
Integrating software quality models into risk-based
testing

Harald Foidl1 & Michael Felderer1

Published online: 12 November 2016
The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract Risk-based testing is a frequently used testing approach which utilizes identified risks of
a software system to provide decision support in all phases of the testing process. Risk assessment,
which is a core activity of every risk-based testing process, is often done in an ad hoc manual way.
Software quality assessments, based on quality models, already describe the product-related risks
of a whole software product and provide objective and automation-supported assessments. But so
far, quality models have not been applied for risk assessment and risk-based testing in a systematic
way. This article tries to fill this gap and investigates how the information and data of a quality
assessment based on the open quality model QuaMoCo can be integrated into risk-based testing.
We first present two generic approaches showing how quality assessments based on qualitymodels
can be integrated into risk-based testing and then provide the concrete integration on the basis of the
open quality model QuaMoCo. Based on five open source products, a case study is performed.
Results of the case study show that a risk-based testing strategy outperforms a lines of code-based
testing strategy with regard to the number of defects detected. Moreover, a significant positive
relationship between the risk coefficient and the associated number of defects was found.

Keywords Risk-based testing . Software quality models . Software testing . Software quality .

Software risk management . Test management . Test process improvement . Software process
improvement . Case study

1 Introduction

Testing is an essential quality assurance technique for modern software-intensive systems
which often has to be performed under severe pressure (Felderer et al. 2014b; Perry and Rice

Software Qual J (2018) 26:809–847
DOI 10.1007/s11219-016-9345-3

* Michael Felderer
michael.felderer@uibk.ac.at

Harald Foidl
harald.foidl@uibk.ac.at

1 University of Innsbruck, Innsbruck, Austria

http://crossmark.crossref.org/dialog/?doi=10.1007/s11219-016-9345-3&domain=pdf

1997). A challenging time schedule, limited resources (Felderer et al. 2014b), and increasing
pressure from senior management, who often see testing as “something that has to be done”
(Perry and Rice 1997), are the major causing factors for that. In addition, complete software
testing is virtually impossible (Redmill 2004; Pries and Quigley 2010). As a result, effective
and efficient software testing must be selective (Redmill 2004) to ensure the right amount of
testing (Graham et al. 2008). Risk-based testing (Felderer and Schieferdecker 2014), which
utilizes identified product risks of a software system for testing purposes, has a high potential
to support and improve testing in this context (complete testing not possible, challenging time
schedule and limited resources). It optimizes the allocation of resources and time, is a means
for mitigating risks, helps to early identify critical areas, and provides decision support for
deciding when to release (Felderer et al. 2014b).

Lately, the international standard ISO/IEC/IEEE 29119 Software Testing (2013) on testing
techniques, processes, and documentation even explicitly mentions risks as integral part of the
testing process. Also, several risk-based testing approaches which consider risks of the
software product as the guiding factor to support decisions in all phases of the test process
have been proposed in the literature (Erdogan et al. 2014; Felderer and Schieferdecker 2014).

A core activity in every risk-based testing process is risk assessment because it determines the
significance of the underlying risk values and, therefore, the quality (effectiveness and efficiency)
of the overall risk-based testing process (Felderer et al. 2012). Risk assessment is often done in an
ad hoc manual way which is expensive, time-consuming, and has low reliability.

Because product risk can be seen as a factor that could result in future negative conse-
quences (ISTQB 2015), which are usually system and software defects in the field of software
testing (Redmill 2004), one can argue that risk represents missing software product quality and
therefore should be measured via software quality assessment. The recent standard ISO/IEC
25010 (2011) decomposes software quality into characteristics which further consist of
subcharacteristics and even sub-subcharacteristics. Quality Modeling and Control
(QuaMoCo) operationalizes ISO/IEC 25010 by providing a tool-supported quality assessment
method for defining and assessing software quality (Wagner et al. 2015; Deissenböck et al.
2011). Based on this quality model assessment, it is also possible to provide an objective and
automation-supported risk assessment for risk-based testing.

As risk represents missing software quality and quality assessments based on quality
models that already describe the quality-related risks of a whole software product (Zhang
et al. 2006; Wagner 2013; ISO/IEC 25010 2011), this article addresses the research objective:
how quality assessments based on quality models can be used and applied in risk assessment
for testing purposes. This objective is investigated by showing how quality models can
principally be used for risk assessment and by providing a concrete integration of a quality
assessment based on QuaMoCo into risk-based testing and its evaluation.

An exploratory study of available risk-based testing approaches by Felderer et al. (2015)
showed that, until now, the potential of quality models for risk assessment in the context of
risk-based testing has not been investigated. The contribution of this article is, on the one hand,
to show the potential usage of quality models for risk-based testing by presenting two
integration approaches and, on the other hand, to provide a concrete integration including tool
support and an empirical evaluation for the quality model QuaMoCo. In addition, the
presented integration approach bridges the gap between the international standard ISO/IEC
25010 on Software Quality, which is operationalized by the quality model QuaMoCo, and the
international standard ISO/IEC/IEEE 29119 on Software Testing which explicitly mentions
risks as an integral part of the testing process.

810 Software Qual J (2018) 26:809–847

The evaluation of the developed integration approach based on a case study of five open
source products showed that a risk-based testing strategy outperforms a line of code-based
testing strategy according to the number of classes which must be tested in order to find all
defects. In addition, a significant positive relationship between the risk coefficient1 and the
associated number of defects of a class was found. Moreover, on average, 80 % of all defects
of the five analyzed software products were found by testing 30 % of all classes when a risk-
based testing strategy was applied. For the sake of comprehensibility and due to the fact that an
explicit distinction is not always required, we use the term defect according to Wagner (2013)
as a superset of faults (=bugs) and failures in this article. This is because there is always some
relationship between the two, and at a certain abstraction layer, it is useful to have a common
term for both.

The remainder of this article is structured as follows. Section 2 discusses background on
risk-based testing and software quality models as well as related work on their integration.
Section 3 presents two generic integration approaches of how quality assessments based on
quality models can be used for further risk-based testing of the investigated software product.
Section 4 presents the concrete integration of quality assessments and risk-based testing on the
basis of the open quality model QuaMoCo. Section 5 describes the applied research design
including the research questions, the case selection as well as the data collection, analysis, and
validity procedures. In Section 6, the results of the case study and threats to validity are
discussed. Finally, Section 7 draws conclusions and presents possible future work.

2 Background and related work

This section discusses background on risk-based testing and software quality models as well as
related work about their integration. Section 2.1 provides background on risk-based testing and
Section 2.2 on software quality models. Finally, Section 2.3 discusses related work on the
integration of quality models and risk-based testing.

2.1 Risk-based testing

Risk-based testing (RBT) is a testing approach which considers risks of the software product as
the guiding factor to support decisions in all phases of the test process (Gerrard and Thompson
2002; Felderer and Schieferdecker 2014). A risk is a factor that could result in future negative
consequences and is usually expressed by its probability and impact (ISTQB 2015). In
software testing, the probability is typically determined by the likelihood that a defect assigned
to a risk occurs, and the impact is determined by the cost or severity of a defect if it occurs in
operation. Mathematically, we can define the risk exposure (R) of an arbitrary risk item or asset
(a) as a multiplication of the probability factor (P) and the impact factor (I):

R að Þ ¼ P að Þ*I að Þ
In the context of testing, a risk item is anything of value (i.e., an asset) under test, for

instance, a requirement, a component, or a defect one explicitly wants to avoid. Risk exposure
values are estimated during development before the information whether a risk item is actually
defective or not is available. Based on the risk exposure values, the risk items are typically

1 We assumed the impact factor of the risk coefficient to be constant in our case study.

Software Qual J (2018) 26:809–847 811

prioritized and assigned to risk levels. The resulting risk information is used to support
decisions in all phases of the test process.

For the determination of risk, probability and impact several proposals were made in the
literature (Felderer et al. 2015). Probability of defect occurrence is often determined by
technical factors, whereas impact is often determined by business factors. For instance, Van
Veenendaal (2012) proposes complexity, number of changes, new technology and methods,
size, or defect history as probability factors and critical areas, visible areas, most used areas,
business importance, or cost or rework as impact criteria. In another paper, Felderer et al.
(2012) propose, for instance, code complexity, functional complexity, or testability as proba-
bility criteria as well as importance or usage as impact criteria. All listed factors are typically
estimated manually and not guided by software quality models (Felderer et al. 2015) as
proposed in this article. However, the guidance of risk-based testing by software quality
models is of high practical importance. In previous studies (Felderer and Ramler 2014a, b;
Felderer and Ramler 2016), we found that making testing more effective in terms of (1)
detecting additional defects in testing such that fewer defects slip through to the field as well as
(2) prioritization for detecting most critical defects first to reduce the overall stabilization costs
and time are essential benefits of risk-based testing. Both aspects of effectiveness can be
addressed by suitable software quality factors (systematically) selected from quality models.
Guidance by software quality models thus also supports the development of risk models for
testing purposes in a structured way.

2.2 Software quality models

Software quality models are, according to Deissenböck et al. (2009), a well-accepted mean for
managing and describing software quality as the study by Wagner et al. (2012a, b, c) showed.
In the last 30 years, plenty of quality models were developed by various researchers to
understand and measure the quality of software (Kitchenham and Pfleeger 1996;
Deissenböck et al. 2009). A complete coverage of all research contributions, existing literature,
approaches, and concepts in the area of software quality models would be out of the scope of
this article. Therefore, the following subsection aims to provide a general understanding about
software quality models and presents the ISO/IEC 25010 standard about software quality,
which is operationalized by QuaMoCo, in more detail.

Based on the long history of research effort on quality models, they can be seperated into
different groups, for example hierarchical and richer quality models (Wagner et al. 2015),
meta-model-based and implict quality models (Wagner 2013) or basic and tailored quality
models (Miguel et al. 2014). Further, Deissenböck et al. (2009) suggest to classify software
quality models according to their different purposes.

The predominat group is the hierarchical quality models (Wagner et al. 2015) which
decompose the concept of quality into different factors, criteria, and metrics (Factor Criteria
Metrics models) (Cavano and McCall 1978). Examples are McCall’s quality model (McCall
et al. 1977), Boehm’s quality model (Boehm et al. 1978), FURPS quality model (Grady 1992),
QuaMoCo (Wagner et al. 2015), or the ISO/IEC 25010 quality model (ISO/IEC 25010 2011).

The ISO/IEC 25010 standard, as a hierarchical definition quality model, decomposes
software quality into characteristics which further can consist of subcharacteristics and even
sub-subcharacteristics (Wagner 2013). The aim of this decomposition is to reach a level where
the characteristics can be measured in order to evaluate the software quality (Wagner 2013). In
detail, the ISO/IEC 25010 (2011) defines two quality models, the quality-in-use, and the

812 Software Qual J (2018) 26:809–847

product quality model to evaluate and define software quality (Wagner 2013). The product
quality model uses eight characteristics for describing a software product’s quality in a
comprehensive way. Figure 1 graphically illustrates these eight charactertistics with their
corresponding subcharacteristics.

Many different quality models were developed in the last decades (Wagner 2013). Accord-
ing to Al-Qutaish (2010), it is a real challenge to select which model to use. A comprehensive
overview about the different quality models and concepts can be looked up in Al-Qutaish
(2010), Miguel et al. (2014), or Wagner (2013, Chapter 2).

2.3 Approaches integrating risk-based testing and quality models

This section aims to review related work about quality models associated with risk-based
testing. Research interest on software quality is according to Miguel et al. (2014) as old as
software construction itself. Although the concepts of software quality models and risk-based
testing were addressed by several research papers and contributions (i.e., Deissenböck et al.
(2007), Franch and Carvallo (2003) or Felderer and Schieferdecker (2014)), we found no
related work which explicitly deals with integrating quality models and risk-based testing.

Product quality

Functional
completeness
Functional
correctness
Functional
appropriateness

Co-existence
Interoperability

Appropriateness
recognisability
Learnability
Operability
User error
protection
User interface
aesthetics
Accessibility

Confidentiality
Integrity
Non-repudiation
Accountability
Authenticity

Maturity
Availability
Fault tolerance
Recoverability

Modularity
Reusability
Analysability
Modifiability
Testability

Adaptability
Installability
Replaceability

Performance
efficiency

Time behaviour
Resource
utilisation
Capacity

Usability

Reliability

Maintain-
ability

Portability

Functional
suitability

Compatibility

Security

Fig. 1 Product quality model of ISO/IEC 25010 based on Wagner (2013)

Software Qual J (2018) 26:809–847 813

Moreover, no existing risk-based testing approach in the literature especially considers quality-
related information as basis for further execution of the risk-based testing process. Neither a
tool was available in the literature that supports risk-based testing by using quality-related
information. However, two contributions were identified in the literature which can be seen as
related work as their contribution partially deals with integrating quality related information
and software testing.

The first contribution (Neubauer et al. 2014) deals with the extension of the “Active
Continuous Quality Control” (ACQC) approach (Windmüller et al. (2013)) for supporting
risk-based testing. ACQC is an approach that aims to automatically maintain software test
models by employing automata learning technology. Neubauer et al. (2014) extended the
ACQC approach with risk analysts in order to support risk-based testing. Although the ACQC
approach is not a quality model, we assumed this contribution as relevant as it actively
integrates risk analysts in the ACQC approach in order to prioritize critical user interations
with the software system.

The second contribution (Zeiss et al. 2007) adapted the ISO/IEC 9126-1 (2001) quality
model to test specifications. Concretely, the authors developed a quality model for test
specifications which is based on seven internal quality characteristics provided by the ISO/
IEC 9126 domain. We assumed this contribution as important because the usage of quality
models which instantiate test specifications seems to be promising for the integration with risk-
based testing.

3 Integration of quality models into risk-based testing

In this section, we present two generic approaches how quality models can be integrated into
risk-based testing. The presented approaches are based on previous work of Felderer et al.
(2012) who defined a model-based risk assessment procedure integrated in a generic risk-
based testing process.

The risk assessment procedure defined by Felderer et al. applies automatic risk assessment
by static analysis. Therefore, Felderer et al. suggest the usage of automatic metrics for
determining the probability and impact factor. Due the fact that metrics for the impact factor
are typically derived from requirements and depend on the evaluator’s viewpoint, they are
usually evaluated manually. At least web applications could use Google Analytics (2005) to
determine, for example, the frequency of use and therefore the importance of single parts of the
system. Changing the look and feel of an online banking system’s graphical user interface is
typically not as often used as the function to transfer money. One further possibility to
determine the frequency of use is to use earlier deployed versions of a software system. In
the case that a software system is developed completely new and no previous versions are
available, the frequency of use can be determined by analyzing similar software systems from
the same category (i.e., web browsers, accounting software systems).

According to Van Veenendaal (2009, p. 9), determining the probability factor means
predicting where the most defects are located in the software. The most defects are typically
located in the worst areas of the software. Redmill (2004, p. 8) further suggests to observe the
quality of the documentation and structure of the software code for determining the likelihood
of defects. Moreover, Van Veenendaal (2009, p. 9) claims that one of the most important defect
generators is complexity. For determining the complexity, a lot of different metrics (i.e.,
McCabe (1976)) are available (Van Veenendaal 2009, p. 9). Nagappan et al. (2006) found

814 Software Qual J (2018) 26:809–847

that code complexity metrics are an effective mean to predict defects in software code. Further
research showed (i.e., Catal et al. (2007), Jiang et al. (2008), Radjenovic et al. (2013)) that
software metrics in general are useful for predicting defects and their location in software
products. In the following, Felderer et al. (2012, p. 163) claim that the employment of different
metrics, which can usually be determined automatically, can serve as a basis for determining
the probability factor.

Current quality models use an integrated chain from rather abstract software characteristics
down to specific metrics. Therefore, quality models typically decompose the concept of quality
into different factors, criteria, and metrics (Factor Criteria Metrics models (Cavano andMcCall
1978)). A quality assessment further evaluates and specifies the quality of a software product
based on a defined Factor Criteria Metric hierarchy.

Based on the previous explanation and discussion in this section, one can argue that the
probability factor can be used to integrate quality assessments based on quality models into
risk-based testing. Due to the fact that the probability factor is computed mainly based on
metrics (Felderer et al. 2012, p. 163) as well as considers complexity (Van Veenendaal 2009, p.
9) and the quality of the structure of the software product (Redmill 2004, p. 8), it seems
appropriate to use the probability factor for integrating quality assessments, which are based on
metrics that define the quality characteristics, into risk-based testing. In addition, also Redmill
(2005, p. 13) mentions the possibility to use quality factors as “surrogates” for determining the
probability factor.

Hence, our basic integration idea is to process the information from a quality assessment
based on a quality model in a way that it represents the probability factor in the concept of risk-
based testing. According to the explanation that the impact factor is mainly determined
manually (Felderer et al. 2012, p. 166) and varies based on different possible perspectives
(Redmill 2004, p. 7), it does not seem appropriate to integrate quality assessments based on
quality models into risk-based testing by using the impact factor. Therefore, the impact factor
must be determined manually in our two presented integration approaches.

Felderer et al. suggest assigning the probability factor to units or components of a software
system. Units are the technical implementations of a software system and components can
contain several units. As a result, the approaches presented in the following aim to integrate the
quality assessments of quality models into risk-based testing by mapping the information
provided by the assessments to an adequate probability factor for each component or unit. For
the sake of comprehensibility, the following description of the two approaches uses the more
generic term component.

3.1 Approach 1

First, a quality assessment based on the defined quality model is conducted for each compo-
nent (the setting of the quality model (i.e., which quality factors are used) must be the same for
each quality assessment).

The quality assessment of each component must then further be processed to an adequate
probability factor for each component under test. Meaning the results of the quality assess-
ments (which are represented by the quality factors at the highest level of the quality model
hierarchy) are used to determine the probability factors for each component. Hence, compo-
nents with high quality are assumed to have a low probability of defects and vice versa. The
impact factor must further be determined for each component, and finally, the risk coefficient
can be calculated for each component. Figure 2 illustrates the approach by an example. The

Software Qual J (2018) 26:809–847 815

rounded rectangles in Fig. 2 represent the quality factors, the octagons as the criteria, and the
ellipsis as the metrics of the Factor Criteria Metric hierarchy. Further, the risk-based testing
concept is represented by rectangles (Probability, Impact and Risk).

Components are illustrated by rectangles with cut corners. The red arrows represent the
determination of the probability factor. In Fig. 2, a quality assessment is conducted for two
components (component x and component y). Supposing the quality assessment specifies a
high quality for component x and a low quality for component y, the probability factor for
component x is then assumed to be lower as for component y because the high quality of
component x indicates a low probability of defects. Further, the impact factor for both
components must be determined. Finally, the risk coefficient for component x and y can be
calculated by multiplying the probability and impact factor.

3.2 Approach 2

The second approach aims to directly use the metrics on the lowest level of the quality model
hierarchy. Therefore, one single quality assessment for a software product is necessary and the
measured values of each metric and component must further be processed to an adequate
probability factor for each component.

Moreover, the impact factor must be determined for each component. Finally, the risk
coefficient can be calculated by multiplying both factors. Figure 3 illustrates the approach by
an example (the used symbols have the same meaning as defined above). Supposing there are
three metrics (Metric a, Metric b, and Metric c) defined in the quality model and two
components (component x and component y). Metric a, which measures the lines of code of
each component, measures 340 lines of code for component x and 780 lines of code for
component y. Metric b, which measures the nesting depth of each component, measures the
values 16 for component x and 20 for component y. For the sake of comprehensibility, Metric
c is skipped for the further illustration of the example.

Based on the measured values of each metric, an adequate probability factor can be
calculated for each component. As a result, component y is assumed to have a higher
probability factor as component x because the measured values indicate a higher complexity
and therefore a higher probability of defects for component x.

Fig. 2 Approach 1

816 Software Qual J (2018) 26:809–847

To summarize, the first difference between the two approaches is that approach 1 requires a
separate quality assessment for each component of a software product and approach 2 only
requires one single quality assessment for a software product no matter how many components
the software product has. The second difference is that approach 1 directly uses the quality
assessment results which are represented by the quality factors at the highest level of the
quality model hierarchy to determine the probability factor. Approach 2 directly uses the
metrics on the lowest level of the quality model hierarchy to determine the probability factor
for each component. As the quality factors are based on the defined criteria and further on the
assigned metrics, the defined aggregations and evaluations (i.e., which metric affects which
criteria, how are the metrics aggregated) play a key role in approach 1 whereas approach 2 is
not impacted by this (it uses only the metrics).

The decision, which of these two approaches should be applied, must be made for each
concrete quality model. In the next section, we demonstrate the decision process and the
integration with the open quality model QuaMoCo and compare both integration approaches.

4 Usage of QuaMoCo in risk-based testing

In this section, we present the integration of quality assessments and risk-based testing on the
basis of the open quality model QuaMoCo. First, Section 4.1 introduces the main concepts of
the open quality model QuaMoCo. Section 4.2 illustrates the application of the selected
integration approach. Finally, Section 4.3 illustrates the implementation of the integration
approach.

4.1 QuaMoCo

The open quality model QuaMoCo (Quality Modeling and Control) is an operationalized
software quality model together with a tool chain containing a quality assessment method for
defining as well as assessing software quality (Wagner et al. 2015; Deissenböck et al. 2011).
The declared aim of QuaMoCo was to close the gap between generic and abstract software
quality characteristics and concrete quality metrics (Wagner et al. 2012a, 2015). QuaMoCo

Fig. 3 Approach 2

Software Qual J (2018) 26:809–847 817

was developed by software quality experts from academia (Fraunhofer IESE2 and Technische
Universität München3) and industry (Siemens4, SAP AG5, Capgemini6 and iestra7) (Wagner
et al. 2015).

The main concept used in the QuaMoCo quality model is a factor. “A factor expresses a
property of an entity” (Wagner et al. 2015, p. 104) whereas an entity “describe[s] the things
that are important for quality” (Wagner et al. 2015, p. 104). The attributes of those entities
(entities are for example a class, a method, an interface or the whole software product) are
described by properties. For example, Maintainability would be a property of the entity
Software Product and Detail Complexity a property of the entity Class. In order to bridge
the gap between concrete metrics and abstract quality characteristics, Wagner et al. use the
concept of a factor on two different levels of abstraction.

The first factor is named Quality Aspect and describes the abstract quality characteristics
provided by the ISO/IEC 25010 (i.e., Maintainability, Security, Portability...). Quality aspects
have the whole software product as their entity (i.e., Maintainability of the whole software
product). Product Factors are the second type of factors and represent attributes (properties) of
parts of the software product (i.e., Detail Complexity, Duplication). These two factors can both
consist of several sub-aspects (in case of quality aspects) and sub-factors (in case of product
factors). An important requirement regarding the leaf product factors is that they must be
measurable. Therefore, Wagner et al. require them “to be concrete enough to be measured”
(Wagner et al. 2015, p. 104). For example, the product factor Detail Complexity of Method can
be measured by nesting depth and length. Further, the seperation of entities and their properties
allows decomposing the product factors either regarding their entity or property. For example,
the entity Class can be decomposed into the entities Field and Method.

This addresses the common problem of the difficult decomposition of quality attributes. In
order to bridge the gap between the measurable properties of a software product and the
abstract quality aspects, Wagner et al. set the abstract quality aspects in relation to the product
factors. Concretely, product factors can either have a positive or negative Impact on quality
aspects. For example, the presence of the product factor Detail Complexity of Method
negatively affects the quality aspects Analysability and Maintainability. Further, the presence
of the product factor Conforming to Naming Convention of Class name positively affects the
quality aspects Analyzability and Testability.

For measuring the leaf product factors, Wagner et al. introduced the concept of a measure
(metric). Although some authors (i.e., Pressman 2010, p. 614f) see a subtle difference between the
terms metric and measure, we use the term metric in this article on behalf of both terms as
suggested byWagner (2013, p. 43). “Ameasure [metric] is a concrete description of how a specific
product factor should be quantified for a specific context” (Wagner et al. 2015, p. 105). For
example, the product factor Detail Complexity of Method is measured by the metric deep nesting.
There can be multiple metrics for one product factor and a metric further can be used for
quantifying multiple product factors. As “a concrete implementation of a measure [metric]”
(Wagner et al. 2015, p. 105) Instruments are used. The metrics are seperated from their instruments
in order to provide the possibility to collect data for metrics with different tools or manually.

2 http://www.iese.fraunhofer.de/de/customers_industries/automotive/referenzprojekt_QuaMoCo.html
3 https://portal.mytum.de/pressestelle/pressemitteilungen/news_article.2010-04-08.8067070550
4 http://www.siemens.com/entry/cc/en/
5 https://www.tu9.de/forschung/2183.php
6 https://www.de.capgemini.com/news/QuaMoCo-projektabschluss
7 http://www.itestra.de/expertise/research/forschungsprojekte/

818 Software Qual J (2018) 26:809–847

http://www.iese.fraunhofer.de/de/customers_industries/automotive/referenzprojekt_
https://portal.mytum.de/pressestelle/pressemitteilungen/news_article.2010-04-08.8067070550
http://www.siemens.com/entry/cc/en/
https://www.tu9.de/forschung/2183.php
https://www.de.capgemini.com/news/QuaMoCo-projektabschluss
http://www.itestra.de/expertise/research/forschungsprojekte/

For getting a complete quality evaluation of a software product, Evaluations are assigned to
quality aspects and product factors. The evaluations consist of formula which aggregate the
measured metrics from the instruments (for the product factors) as well as the evaluation results
caused by the impacts of the product factors on the quality aspects. The left side of Fig. 4
illustrates the so far discussed quality model concepts. On the right side, some concrete quality
aspects, product factors as well as metrics and instruments are shown. Here, it can be seen that
the product factorDetail Complexity of the entityMethod is measured by deep nesting which is
further determined by the quality assessment tool ConQAT. In addition, the product factor
Duplication of the entity Source Code Part is measured by clone coverage and clone overhead
which are both determined by ConQAT. Both product factors negatively impact the quality
aspects Analysability andModifiabilitywhich are both sub-quality aspects of the quality aspect
Maintainability. As follows, a more detailed example of a quality assessment is illustrated.

Example Figure 5 shows a limited quality assessment example of the Java Platform (version
6) with three metricsM1(#Doomed test for quality to NaN),M2 (#Lines of source code), andM3

(Floating Point equality) as well as one leaf product factor F1.1 (General expression applica-
bility of comparison expression). The example is taken from Wagner et al. (2015, p. 110f).

The values of the three metrics are: M1 = 6, M2 = 2 759 369 and M3 = 9. For ensuring the
comparability across different software products, Wagner et al. defined normalization metrics
(i.e., number of class, LoC) for normalizing the metrics. The normalization metrics were
defined by two measurement experts for each metric (Wagner et al. 2012a, p. 1138). The
metrics M1 and M3 in the example are normalized based on metric M2 which results in the

normalized metric M 4 ¼ M1
M2

¼ 2:17E−6 for M1 and M5 ¼ M 3
M 2

¼ 3:19E−6 for M3. As a result

of this normalization, the metrics M1 and M3 can be compared with other software products.
In the next step, the utility functions forM4 andM5 are defined whereas the utility of both is

represented by a decreasing function. For specifying the utility, each metric has a linear

Fig. 4 Quality model concepts (adapted according to Wagner et al. (2015)

Software Qual J (2018) 26:809–847 819

decreasing or increasing utility function according to its associated leaf product factor (Wagner
et al. 2012a, p. 1138). These utility functions provide a value between 0 and 1 whereas
thresholds for the maximal utility (1) and the minimal utility (0) are determined by a
benchmarking approach based on a large number of software products. The minimum and
maximum thresholds for M4 and M5 are min(M4) = 0, max(M4) = 8.50E − 6 and min(M5) = 0,
max(M5) = 3.26E − 6. Based on the defined thresholds, the utility values are 0.74 for M4

(U(M4)) and 0.89 for M5 (U(M5)). Figure 6 illustrates the utility function for metric M4 with
the two thresholds as well as the resulting utility value 0.74.

Finally, the utility values are aggregated based on their weights. The weights were assigned
based on expert opinion or available data (Wagner et al. 2015, p. 111). The assigned weight for
M4 is 0.25 wM 4ð Þ and 0.75 wM5ð Þ for M5. This means the metric M5 is three times more
important for determining the leaf product factor General expression applicability of compar-
ison expression (F1.1) as metric M4.

As a result, the aggregated utility value of this product factor (U(F1.1)) is 0.25 * 0.74 +
0.75 * 0.89 = 0.85. For determining the higher level product factors as well as quality aspects
(i.e., F1 (Functional Correctness)), the same aggregation principle can be applied. As a last
step, the aggregated utility values are mapped into a German ordinal school grade scale. The
school grade scale provides a range from 1 (best grade) to 6 (worst grade), whereas the used
thresholds are shown in Fig. 7.

For the application of the QuaMoCo approach, a tool chain which supports editing,
building, and adapting quality models, assessing software products as well as visualizing the
quality assessment results, was developed. The QuaMoCo tool chain8 is freely available under
the Apache license on the internet.

The tool chain consists of two main parts: the QuaMoCo quality editor and the quality
assessment engine (Deissenböck et al. 2011). The aim of the quality editor is to provide the
possibility to edit quality models by defining metrics, weights, or utility functions. The quality
assessment engine automates the quality assessment procedure and is based on the toolkit
ConQAT9 (version 2013.10 used in this article). ConQAT is a quality assessment toolkit which

8 http://www.QuaMoCo.de/
9 https://www.cqse.eu/en/products/conqat/overview/

Fig. 5 Quality assessment example (adapted according Wagner et al. 2015)

820 Software Qual J (2018) 26:809–847

http://www.quamoco.de
https://www.cqse.eu/en/products/conqat/overview/

integrates several state-of-the-art code analysis tools (i.e., FindBugs, Gendarme, PMD, FxCop)
and quality metrics.

4.2 Integration approach

This section presents the integration of the open quality model QuaMoCo and risk-based
testing. We chose approach 2 for the integration of QuaMoCo and risk-based testing because
the metrics in the QuaMoCo quality model were calibrated by benchmarking whole software
products (Wagner et al. 2015) and are therefore not appropriate for the usage on single
components (Approach 1).

Our integration approach limits to the programming language Java because we assumed to
focus the integration approach on a specific programming language. Java was chosen because
it ensures a huge repository of open source projects on which the integration approach can be
applied. This means that the integration approach only uses quality assessments based on the
Java quality model of QuaMoCo (Java module). An extension on other modules of QuaMoCo
(i.e., C#) is planned for possible future work.

In the next step, the used components for which the risk coefficient should be calculated must
be specified. We assumed classes of software products as components because, on the one hand,
Java software products are typically structured hierarchically in packages and classes. On the
other hand, QuaMoCo already provides the measured values for each metric on the class level.

As a result, the main principle of the integration approach is to analyze all metrics provided
by the Java quality model of QuaMoCo based on their values according to each class in order
to determine the probability factor of the risk-based testing concept. As already stated, the
impact factor is not determined based on the quality assessment results of QuaMoCo and must
be determined manually. We provide a suggestion for determining the impact factor manually.
Afterwards, the determination of the probability factor is presented (Section 4.2.1). Further, a
suggestion how to determine the impact factor in a manual way is outlined (4.2.2). Lastly, the
final integration approach for determining the risk coefficient is presented (4.2.3).

Fig. 6 Utility function (Wagner
et al. 2015)

Fig. 7 Interpretation model
(Wagner et al. 2015)

Software Qual J (2018) 26:809–847 821

4.2.1 Determination of the probability factor

As a first step, we investigated all 23 metrics provided by QuaMoCo (Java module) and
excluded those which were not appropriate for further usage (i.e., metrics which describe the
overall software product and do not represent relevant information for a class, i.e., number of
classes).

The remaining 13 metrics were divided in two groups. The first group (in the following
referred as Complexity Metrics) is represented by 10 general metrics which measure properties
of the source code directly for each class (i.e., nesting depth, number of methods, lines of code,
etc.). On the other hand, the second group (in the following referred as Rule Checking Metrics)
consists of metrics which are based on common rule checkers (i.e., FindBugs, Checkstyle, or
PMD). These instruments aim to look for defects in the code, to find common programming
flaws (i.e., empty catch blocks, unused variables, etc.), or to check if the code adheres to a
coding standard (FindBugs 2003; PMD 2015; Checkstyle 2001). These instruments typically
use defined rules for analyzing the code and provide their results as a list of findings.
Concretely, QuaMoCo contains 361 rules/metrics for FindBugs, 4 rules/metrics for PMD,
and 2 rules/metrics for Javadoc.

For further development of the integration approach, it is important to differentiate between
these two groups. Table 1 presents the selected metrics for both groups.

The basic idea of determining the probability factor is to calculate one factor for the
Complexity Metrics, which is named Complexity factor because all Complexity Metrics have
in common that the higher their value is the more complex the associated class is.

Furthermore, one factor is calculated for each, the Javadoc findings (Javadoc factor), the
PMD findings (PMD factor) as well as for the FindBugs findings (FindBugs factor). These
four factors (Complexity, Javadoc, PMD, and FindBugs) are finally used to calculate the

Table 1 Quality assessment metrics

Metrics Description

Complexity metrics

#FieldDeclarations Counts the number of field declarations for each class

#LocalVariableDeclarations Counts the number of local variable declarations for each class

#Methods Counts the number of methods for each class

#Statements Counts the number of source statements for each class

#Types Counts the number of types (i.e., classes, interfaces, enums) by counting
the occurrences of the corresponding keywords for each class

Fan-In Counts the number of classes depending on each class

LoC Counts the lines of code

NestingDepth Calculates the maximum nesting depth for each class

AvgMethodLenght Calculates the average method length for each class

UnitCoverage Probability that an arbitrarily chosen statement of a class is part of a clone

Rule checking metrics

FindBugs Findings Executes FindBugs rules and adds findings for rule violations

PMD Findings Runs the specified PMD rules and adds findings for rule violations

Javadoc Findings Analyses Javadoc comments in order to check if there is a Javadoc comment
at all and uses a heuristic to check if a comment is sufficient. Findings are
added for violations

822 Software Qual J (2018) 26:809–847

probability factor. As follows, the calculation of the different factors is outlined. The calcula-
tion is based on the suggestion of Felderer et al. (2012) for calculating the risk coefficient.
They propose to weight the used criteria for determining each factor.

Further, Felderer et al. (2012) suggest to use a range from 0 to 9 as a scale for the
probability and also for the impact factor. The idea behind this range from 0 to 9 is that the
probability can be seen as percentage, whereas the value 10 is skipped because we assume that
no risk item fails for sure. Natural numbers between 0 and 1 are suggested to be used for the
weights in order to see the weights as scaling factors.

Complexity metrics (Complexity factor) To calculate the complexity factor for each
class, all measured values for each metric and class are analyzed. The lowest
measured value of a metric is projected to 0 and the highest to 9. The remaining
values are interpolated to values between 0 and 9. As a result, every complexity
metric represents a value between 0 and 9 for each class. Afterwards, weights are
added to each metric in order to represent its importance. These weights can be freely
adapted according to the actual needs and the software product under investigation.
Later, we provide concrete recommendations for the weights. In the next step, the
interpolated values of all metrics for each class are summed up and divided by the
sum of the weights in order to provide the Complexity factor for each class.

Example complexity factor In the following, an example illustrates this procedure.
Table 2 shows the initial measured values for each metric and four classes. For
example, class B has two methods and 43 lines of code. Class A has a nesting depth
of 5 and 3 field declarations.

As a next step, the measured values for each metric are projected and interpolated on a scale
between 0 and 9. The following formula illustrates this projection for the scale value S(m, c)
whereas m represents the metric and c the class:

S m; cð Þ ¼ measured value m; cð Þ−lowest value mð Þð Þ* 9

highest value mð Þ−lowest value mð Þð Þ

Table 2 Measured metric values

Weight Metric values

Class A Class B Class C Class D

#FieldDeclarations 3 1 4 1

#LocalVariableDeclarations 17 1 21 1

#Methods 5 2 17 2

#Statements 78 6 42 3

#Types 1 1 5 1

Fan-In 1 0 2 0

NestingDepth 5 3 3 2

UnitCoverage 0 0 0 1

LoC 190 43 171 34

Software Qual J (2018) 26:809–847 823

As an example for metric “LoC” and class C:

S LoC;Cð Þ ¼ measured value LoC;Cð Þ−lowest value LoCð Þð Þ*
9

highest value LoCð Þ−lowest value LoCð Þð Þ ¼ 171−34ð Þ* 9

190−34ð Þ ¼ 7:9

In the case that highest value(m) = lowest value(m) and thus to avoid a division by zero, the
value 4.5 is assigned for S(m, c). Table 3 shows the final projected values for each metric and
each class.

The next step consists of adding weights (w), to each metric (m), and multiplying the
projected values (S(m, c)) with the weights. The determination of the weights is described later.

Sw m; cð Þ ¼ w mð Þ*S m; cð Þ

Table 3 Interpolated metric values

Weight Interpolated metric values

Class A Class B Class C Class D

#FieldDeclarations 6.00 0.00 9.00 0.00

#LocalVariableDeclarations 7.20 0.00 9.00 0.00

#Methods 1.80 0.00 9.00 0.00

#Statements 9.00 0.36 4.68 0.00

#Types 0.00 0.00 9.00 0.00

Fan-In 4.50 0.00 9.00 0.00

NestingDepth 9.00 3.00 3.00 0.00

UnitCoverage 0.00 0.00 0.00 9.00

LoC 9.00 0.52 7.90 0.00

Table 4 Complexity factors

Weight Weighted interpolated metric values

Class A Class B Class C Class D

#FieldDeclarations 0.5 3.00 0.00 4.50 0.00

#LocalVariableDeclarations 0.5 3.60 0.00 4.50 0.00

#Methods 0.8 1.44 0.00 7.20 0.00

#Statements 0.8 7.20 0.29 3.74 0.00

#Types 0.5 0.00 0.00 4.50 0.00

Fan-In 0.5 2.25 0.00 4.50 0.00

NestingDepth 1 9.00 3.00 3.00 0.00

UnitCoverage 0.8 0.00 0.00 0.00 7.20

LoC 1 9.00 0.52 7.90 0.00

6.4 5.55 0.59 6.23 1.13

824 Software Qual J (2018) 26:809–847

As an example for metric “LoC” and class C:

Sw LoC;Cð Þ ¼ w LoCð Þ*S LoC;Cð Þ ¼ 1*7:9 ¼ 7:9

Finally, all weighted values for each class are summed up and divided by the sum of the
weights to calculate the Complexity factor for each class C(c).

C cð Þ ¼
∑

last metric

m¼first metric
Sw m; cð Þ

∑
last metric

m¼first metric
w mð Þ

As an example for class A:

C Að Þ ¼ ∑ LoC
m¼#FieldDeclarations 3þ 3:6þ 1:44þ 7:2þ 0þ 2:25þ 9þ 0þ 9

∑ LoC
m¼#FieldDeclarations 0:5þ 0:5þ 0:8þ 0:8þ 0:5þ 0:5þ 1þ 0:8þ 1

¼ 5:55

Table 4 presents the final calculated complexity factors for each class.
As a result, every class is represented by a calculated complexity factor between 0

and 9.

C Að Þ ¼ 5:55 C Cð Þ ¼ 6:23
C Bð Þ ¼ 0:59 C Dð Þ ¼ 1:13

Rule checking metrics (FindBugs, PMD, Javadoc factors) The Rule Checking
Metrics consists of three different metrics (FindBugs findings, PMD findings,
Javadoc findings). These three metrics are very similar according to their provided
results. Each of them provides a set of findings for each investigated class. Hence,
the usage of them for calculating the probability factor is similar. The main
difference between them is that the metrics Javadoc findings and the PMD
findings are limited according to the used categories or rules for inspecting the
source code. In detail, the PMD findings provided by QuaMoCo uses the PMD
ruleset “Unused Code Rules” which consists of four rules. In addition, the
Javadoc findings applied by QuaMoCo consist of only two rules. In contrast,
the FindBugs findings are based on more than 400 different rules. Although there
are differing numbers of rules for these three metrics, the calculation of their
factors (PMD, Javadoc, and FindBugs factor) is identical. As a first step, the
findings for each rule are counted for each class and represented as percentage
according to the total number of findings for a rule. As a next step, the percent-
ages are projected and interpolated to a scale between 0 and 9. Now, the
interpolated findings are multiplied with weights and finally summed up to build
the corresponding factor for each class.

Example rule checking metrics For simplicity, the calculation in the following is shown in
a general way for the four PMD rules. Table 5 shows the number of PMD findings for four
classes A, B, C, and D.

Software Qual J (2018) 26:809–847 825

Next, Table 6 presents the findings as percentage for each class. For calculating the
findings as percentage (F(m, c)), the following formula is used, whereas m stands for
the used PMD rule and c for the class.

F m; cð Þ ¼ findings m; cð Þ
∑ c¼Class A

Class D findings m; cð Þ

As an example for the rule “UnusedLocalVariable” and Class B:

F Missing Documentation;Bð Þ ¼ findings UnusedLocalVariable;Bð Þ
∑ c¼Class A

Class D findings UnusedLocalVariable;Bð Þ ¼

¼ 4

12þ 4þ 0þ 6
¼ 0:18

As a next step, the percentages are projected and interpolated to a scale between
0 and 9. This procedure is based on the same formula which was used for
projecting the values for the Complexity factor. Table 7 presents the interpolated
values.

Now, the interpolated findings are multiplied with weights, like in the calculation
of the Complexity factor, and are summed up to determine the PMD factor for each

Table 5 PMD findings

Weight #Findings Total

Class A Class B Class C Class D

UnusedLocalVariable 1 12 4 0 6 22

UnusedFormalParameter 1 6 4 1 10 21

UnusedPrivateField 0.5 12 4 6 1 23

UnusedPrivateMethod 0 0 0 0 0 0

Table 6 PMD findings in percent

Weight #Findings in percent (0.01 = 1 %) Total

Class A Class B Class C Class D

UnusedLocalVariable 1 0.55 0.18 0.00 0.27 1.00

UnusedFormalParameter 1 0.27 0.19 0.05 0.49 1.00

UnusedPrivateField 0.5 0.53 0.17 0.26 0.04 1.00

UnusedPrivateMethod 0 0.00 0.00 0.00 0.00 0.00

826 Software Qual J (2018) 26:809–847

class as shown in Table 8. How the weights are determined is described later in this
section.

Finally, every class has a calculated PMD factor PMD(Class) between 0 and 9:

PMD Að Þ ¼ 7:20

PMD Bð Þ ¼ 2:80

PMD Cð Þ ¼ 0:81

PMD Dð Þ ¼ 5:37

As already mentioned, the same calculations are used for determining the Javadoc factor
JD(Class) and the FindBugs factor FB(Class). As a result, every class has three determined
factors of type PMD, FindBugs, and Javadoc between 0 and 9.

Determination of the weights As a last step, the weights for each metric must be deter-
mined. The weights for the metrics of the Complexity factor are determined based on common
literature on software complexity (i.e., Singh et al. (2011), Zhang (2009), Zimmermann et al.
(2008), Zimmermann et al. (2007), Gyimothy et al. (2005), Jureczko (2011), Huang and Liu

Table 7 PMD interpolated values

Weight Interpolated values

Class A Class B Class C Class D

UnusedLocalVariable 1 9.00 2.95 0.00 4.42

UnusedFormalParameter 1 4.50 2.86 0.00 9.00

UnusedPrivateField 0.5 9.00 2.39 4.04 0.00

UnusedPrivateMethod 0 0.00 0.00 0.00 0.00

Table 8 PMD weighted interpolated values

Weight Weighted interpolated values

Class A Class B Class C Class D

UnusedLocalVariable 1 9.00 2.95 0.00 4.42

UnusedFormalParameter 1 4.50 2.86 0.00 9.00

UnusedPrivateField 0.5 4.50 1.19 2.02 0.00

UnusedPrivateMethod 0 0.00 0.00 0.00 0.00

2.5 7.20 2.80 0.81 5.37

Software Qual J (2018) 26:809–847 827

(2013), Krusko (2003), Basili et al. (1995), Radjenovic et al. (2013)). Metrics suggested by
literature which are highly relevant for predicting defects were weighted higher than the others.

Hence, metrics which are highly relevant for predicting defects were weighted with 1 (only
the Lines of Code metric got an assigned weight of 1 because it was mentioned significantly
more often in the literature as other metrics). Metrics which were mentioned by at least one
author or contribution were weighted with 0.8. Lastly, metrics which were not mentioned were
weighted with 0.5.

The idea of using these values was that metrics which were highly relevant for predicting
defects are at least two times more important than metrics which were not mentioned by any
author or contribution (1 and 0.5). The weight 0.8 was chosen because we think that metrics
which were mentioned by at least one author or contribution rather should get a weight near to
metrics which are highly relevant (1) than to metrics which were not mentioned by any author
or contribution (0.5). Table 9 shows metrics which were mentioned by at least one author or

Table 9 Metrics relevant for predicting defects

Metric Description

Lines of Code Total lines of code

#Methods per Class Number of methods per class

Nesting depth Number control flow nesting levels (switch, else, do, etc.)

Coupling between Objects Number of classes coupled (field access, method call, etc.) to a given class

#Statements Count of semicolons in a file

#Line comments Number of line comments

Fig. 8 Integration concept

828 Software Qual J (2018) 26:809–847

contribution. The assigned weights for each metric of the probability factor are shown in
Fig. 8.

Due to the fact that the FindBugs instrument uses a huge base of rules, an analysis of ten
open source Java projects (Table 10) was conducted in order to determine the most violated
rules for FindBugs.

Concretely, these FindBugs rules are provided as a standard recommendation for determin-
ing the FindBugs factor. Therefore, these rules have an assigned weight of 1. Other FindBugs
rules which are violated can be freely added to the set of FindBugs rules and must be weighted
by the user of the further implemented tool support (standard weight 0.5).

The 12 most violated FindBugs rules which got an assigned weight of 1 are shown in the
following Table 11. Further, all ten software products were analyzed according to the occur-
rence of the four PMD rules. Based on the results, the weights for the four PMD findings were
assigned according to their frequency of occurrence. Due the fact that the Javadoc instruments
only uses two rules (missing documentation and insufficient comment), no analysis was
conducted. Based on the result of a study conducted by Dixon (2008), who states that both
the number of comments and their quality (i.e. no @return tag in Javadoc) are effective
predictors for defects, both are weighted with 1.

Final probability factor The final probability factor is calculated by summing up
each of the four determined factors (Complexity, Javadoc, PMD, and FindBugs
factor). Each factor has a weight in order to reflect its importance. For determining
the weights, we used the frequency of their usage in the QuaMoCo quality model and
recommendations of literature in the field of software complexity. Due to fact that the
QuaMoCo quality model mainly is based on FindBugs rules, we recommend to assign
a weight of 0.5 to the FindBugs factor.

Several contributions in the literature (i.e., Zhang (2009), Singh et al. (2011)) state that
complexity and size are important predictors for software defects; thus, we recommend a
weight for 0.3 for the Complexity factor. A weight of 0.1 is assigned to both the Javadoc and
PMD factor because they only provide two (Javadoc) and four (PMD) rules for analysis of the
source code and have therefore not the expressiveness as the other two factors. Of course, all
weights are just recommendations of us and can be manually adjusted by test managers,

Table 10 Software products

Software product Version / release LoC Size

OpenProj 1.4 148.264 Big

Sweet Home 3D 3.0 85.139 Medium

RSSOwl 1.2.4 82.258 Medium

Checkstyle 4.4 46.240 Medium

Log4j 1.2.16 43.018 Medium

Apache Tomcat 8.0.22 7.976 Small

TightVNC 1.3.10 6.874 Small

FCKeditor.java 2.6 5.187 Small

Twinkle 2.0 2.792 Small

OOMRM 1.5 663 Very small

Software Qual J (2018) 26:809–847 829

engineers, and other users based on their actual needs and characteristics of the investigated
software products. Finally, the probability factor (P) for a class (c) can be computed as follows:

P cð Þ ¼ 0:3*C cð Þ þ 0:1*JD cð Þ þ 0:1*PMD cð Þ þ 0:5*FB cð Þ

4.2.2 Determination of the impact factor

As stated earlier, the impact factor is not appropriate for being determined by the quality
assessment results provided by QuaMoCo. According to the literature (Felderer et al. 2012, p.
166), the impact factor must be determined manually by product managers or the customers
themselves based on the requirements documents (Felderer et al. 2012, p. 173).

For the sake of comprehensibility, the impact factor in our integration approach is described by
two criteria suggested by Felderer et al. (2012), namely Importance and Usage. The usage
describes the frequency of use by users (Felderer et al. 2012), whereas the importance criterion is
defined according to Van Veenendaal (2009) as criterion which describes the most critical areas
according to cost and consequences of defects. As suggested by Felderer et al. (2012), the impact
factor is also determined by using a scale from 0 to 9. In addition, also the usage frequency (Usage
criterion) and the defect consequence (Importance criterion) are rated with a scale from 0 to 9. The
used scale for determining the Usage criterion is based on Felderer et al. (2012, p. 178). They
provide a scale with textual values (used seldom, sometimes, average, often, highest) which are
projected to numeric values. We added the textual value “never” in order to utilize the whole
range of the scale. For determining the Importance criterion, a scale provided by Van Veenendaal
(2009, p. 8) is used as a basis. The scale assigns values to possible consequences of defects (defect

Table 11 Most violated FindBugs rules

FindBugs Rule Description #Findings

DLS_DEAD_LOCAL_STORE Dead store to local variable 92

DM_NUMBER_CTOR Method invokes inefficient Number constructor;
use static valueOf instead

68

MS_SHOULD_BE_FINAL Field isn’t final but should be 51

DM_DEFAULT_ENCODING Reliance on default encoding 50

EI_EXPOSE_REP2 May expose internal representation by incorporating
reference to mutable object

42

EI_EXPOSE_REP May expose internal representation by returning
reference to mutable object

41

SE_BAD_FIELD Non-transient non-serializable instance field in
serializable class

37

MS_PKGPROTECT Field should be package protected 35

ST_WRITE_TO_STATIC_FROM_
INSTANCE_METHOD

Write to static field from instance method 34

SIC_INNER_SHOULD_BE_STATIC Should be a static inner class 33

URF_UNREAD_FIELD Unread field 33

SF_SWITCH_NO_DEFAULT Switch statement found where default case
is missing

31

830 Software Qual J (2018) 26:809–847

is irrelevant, annoying, hindering, damaging or even catastrophic). Compared to the scale
provided by Van Veenendaal, we added the consequence “irrelevant” to utilize the whole range
of the scale. The scales (textual as well as their corresponding numeric values) used to rate the
usage and importance criteria are illustrated in Fig. 8.

In case of huge software products, the rating should be done on the package or component
level. The subordinate classes are then rated with the same value as their super ordinate
package or component.

These two criteria are used as factors to determine the impact factor. The weight,
representing the importance of each factor, must be determined manually by product managers
or the customers themselves for each individual software product (Felderer et al. 2012). A
weight of 0.5 for both factors is suggested by us as a standard value. Considering the two
factors Importance (Impo) and Usage (U), the impact factor (I) can be calculated as following,
where c stands for the corresponding class

I cð Þ ¼ 0:5*Impo cð Þ þ 0:5*U cð Þ

4.2.3 Determination of the risk coefficient

After the probability and impact factor are determined, the final risk coefficient can be
calculated by multiplying the probability and impact factor (R(c) = P(c) * I(c)).

As a result, every class has an assigned risk coefficient which indicates its risk. Now, the
classes can be sorted according to the risk coefficient, as suggested by Felderer et al. (2014a).
This ensures the possibility of starting the software testing procedure with those classes which
correspond to the highest risk coefficients. Figure 8 illustrates the final integration approach
including all used metrics and factors as well as weights for determining the probability and
impact factor in order to computate the risk coefficient.

4.3 Tool implementation

This section presents the implementation of tool support for the integration approach described
in the previous section. The tool was developed with Eclipse Luna10 and the programming
language Java11. The aim was to develop a platform-independent, extendible, and customiz-
able tool support which can be used for computing the risk coefficient based on any quality
assessment conducted with QuaMoCo (module Java).

Figure 9 shows the QuaMoCo tool chain with its main components. On the left side, the
QuaMoCo quality editor is shown which generates the ConQAT analysis configuration. The
toolkit ConQAT then uses this configuration, the source code as well as optional findings of
manual assessments to generate the final quality assessment report. QuaMoCo provides the
possibility to export the quality assessment report as an XML file. The tool support uses this
XML file to calculate the different factors. All different weights and factors can be changed
and customized in the tool. After the computation is completed, the tool shows all classes of
the investigated software product ranked by the final risk coefficient. Furthermore, the
probability and impact values as well as the values of each calculated factor are shown in

10 https://eclipse.org/luna/
11 https://www.java.com/en/

Software Qual J (2018) 26:809–847 831

https://eclipse.org/luna/
https://www.java.com/en/

separate columns. Note that the final risk coefficient is normally only relevant for ranking, but
its difference to other risk coefficients cannot directly be interpreted. For this purpose, the
decomposition into factors is provided. Moreover, the results can be exported as an Excel file
for possible further usage. One can now start testing with those classes with the highest risk
coefficient. Figure 9 illustrates this procedure and shows a screenshot of the results based on a
quality assessment of the testing framework JUnit. The implemented tool is available online at
http://bit.ly/1QGhGwJ.

5 Study design

To investigate the effectiveness of the developed integration approach, we conducted a case
study on five different open source software products. This section presents the applied research

.xml

Fig. 9 Tool support

832 Software Qual J (2018) 26:809–847

http://bit.ly/1QGhGwJ

design which follows the guidelines for conducting and reporting case study research proposed
by Runeson and Höst (2009). We first present the research questions (Section 5.1) addressed in
this article. Afterwards, we illustrate the case selection (Section 5.2), data collection, analysis,
and validity procedures to answer the research questions (Sections 5.3 to 5.5).

5.1 Research questions

Section 4 presented an integration approach of quality assessments and risk-based testing on
the basis of the quality model QuaMoCo. The integration approach is limited to the program-
ming language Java and focuses on the risk assessment of classes. As a result, all classes of the
software product under test have an assigned risk coefficient which can be used for further test
prioritization. In addition, the integration approach was implemented in a tool (see
Section 4.4). Typically, a user of the tool support starts testing with those classes with the
highest risk coefficients (risk-based testing strategy). Therefore, the developed integration
approach works effectively if the classes with the highest risk coefficients of a software
product are those classes where the most defects are located and the consequence of a defect
in these classes is higher than in classes with lower risk coefficients.

In order to provide further empirical evidence for researchers and get relevant insights for
practitioners, the developed integration approach is investigated on the basis of the following
two research questions.

(RQ1) Is there a relationship between the risk coefficient and the number of defects of a
class? This research question investigates the relationship between the ranking of all
analyzed classes based on the risk coefficient and the ranking of all analyzed classes
based on the number of defects.

(RQ2) How is the performance of a risk-based testing strategy compared with a line of code-
based testing strategy? As research showed (i.e., Zimmermann et al. (2007, 2008),
Gyimothy et al. (2005), Jureczko (2011)), lines of code act as a good predictor for
defects in classes. Therefore, this research questions compares a test strategy based on
the risk coefficient (starting testing with classes with the highest risk coefficients)
with a test strategy based on the lines of code (starting testing with classes with the
most lines of code) according to their performance (testing the “right” classes (those
with defects) first)?

To answer these two research questions, the developed integration approach is applied for
selected releases of five software products. First, a quality assessment based on QuaMoCo is
conducted for these selected releases. Grounded on these quality assessments, the tool support
is used to apply the integration approach in order to calculate risk coefficients for each class of
the selected releases. These calculated risk coefficients of each class are then further analyzed
according to the number of corresponding defects which were reported until the latest stable
release in order to answer the research questions.

As we had no sufficient knowledge to determine the impact factor for the different classes
and components of each software product, we assumed the impact factor to a constant value
(5) for all classes in this study. Hence, the risk coefficient in this study is the result of the
probability factor multiplied with a constant value. This means the risk coefficient in our study
is just a multiple of the probability factor and therefore describes the probability whether a
class is defect-prone or not.

Software Qual J (2018) 26:809–847 833

5.2 Case selection

The following five open source software products were selected as units of analysis in our case
study: JUnit12, Mockito13, Apache Commons IO14, Apache PDFBox15, and Google Guava16.
The five software products were selected because they fulfill the requirements of providing
source as well as binary files and all necessary libraries for compilation. Table 12 shows the
software products with their latest stable release, the lines of code and a short description. All
five software products and their releases are hosted on GitHub. GitHub17 currently describes
itself as the “world’s largest code host” (GitHub Inc. 2008b) and is the single largest host for
Git18 repositories (Chacon and Straub 2014, p. 195). Git is a free and open source distributed
version control system (Git 2005) which provides several different features for maintaining
and sharing software code (Chacon and Straub 2014). A repository is a directory where Git
stores code, text or image files of projects (Orsini 2013). The words “version” and “release”
are used as synonyms in the further course of this article.

5.3 Data collection procedure

The case study is based on the source code and the information about defects of the selected
software products. To determine the number of defects for each software product’s class,
features provided by GitHub were used. One feature is that GitHub uses a bug tracker called
“Issues” where tasks and defects are tracked. A further feature provided by Git is the ability to
“tag” specific points in history of a software code. Therefore, the code of different releases and
versions can be tagged. This makes it comfortable to gather the code of different software
versions and releases. In addition, every change in the software code is represented by a
“commit.” A commit provides, besides the information of the change, also additional infor-
mation like the commit’s author, the date of the commit, the commit message, and the changed
files (classes). Therefore, we decided to use the commits provided by GitHub in order to
determine the defects of each software product’s class.

As a first step, we had to select a release in the past of each software product in which the
developed integration approach could be applied and the risk coefficients could be calculated
by the tool support. For determining this release in the past, we tried to ensure that the same
number of major releases were between this selected release in the past and the latest stable
release for all five software products. Due to the fact that each software product used another
procedure for defining releases (i.e., 1.0, 1.1 or 1.1.1, 1.1.2), it was not explicitly clear for each
software product to select the release in the past. To solve this problem, we chose the release in
the past based on two prerequisites. First, the chosen release in the past had to provide source
as well as binary files or had to be at least compileable to get the binaries. For conducting the
necessary quality assessment with QuaMoCo, source and binary files of the software product
are needed. Second, the chosen release in the past had to ensure a minimum of ten commits
between this release and the latest stable release. Based on these prerequisites, the following

12 http://junit.org/
13 http://mockito.org/
14 https://commons.apache.org/proper/commons-io/
15 https://pdfbox.apache.org/
16 https://code.google.com/p/guava-libraries/
17 https://github.com/
18 https://git-scm.com/

834 Software Qual J (2018) 26:809–847

http://junit.org
http://mockito.org
https://commons.apache.org/proper/commons-io/
https://pdfbox.apache.org
https://code.google.com/p/guava-libraries/
https://github.com
https://git-scm.com

releases in the past (Column “Selected Release” in Table 13) and the following range of
releases to determine the defects (column “Releases Defects” in Table 13) were chosen for the
case study.

We then determined the defects for each class by mining each commit in the defined range
of releases, as Fig. 10 illustrates. Every commit was automatically checked whether the word
“bug” was in the commit header or the commit message. The term “bug” was used because a
large-scale study on tens of thousands of GitHub software projects (Bissyande et al. 2013)
found out that the most popular tag used in GitHub issue reports is bug. Hence, we think that
most programmers also use the term bug to commit defects. In the next step, the commits were
manually analyzed and commits which did not indicate a defect (i.e., debugging related
commits or commits which address an issue which is not related to a defect) were removed.
From the remaining commits which indicate a defect, the number of defects for each class was
determined by counting how often each class was listed in the selected range of releases.
Finally, a list of all classes of the selected releases (for each software product) with its
associated number of defects was available.

Classes which were added to the software product after the selected release were excluded
from the analysis. For example, release 10.0 is selected for conducting a quality assessment
and further for analysis by the tool, containing classes A, B, C, and D. Class E is added in
release 11.0 and is associated with a defect. In case, the latest stable release is 18.0, and class E
is listed as a defect-prone class. Since class E did not exist in the selected and analyzed release
10.0, there is no computed risk coefficient for this class. Therefore, classes which did not exist
in the selected release were excluded from the analysis.

As a next step, a quality assessment of the selected releases in the past of each software
product had to be conducted by QuaMoCo to provide the necessary XML file which is needed
by the tool support to calculate the corresponding risk coefficients of each class. The XML file
provided by the quality assessment was then imported in the tool support in order to calculate
the risk coefficients for each class of the selected releases. Finally, all classes of the selected

Table 12 Selected software products

Software product Latest stable release LoC Description

Apache Commons IO 2.1 23.455 IO library for java

Apache PDFBox 1.8.9 135.658 Java library for pdf documents

Google Guava 18.0 128.302 Utility and collection library for java

JUnit 4.12 38.005 Testing framework

Mockito 1.10.19 23.297 Testing framework

Table 13 Software versions

Software product Selected release Releases DEFECTS

Apache Commons IO 1.4 1.4–2.1

Apache PDFBox 1.0.0 1.0.0–1.8.9

Google Guava 10.0 10.0–18.0

JUnit 4.6 4.6–4.12

Mockito 1.0 1.0–1.10.19

Software Qual J (2018) 26:809–847 835

releases had a calculated risk coefficient which can be used for further analysis with the
corresponding number of defects for each class.

Figure 10 graphically sketches this procedure exemplarily for the software product Google
Guava. Here, the range of selected releases starts by release 10.0 (selected release) and ends
with release 18.0. All commits which were committed in this range of releases are analyzed if
the word “bug” is in the commit header or message. The resulting commits are further
analyzed manually if they are associated with real defects. Commits which did not indicate
a defect are excluded for the further analysis. In the next step, the number of defects for a class
is determined by counting how often a class is listed in the remaining commits. For example, if
class A is mentioned in five commits, five defects are assigned to class A. Figure 10
exemplarily shows two commits which contain the word “bug”. For the left commit in
Fig. 10, the corresponding classes are “CharStreamsTest” and “CharStreams.” Hence, both
classes are associated with one defect (if these classes are not mentioned in any other commit
in the defined range of releases). A quality assessment is then conducted for release 10.0, and
the resulting XML file is used for the tool support in order to calculate the risk coefficient for
each class. Finally, each class of the software product Google Guava has a computed risk
coefficient.

The tool support was configured as follows. The values of the weights, which were
presented in Section 4, were used. All findings provided by the PMD and Javadoc analyses
were used. Further, all metrics from the complexity factor were included in the analyses.

The FindBugs factor was determined by using the five findings which had the highest
number of findings plus findings which were suggested by the reference set, independently of
how many findings they had. As already mentioned before, also the weights for the FindBugs
factor were not changed. All rules which were violated and provided by the reference set got
the weight 1 and the others 0.5.

Fig. 10 Procedure

836 Software Qual J (2018) 26:809–847

As stated, the impact factor of the risk coefficient must be typically determined
manually (Felderer et al. 2012) and depends strongly on the perspective from which
the consequences are determined (Redmill 2004). Thus, the determination of the
impact factor is usually done by managers, strategists, customers or users (Redmill
2004). As a result, the impact factor is assumed to a constant value (5) for all classes
in this study. We had no sufficient knowledge to determine the impact factor for the
different classes and components of each software product. Hence, the risk coefficient
in this study is the result of the probability factor multiplied with a constant value.
This means the risk coefficient is just a multiple of the probability factor and,
therefore, describes the probability whether a class is defect-prone or not. As a ,
classes with high risk coefficients should have the most defects in it.

5.4 Analysis procedure

The analysis was mainly conducted with quantitative methods. As stated in the
previous section, classes with a high risk coefficient should have the most defects
in it because the risk coefficient in this study describes only the probability factor as
the impact factor is set to a constant value. To answer research question RQ1, the
relationship between the risk coefficient and the associated number of defects for each
class is analyzed.

In the literature, several methods for analyzing relationships (e.g., logistic regres-
sion (Basili et al. 1995) or Spearman rank correlation (Singh et al. 2011)) were
proposed. Due to the fact that the tool ranks the classes according to their risk
coefficient, an appropriate way of answering research question RQ1 is Spearman’s
rank correlation coefficient (Spearman 1904). In detail, the range of the Spearman’s
correlation coefficient (ρ) is between −1 and 1, whereas 1 means the two variables
under study are perfectly concordant (positive correlated), −1 means they are perfectly
discordand (negatively correlated), and 0 means that there is no relation between the
two variables under study (Grzegorzewski and Ziembinska 2011). The values between
−1 and 0 as well as between 0 and 1 provide a relative indication of the degree of the
correlation between the two variables under study (Grzegorzewski and Ziembinska
2011). In order to determine the significance of the correlation coefficient, the p value
must be calculated (McDonald 2014). The p value represents the probability that the
results occurred by chance (Spearman 1904; McDonald 2014). We assumed a signif-
icance level of 0.05, meaning all results which had a p value smaller than 0.05 were
assumed to be significant in the case study.

To address research question RQ2 which deals with comparing a test strategy based on the
risk coefficient (risk-based testing strategy) with a test strategy based on the lines of code (lines
of code-based testing strategy), the same range of software releases and the same set of
determined defects as for research question RQ1 were used.

5.5 Validity procedure

As suggested by Runeson and Höst (2009), threats to validity according to construct validity,
reliability as well as conclusion and external validity were analyzed. In order to address
common threats to validity, countermeasures were taken. The threats to validity are discussed
in Section 6.3.

Software Qual J (2018) 26:809–847 837

6 Results and discussion

In this section, we answer the two research questions based on the studied cases. For each
research question, we present the results as well as discuss the findings. Finally, threats to
validity are discussed. The files which include all data and computations are available at
https://git.uibk.ac.at/c703409/sqm-rbt.

6.1 Is there a relationship between the risk coefficient and the number of defects
of a class? (RQ1)

To answer the first research question, we analyzed the risk coefficients (impact factor is
assumed to be constant) and the number of defects (#defects) for each class of the analyzed
software releases. For calculating the Spearman correlation coefficient, first all values of the
risk coefficient and all values of the associated number of defects were ranked independently
with the same ranking scheme (either from smallest to largest or from largest to smallest)
(Grzegorzewski and Ziembinska 2011), for each class. In the case that some classes were
ranked equal, each class got an average rank (Sharma 2005).

All five correlation coefficients indicate a low (Taylor 1990) positive correlation
and are significant (p value below 0.05). In conclusion, the results show that a
positive relationship between the ranking of the classes based on the risk coefficient
and the ranking of the classes based on the number of defects exists. Meaning, the
higher the rank of a class (based on the risk coefficient), the higher is the associated
number of defects for that class.

In addition, we calculated the correlation between the ranking of the classes based on the
lines of code (LoC) and the ranking of the classes based on the number of defects (#defects).
As expected (according to the literature on software complexity (Section 4.2.1)), the results
indicate a low positive and significant correlation between the ranking of the classes based on
the lines of code and the ranking of the classes based on the number of defects (correlation
coefficients between 0.11 and 0.25).

Table 14 shows the calculated Spearman correlation coefficients (ρ), the associated
p values, and the number of observations (n) for both testing strategies (risk-based and line
of code-based).

According to these results, both testing strategies seem to be consistent, showing no
significant differences referring to the correlation with the number of defects. Therefore, the
next subsection compares the performance of both testing strategies in more detail.

Table 14 Spearman’s correlation coefficient

Software product Versions risk coeff. & #defects LoC & #defects n

ρ p value ρ p value

Apache Commons IO 1.4–2.1 0.45 0.00008 0.24 0.041 72

Apache PDFBox 1.0.0–1.8.9 0.18 0.0001 0.11 0.021 433

Google Guava 10.0–18.0 0.21 0.0022 0.24 0.00001 317

JUnit 4.6–4.12 0.16 0.013 0.18 0.0055 247

Mockito 1.0–1.10.19 0.23 0.028 0.25 0.014 95

838 Software Qual J (2018) 26:809–847

https://git.uibk.ac.at/c703409/sqm-rbt

6.2 How is the performance of a risk-based testing strategy compared with a line
of code-based testing strategy? (RQ2)

To answer the second research question, we used the selected software releases which were
analyzed by the tool and applied both the risk-based testing strategy and the line of code-based
testing strategy. By applying a risk-based testing strategy, testing is started with those classes
with the highest risk coefficients (impact factor is assumed to be constant). Hence, all classes
are tested, based on their calculated risk coefficients in descending order. In contrast, a line of
code-based testing strategy starts testing with those classes with the most lines of code. For
both testing strategies, we analyzed how many defects each tested class contained. The tested
classes as well as the associated number of defects for each class were further cumulated. To
illustrate the results, we used diagrams which show the cumulated number of tested classes on
the x-axis and the cumulated associated number of defects on the y-axis. As a result, the
diagrams show the distribution of the defects to the cumulative share of tested classes. In the
following, we present the results for each of the five analyzed software products. The dashed
black line in each diagram represents a testing strategy based on the lines of code, and the solid
blue line as testing strategy based on the risk coefficient.

Figure 11 illustrates the two testing strategies for the software product JUnit (release 4.6
with 247 classes). Although a testing strategy based on the lines of code (start testing of classes
with the most lines of code) outperforms a testing strategy based on the risk coefficient (start
testing of classes with the highest risk coefficient), nearly over the entire testing process,
applying a risk-based testing strategy results in finding all defects (6) earlier. Eighty-three
percent of all defects are found by testing 13 % of the classes when a risk-based testing
strategy is applied, whereas the same amount of defects is found by testing only 6 % of the
classes when using a test strategy based on the lines of code.

Also in the case of the software product Mockito (version 1.0 with 95 classes), a test
strategy based on the lines of code outperforms at the beginning a risk-based testing strategy.
Testing 17 % of all classes results in finding 63 % of the defects when applying a risk-based
test strategy and finding 75 % of the defects when applying a lines of code-based testing
strategy. For finding all defects (8), a risk-based testing strategy requires to test 44 % of all
classes whereas 50 % of all classes are needed to test when applying a line of code-based
testing strategy. The diagram with the two testing strategies is shown in Fig. 12.

A comparison of the two testing strategies for the software product Google Guava (version
1.0 with 317 classes) is shown in Fig. 13. The diagram shows a similar trend, as the previous
two diagrams, according to the two testing strategies. At the beginning, a line of code-based
testing strategy outperforms a risk-based testing strategy. For finding 88 % of all defects, 66 %

0%

20%

40%

60%

80%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Cu
m

ul
a�

ve
 sh

ar
e

of
 b

ug
s

Cumula�ve share of classes

risk coefficient

LoC

Fig. 11 Risk coefficient vs. LoC –
JUnit (r4.6-r4.12)

Software Qual J (2018) 26:809–847 839

of all classes must be tested when applying a risk-based testing strategy whereas only 52 %
must be tested when applying a line of code-based testing strategy. However, for finding all
defects (48), the risk-based testing strategy is more efficient than the strategy based on the lines
of code.

The analysis of the last two software products, Apache Commons IO (version 1.5 with 72
classes) and Apache PDFBox (version 1.0.0 with 433 classes), revealed a different picture as
the previous three diagrams. The comparison of the two testing strategies shows for both
software products that a testing strategy based on the risk coefficient outperforms a testing
strategy based on the lines of code over the entire testing process. Finding all defects (6)
requires testing 13 % of the Apache Commons IO classes for a risk-based testing strategy
whereas testing 47 % of the classes is needed when applying a lines of code-based testing
strategy. Testing 66 % of Apache PDFBox’s classes results in finding all defects (18), whereas
73 % are needed when starting testing with those classes which have the most lines of code.
Figures 14 and 15 show the diagrams for the two software products Apache Commons IO and
Apache PDFBox.

The results show that, although a testing strategy based on the lines of code outperformed a
risk-based testing strategy in three out of five software products nearly over the entire testing
process, applying a risk-based testing strategy resulted in finding all defects of the five
software products earlier than applying a lines of code-based testing strategy. Table 15 shows
the cumulated percentage of classes needed to test for finding all defects for both testing
strategies. For finding all defects, on average 51.6 % of the classes must be tested by applying
a risk-based testing strategy. In contrast, 61.8 % (on average) of the classes must be tested
when applying a line of code-based testing strategy. For finding on average 80 % of all defects,
a risk-based testing strategy requires on average test coverage of 30 % (classes).

To summarize, a risk-based testing strategy clearly outperforms a testing strategy based on
the lines of code according to find all defects earlier.

0%

20%

40%

60%

80%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Cu
m

ul
a�

ve
 sh

ar
e

of
 b

ug
s

Cumula�ve share of classes

risk coefficient

LoC

Fig. 12 Risk coefficient vs. LoC –
Mockito (v1.0-v1.10.19)

0%

20%

40%

60%

80%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Cu
m

ul
a�

ve
 sh

ar
e

of
 b

ug
s

Cumula�ve share of classes

risk coefficient

LoC

Fig. 13 Risk coefficient vs. LoC -
Google Guava (v10.0-v18.0)

840 Software Qual J (2018) 26:809–847

6.3 Threats to validity

In this section, we discuss threats to validity of our results and the applied countermeasures.
Referring to Runeson and Höst (2009), we discuss threats to the construct validity, reliability,
conclusion validity, and external validity of our case study along with countermeasures taken
to reduce the threats.

6.4 Construct validity

Construct validity reflects to what extent the phenomenon under study really represents what
the researchers have in mind and what is investigated according to the research questions. In
order to avoid threats to construct validity, we first defined and discussed all relevant terms and
concepts in Section 2. We explicitly defined risk in the context of risk-based testing as software
defects or defects to ensure a common understanding about this term in the case and research
context. The developed integration approach is further grounded on the defined terms and
concepts. Also, the research questions were then formulated based on these defined terms and
concepts. Moreover, the development of the integration approach was mainly done in a
methodological way. The proposed factors, metrics, and values of the weights were determined
based on the existing body of literature and open source analysis. Nevertheless, one threat to
construct validity is the used weight values of the metrics for the complexity factor (1, 0.8, and
0.5). Thus, construct validity should be improved by conducting a sensitivity analysis of the
used values of the weights. This also applies for the used weight values of the metrics for the
PMD, FindBugs, and Javadoc factors as well as their initial weighting for determining the
probability factor.

0%

20%

40%

60%

80%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Cu
m

ul
a�

ve
 sh

ar
e

of
 b

ug
s

Cumula�ve share of classes

risk coefficient

LoC

Fig. 14 Risk coefficient vs. LoC -
Apache Commons IO (1.4–2.1)

0%

20%

40%

60%

80%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Cu
m

ul
a�

ve
 sh

ar
e

of
 b

ug
s

Cumula�ve share of classes

risk coefficient

LoC

Fig. 15 Risk coefficient vs. LoC -
Apache PDFBox (v1.0.0-v1.8.9)

Software Qual J (2018) 26:809–847 841

In addition, GitHub provides a strict guideline how issues should be fixed (GitHub, Inc.
2008c). However, there is no proof that every user uses this procedure. Further, not every issue
indicates a defect; there are also other tasks which are addressed by opening and closing issues.

Therefore, all classes which were assumed to be defect-prone were analyzed manually to
reduce the amount of false positives. Furthermore, there is no proof that all defects in the
software products were closed with a corresponding commit.

Moreover, we only used the word bug to determine the commits which were assumed to
deal with defects. Therefore, commits which deal with defects but do not include the word bug
in the commit header or message (i.e., commits which use the words “defect,” “fault,”
“failure,” or “issue” but not the word bug) were not considered in our analysis. If the commit
header or message would also be checked if it contains other words (i.e., “defect,” “fault,”
“failure,” or “issue”), the resulting number of commits which had to be analyzed would be too
large for a manual analysis. So a manual investigation (as we did in our analysis), if a commit
is associated with a real defect, is not feasible when more words are used. As mentioned above,
not every commit indicates a defect (there are also other tasks which are addressed by
commits). Therefore, the number of false positives would be too large when more words are
considered. As a result, we decided to only use the word bug and to check each commit
manually in order to focus on real defects. Hence, this is an essential threat to construct validity
which must be considered in interpreting the results and should be improved by further work.

In addition, GitHub does not provide any information about the criticality/severity of the
committed defects. Hence, an important threat to construct validity is that the defects consid-
ered in the study might not have the same level of criticality/severity. Attention in interpreting
the results must be paid based on the mentioned facts. Moreover, it is possible that defects in
the software products were not fixed before the analysis was conducted.

Lastly, a major threat to construct validity is the fact that we had no suitable knowledge to
determine the impact factor. Hence, we assumed the impact factor to a constant value. As a
result, we actually use the probability factor (as the risk coefficient is just a multiple) in our
case study since the impact factor is constant.

6.5 Reliability

Reliability focuses on whether the data are collected and the analysis is conducted in
a way that it can be repeated by other researchers with the same results. This is a
threat in any study using qualitative and quantitative data. In order to ensure reliabil-
ity, the data collection, data processing, and data analyses procedures were well
documented. We explicitly documented which software products and releases were

Table 15 Classes needed to test for finding all defects

Software product Versions LoC strategy (%) RBT strategy (%)

Apache Commons IO 1.4–2.1 47 10

Apache PDFBox 1.0.0–1.8.9 73 66

Google Guava 10.0–18.0 89 83

JUnit 4.6–4.12 60 55

Mockito 1.0–1.10.19 50 44

Total average 63.8 51.6

842 Software Qual J (2018) 26:809–847

used for the case study and exactly described the procedure for mining the commits
(i.e., used words and manual investigation).

6.6 Conclusion validity

Conclusion validity focuses on whether one can be sure that the used treatment of an
experiment really is related to the outcome observed. Hence, conclusion validity is of concern
when there is a statistically significant effect on the outcome. To address threats according to
conclusion validity, we calculated the p value and set the significance level to 5 % in order to
minimize the probability that the results occurred by chance.

6.7 External validity

External validity is concerned with to what extent it is possible to generalize the findings and
to what extent the findings are of interest to other people outside the investigated cases. Due to
the usage of a quality model based on the programming language Java and the analysis of only
Java open source software products, one should be careful by generalizing the results on other
programming languages like C# or commercial software products. Further, the used quality
model provided by the QuaMoCo Tool Chain is a hierarchical quality model. Therefore, the
results cannot be generalized without concerns to all groups of quality models. However, the
usage of quality assessments based on a hierarchical quality model in risk-based testing is most
beneficial because hierarchical quality models are the most predominant group of quality
models (Wagner et al. 2015). Moreover, the integration approach is limited to the class testing
level. A generalization on other testing levels (i.e., system testing level) seems, based on the
results of this case study, promising but must be further investigated.

7 Conclusion and future work

In this article, we explored the integration of quality models and risk-based testing. Therefore,
we first presented two generic approaches showing how quality assessments based on quality
models can be integrated into risk-based testing. We further illustrated a concrete integration of
quality assessments and risk-based testing on the basis of the open quality model QuaMoCo.
In addition, we implemented the integration approach as a tool which can be used by
practitioners in the risk assessment phase of a risk-based testing process.

A case study of the developed integration approach based on five open source products
showed that a risk-based testing strategy outperforms a line of code-based testing strategy
according to the number of classes which must be tested in order to find all defects. On
average, all defects of the five analyzed software products were found by testing 51.6 % of all
classes when a risk-based testing strategy was applied. In contrast, 63.8 % of the classes had to
be tested, on average, when a testing strategy based on the lines of code was applied. In
addition, a significant positive relationship between the risk coefficient (impact factor assumed
to be constant) and the associated number of defects of a class was found. Hence, the case
study presented in this article showed a quite sufficient and promising result which constitutes
the motivation of the following future work.

First, we intend to perform additional case studies as well as comprehensive field studies,
where the developed approach and its tool implementation are applied in an industrial context by

Software Qual J (2018) 26:809–847 843

testers. Second, we plan to extend the approach to other programming languages and other types
of components besides classes. Third, we want to compare our risk-based testing strategy with
other testing strategies (e.g., complexity-based testing strategy). Finally, we plan to improve tool
support, for instance with functionality to automatically generate stubs for the tested components.

Acknowledgments Open access funding provided by University of Innsbruck and Medical University of
Innsbruck. This work has been supported by the project QE LaB – Living Models for Open Systems (www.
qe-lab.at) funded by the Austrian Federal Ministry of Economics (Bundesministerium für Wirtschaft und Arbeit).
We thank Stefan Wagner for providing us with infos regarding QuaMoCo.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and repro-
duction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were made.

References

Al-Qutaish, R. E. (2010). Quality models in software engineering literature: an analytical and comparative study.
Journal of American Science, 6(3), 166–175.

Basili, V. R., Briand, L., &Melo, W. L. (1995). Technical report (CS-TR-3443, UMIACS-TR-95-40): a validation
of object-oriented design metrics as quality indicators. College Park: University of Maryland, Department of
Computer Science.

Bissyande, T. F., Lo, D., Jiang, L., Reveillere, L., Klein, J., & and Le Traon, Y. (2013). Got issues? Who cares
about it? A large scale investigation of issue trackers from GitHub. 24th international symposium on
software reliability engineering (ISSRE). Pasadena: IEEE. Retrieved December 12, 2015, from http://ink.
library.smu.edu.sg/sis_research/2087

Boehm, B. W., Brown, J. R., Kaspar, H., Lipow, M., McLeod, G. J., & Merrit, M. J. (1978). Characteristics of
software quality. Amsterdam: North Holland Publishing.

Catal, C., Diri, & Banu (2007). Software fault prediction with object-oriented metrics based Artifical immune
recognition system. In J. Münch & P. Abrahamsson (Eds.), Product-focused software process improvement,
proceedings 8th international conference, PROFES 2007, LNCS 4589 (pp. 300–314). Berlin: Springer.

Cavano, J. P., & McCall, J. A. (1978). A framework for the measurement of software quality. ACM Sigmetrics
Performance Evaluation Review, 7(3–4), 133–139.

Chacon, S., & Straub, B. (2014).ProGit: everything you need to know about Git (Ebook). (2.).NewYorkCity: Apress.
Retrieved June 16, 2015, from https://progit2.s3.amazonaws.com/en/2015-05-31-24e8b/progit-en.519.pdf

Checkstyle. (2001). checkstyle. Retrieved May 16, 2015, from checkstyle: http://checkstyle.sourceforge.net/
Deissenböck, F., Heinemann, L., Herrmannsdörfer, M., Lochmann, K., & Wagner, S. (2011). The Quamoco tool

chain for quality modeling and assessment. Proceedings of the 33rd International Conference on Software
Engineering, ICSE 2011, May 21–28 (pp. 1007–1009). Waikiki: ACM.

Deissenböck, F., Juergens, E., Lochmann, K., & Wagner, S. (2009). Software quality models: purposes, usage
scenarios and requirements. ICSE Workshop on Software Quality, WOSQ ‘09 (pp. 9–14). Vancouver: IEEE
Computer Society.

Deissenböck, F., Wagner, S., Pizka, M., Teuchert, S., & Girard, J.-F. (2007). An activity-based quality model for
maintainability. International Conference on SoftwareMaintenance, ICSM2007 (pp. 184–193). Paris, France: IEEE.

Dixon, M. (2008). An objective measure of code quality. Technical report.
Erdogan, G., Li, Y., Runde, R. K., Seehusen, F., & Stolen, K. (2014). Approaches for the combined use of risk

analysis and testing: a systematic literature review. International Journal on Software Tools for Technology
Transfer, 16(5), 627–642.

Felderer, M., & Ramler, R. (2014a). A multiple case study on risk-based testing in industry. International Journal
on Software Tools for Technology Transfer, 16(5), 609–625.

Felderer, M., & Ramler, R. (2014b). Integrating risk-based testing in industrial test processes. Software Quality
Journal, 22(3), 543–575.

Felderer, M., & Ramler, R. (2016). Risk orientation in software testing processes of small and medium
enterprises: an exploratory and comparative study. Software Quality Journal, online first.

Felderer, M., & Schieferdecker, I. (2014). A taxonomy of risk-based testing. International Journal on Software
Tools for Technology Transfer, 16(5), 559–568.

844 Software Qual J (2018) 26:809–847

http://www.qe-lab.at
http://www.qe-lab.at
http://ink.library.smu.edu.sg/sis_research/2087
http://ink.library.smu.edu.sg/sis_research/2087
http://progit2.s3.amazonaws.com/en/2015-05-31-24e8b/progit-en.519.pdf
http://dx.doi.org/http://checkstyle.sourceforge.net/

Felderer, M., Haisjackl, C., Breu, R., & Motz, J. (2012). Integrating manual and automatic risk assessment for
risk-based testing. In S. Biffl, D. Winkler, & J. Bergsmann (Eds.), Software quality. Process automation in
software development. SWQD 2012, 17–19 January, Vienna, Austria, LNBIP 94 (pp. 159–180). Berlin:
Springer.

Felderer, M., Haisjackl, C., Pekar, V., & Breu, R. (2014a). A risk assessment framework for software testing. In
T. Margaria & B. Steffen (Eds.), Leveraging applications of formal methods, verification and validation:
specialized techniques and applications - ISoLA 2014 part II, LNCS 8803 (pp. 292–308). Berlin: Springer.

Felderer, M., Haisjackl, C., Pekar, V., & Breu, R. (2015). An exploratory study on risk estimation in risk-based
testing approaches. In D. Winkler, S. Biffl, & J. Bergsmann (Eds.), Software quality. Software and systems
quality in distributed and mobile environments. 7th international conference, SWQD 2015, Vienna, Austria,
January 20–23, 2015, Proceedings, LNBIP 200 (pp. 32–43).

Felderer, M., Wendland, M.-F., & Schieferdecker, I. (2014b). Risk-based testing (track introduction). In T.
Margaria & B. Steffen (Eds.), Leveraging applications of formal methods, verification and validation:
specialized techniques and applications - ISoLA 2014 part II, LNCS 8803 (pp. 274–276). Berlin: Springer.

FindBugs. (2003). FindBugs™ - Find bugs in Java programs. Retrieved May 16, 2015, from FindBugs™:
http://findbugs.sourceforge.net/

Franch, X., & Carvallo, J. P. (2003). Using quality models in software package selection. IEEE Software, 20(1), 34–41.
Gerrard, P., & Thompson, N. (2002). Risk-based E-business testing. Norwood: Artech House Inc..
Git. (2005). git –distributed-even-if-your-workflow-isnt. Retrieved June 16, 2015, from git: https://git-scm.com/
GitHub, Inc. (2008b). GitHub. Retrieved June 16, 2015, from GitHub: https://github.com/about
GitHub, Inc. (2008c). Closing issues via commit messages. Retrieved June 16, 2015, from GitHub: https://help.

github.com/articles/closing-issues-via-commit-messages/
Google Inc. (2005). Google analytics - analysis tools. Retrieved April 30, 2015, from Google Analytics:

http://www.google.com/intl/en_uk/analytics/features/analysis-tools.html
Grady, R. B. (1992). Practical software metrics for Project Management and process improvement. New Jersey:

Prentice Hill.
Graham, D., Van Veenendaal, E., Evans, I., & Black, R. (2008). Foundations of software testing: ISTQB

certification. London: Cengage Learning EMEA.
Grzegorzewski, P., & Ziembinska, P. (2011). Spearman’s rank correlation coefficient for vague preferences. In H.

Christiansen, G. De Tre, A. Yazici, S. Zadrozny, T. Andreasen, & H. L. Larsen (Eds.), Flexible query
answering systems; 9th international conference, FQAS 2011 - Ghent, Belgium, October 2011, Processings;
LNAI 7022 (pp. 342–353). Heidelberg: Springer.

Gyimothy, T., Ferenc, R., & Siket, I. (2005). Empirical validation of object-oriented metrics on open source
software for fault prediction. IEEE Transactions on Software Engineering, 31(10), 897–910.

Huang, F., & Liu, B. (2013). Study on the correlations between program metrics and defect rate by a controlled
experiment. Journal of Software Engineering, 7(3), 114–120.

ISO/IEC 25010. (2011). Systems and software engineering – systems and software quality requirements and
evaluation (SQuaRE) – System and software quality models.

ISO/IEC 9126-1. (2001). ISO/IEC 9126–1. Retrieved December 10, 2015, from ISO/IEC 9126–1: Software
engineering – Product quality: http://www.iso.org/iso/catalogue_detail.htm?csnumber=22749

ISO/IEC/IEEE. (2013). ISO/IEC/IEEE 29119 Software testing. Retrieved July 15, 2015, from The International
Software Testing Standard: http://www.softwaretestingstandard.org

ISTQB. (2015). Standard glossary of terms used in software testing - all terms. Version 3.0, International
software testing qualifications board, ISTQB glossary working group. Retrieved April 26, 2015, from
ISTQB: http://www.istqb.org/downloads/finish/20/193.html

Jiang, Y., Cukic, B., Menzies, T., & Bartlow, N. (2008). Comparing design and code metrics for software quality
prediction. Proceddings of the 4th international workshop on Predictor models in software engineering,
PROMISE ‘08, 12–13 May, Leipzig, Germany (pp. 11–18). New York: ACM.

Jureczko, M. (2011). Significance of different software metrics in defect prediction. Software Engineering: An
international Journal (SEIJ), 1(1), 86–95.

Kitchenham, B., & Pfleeger, S. L. (1996). Software quality: the elusive target. IEEE Software, 13(1), 12–21.
Krusko, A. (2003). Complexity analysis of real time software—using software complexity metrics to improve the

quality of real time software. Master’s Thesis in Computer Science, Stockholm, Royal Institute of
Technology, KTH Numerical Analysis and Computer Science.

McCabe, T. J. (1976). A complexity measure. IEEE Transactions on Software Engineering, 2(4), 308–320.
McCall, J. A., Richards, P. K., & Walters, G. F. (1977). Factors in software quality. Us Rome Air Development

Center. National Technical Information Service.
McDonald, J. H. (2014). Handbook of biological statistics (3. ed.). Baltimore: Sparky House Publishing.
Miguel, J. P., Mauricio, D., & Rodriguez, G. (2014). A review of software quality models for the evaluation of

software products. International Journal of Software Engineering & Applications (IJSEA), 5(6), 31–53.

Software Qual J (2018) 26:809–847 845

http://findbugs.sourceforge.net/
http://git-scm.com/
http://github.com/about
http://help.github.com/articles/closing-issues-via-commit-messages/
http://help.github.com/articles/closing-issues-via-commit-messages/
http://www.google.com/intl/en_uk/analytics/features/analysis-tools.html
http://www.iso.org/iso/catalogue_detail.htm?csnumber=22749
http://www.softwaretestingstandard.org
http://www.istqb.org/downloads/finish/20/193.html

Nagappan, N., Ball, T., & Zeller, A. (2006). Mining metrics to predict component failures. Proceddings of the
28th international conference on Software engineering, ICSE ‘06, 20–28 May, Shanghai, China (pp. 452–
461). New York: ACM.

Neubauer, J., Windmüller, S., & Steffen, B. (2014). Risk-based testing via active continuous quality control.
International Journal on Software Tools for Technology Transfer, 16(5), 569–591.

Orsini, L. (2013). GitHub for beginners: don’t get scared, get started. Retrieved June 16, 2015, from readwrite:
http://readwrite.com/2013/09/30/understanding-github-a-journey-for-beginners-part-1

Perry, W. E., & Rice, R. W. (1997). Surviving the top ten challenges of software testing: a people-oriented
approach. New York: Dorset House.

PMD. (2015). PMD. Retrieved May 16, 2015, from PMD: http://pmd.sourceforge.net/
Pressman, R. S. (2010). Software engineering: a Practitioner’s approach (7. ed.). New York: McGraw-Hill.
Pries, K. H., & Quigley, J. M. (2010). Testing complex and embedded systems. Boca Raton: CRC Press.
Radjenovic, D., Hericko, M., Torkar, R., & Zivkovic, A. (2013). Software fault prediction metrics: a systematic

literature review. Information and Software Technology, 55(8), 1397–1418.
Redmill, F. (2004). Exploring risk-based testing and its implications. Software Testing, Verification and

Reliability, 14(1), 3–15.
Redmill, F. (2005). Theory and practice of risk-based testing. Software Testing, Verification and Reliability, 15(1), 3–20.
Runeson, P., & Höst, M. (2009). Guidelines for conducting and reporting case study research in software

engineering. Empirical Software Engineering, 14(2), 131–164.
Sharma, A. K. (2005). Text book of correlations and regression. New Delhi: Discovery Publishing House.
Singh, P., Chaudhary, K. D., & Verma, S. (2011). An investigation of the relationships between software metrics

and defects. International Journal of Computer Applications, 28(8), 13–17.
Spearman, C. (1904). The proof and measurement of association between two things. The American Journal of

Psychology, 15(1), 72–101.
Taylor, R. (1990). Interpretation of the correlation coefficient: a basic review. Journal of Diagnostic Medical

Sonography, 6(1), 35–39.
Van Veenendaal, E. (2009). Practical risk-based testing - product RISk MAnagement: the PRISMA ® method.

Improve Quality Services BV.
Van Veenendaal, E. (2012). The PRISMA approach: practical risk-based testing. UTN Publishers.
Wagner, S. (2013). Software product quality control. Berlin: Springer.
Wagner, S., Lochmann, K., Heinemann, L., Kläs, M., Trendowicz, A., Plösch, R.,. . . Streit, J. (2012b). The

Quamoco product quality modelling and assessment approach. 34th international conference on software
engineering (ICSE), 2012, (pp. 1133–1142). Zürich.

Wagner, S., Lochmann, K., Winter, S., Deissenböck, F., Jürgens, E., Herrmannsdörfer, M.,. . . Kläs, M. (2012c).
The Quamoco quality meta-model. Technischer Bericht TUM-I128, Technische Universität München,
Institut für Informatik.

Wagner, S., Goeb, A., Heinemann, L., Kläs, M., Lampasona, C., Lochmann, K., et al. (2015). Operationalised product
quality models and assessment: the Quamoco approach. Information and Software Technology, 62, 101–123.

Wagner, S., Lochmann, K., Winter, S., Goeb, A., Kläs, M., & Nunnenmacher, S. (2012a). Software quality
models in practice. Institut für Informatik, TUM-I129. Technische Universität München. Retrieved
December 08, 2015, from https://mediatum.ub.tum.de/doc/1110601/1110601.pdf

Windmüller, S., Neubauer, J., Steffen, B., Howar, F., & Bauer, O. (2013). Active continuous quality control.
Proceedings of the 16th International ACM Sigsoft symposium on Component-based software engineering
(CBSE ‘13), June 17–21, 2013, Vancouver, BC, Canada (pp. 111–120). New York: ACM.

Zeiss, B., Vega, D., Schieferdecker, I., Neukirchen, H., & Grabowski, J. (2007). Applying the ISO 9126 quality
model to test specifications - exemplified for TTCN-3 test specifications. Software Engineering, 15(6), 231–242.

Zhang, H. (2009). An investigation of the relationships between lines of code and defects. International
conference on software maintenance 2009, ICSM 2009 (pp. 274–283). IEEE.

Zhang, Q., Wu, J., & Zhu, H. (2006). Tool support to model-based quality analysis of software architecture.
Proceedings of the 30th annual international computer software and applications conference
(COMPSAC’06) (pp. 121–128). IEEE Computer Society.

Zimmermann, T., Nagappan, N., & Zeller, A. (2008). Predicting bugs from history. In T. Mens & S. Demeyer
(Eds.), Software evolution (pp. 69–88). Berlin: Springer.

Zimmermann, T., Premraj, R., & Zeller, A. (2007). Predicting defects for eclipse. Third International Workshop
on Predictor Models in Software Engineering (PROMISE’07), 20–26 May 2007 (pp. 9–16). Minneaplois:
IEEE Computer Society.

846 Software Qual J (2018) 26:809–847

http://readwrite.com/2013/09/30/understanding-github-a-journey-for-beginners-part-1
http://pmd.sourceforge.net/
http://mediatum.ub.tum.de/doc/1110601/1110601.pdf

Harald Foidl is a Ph.D. student in computer science at the University of Innsbruck. He received a MSc in
information systems in 2015 from the University of Innsbruck. Beside his studies, Harald worked as a
programmer and test engineer for the company exceet electronics GesmbH. His research interests include
software engineering and testing of safety critical systems, data modeling as well as data mining. In addition
to his research activities, Harald is currently head of the Surface-Mount Technology Department of the company
exceet electronics GesmbH.

Michael Felderer is a senior researcher and project manager at the Institute of Computer Science at the
University of Innsbruck, Austria. He holds a Ph.D. and a habilitation degree in computer science. His research
interests include software testing and software quality in general, requirements engineering, empirical software
engineering, software processes, security engineering, and improving industry-academia collaboration. He works
in close collaboration with industry and transfers his research results into practice as a consultant and speaker on
industrial conferences.

Software Qual J (2018) 26:809–847 847

	Integrating software quality models into risk-based testing
	Abstract
	Introduction
	Background and related work
	Risk-based testing
	Software quality models
	Approaches integrating risk-based testing and quality models

	Integration of quality models into risk-based testing
	Approach 1
	Approach 2

	Usage of QuaMoCo in risk-based testing
	QuaMoCo
	Integration approach
	Determination of the probability factor
	Determination of the impact factor
	Determination of the risk coefficient

	Tool implementation

	Study design
	Research questions
	Case selection
	Data collection procedure
	Analysis procedure
	Validity procedure

	Results and discussion
	Is there a relationship between the risk coefficient and the number of defects of a class? (RQ1)
	How is the performance of a risk-based testing strategy compared with a line of code-based testing strategy? (RQ2)
	Threats to validity
	Construct validity
	Reliability
	Conclusion validity
	External validity

	Conclusion and future work
	References

