ground contributions to RE on empirical observations which, until now, were dominated by conventional wisdom only.Peer reviewe
On the way to large-scale and high-resolution brain-chip interfacing
Brain-chip-interfaces (BCHIs) are hybrid entities where chips and nerve cells establish a close physical interaction allowing the transfer of information in one or both directions. Typical examples are represented by multi-site-recording chips interfaced to cultured neurons, cultured/acute brain slices, or implanted “in vivo”. This paper provides an overview on recent achievements in our laboratory in the field of BCHIs leading to enhancement of signals transmission from nerve cells to chip or from chip to nerve cells with an emphasis on in vivo interfacing, either in terms of signal-to-noise ratio or of spatiotemporal resolution. Oxide-insulated chips featuring large-scale and high-resolution arrays of stimulation and recording elements are presented as a promising technology for high spatiotemporal resolution interfacing, as recently demonstrated by recordings obtained from hippocampal slices and brain cortex in implanted animals. Finally, we report on an automated tool for processing and analysis of acquired signals by BCHIs
Zusammenhänge zwischen Bevölkerungswachstum und wirtschaftlicher Entwicklung - Eine Diskussion relevanter Theorien
Rose, Manfred: Finanzwissenschaftliche Verteilungslehre. Zur Verteilungswirkung finanzwirtschaftlicher Staatsaktivitäten
- …
