3,240 research outputs found
Vibrational exciton nanoimaging of phases and domains in porphyrin nanocrystals.
Much of the electronic transport, photophysical, or biological functions of molecular materials emerge from intermolecular interactions and associated nanoscale structure and morphology. However, competing phases, defects, and disorder give rise to confinement and many-body localization of the associated wavefunction, disturbing the performance of the material. Here, we employ vibrational excitons as a sensitive local probe of intermolecular coupling in hyperspectral infrared scattering scanning near-field optical microscopy (IR s-SNOM) with complementary small-angle X-ray scattering to map multiscale structure from molecular coupling to long-range order. In the model organic electronic material octaethyl porphyrin ruthenium(II) carbonyl (RuOEP), we observe the evolution of competing ordered and disordered phases, in nucleation, growth, and ripening of porphyrin nanocrystals. From measurement of vibrational exciton delocalization, we identify coexistence of ordered and disordered phases in RuOEP that extend down to the molecular scale. Even when reaching a high degree of macroscopic crystallinity, identify significant local disorder with correlation lengths of only a few nanometers. This minimally invasive approach of vibrational exciton nanospectroscopy and -imaging is generally applicable to provide the molecular-level insight into photoresponse and energy transport in organic photovoltaics, electronics, or proteins
Classification and modelling of urban micro-climates using multisensoral and multitemporal remote sensing data
Remote sensing has widely been used in urban climatology since it has the advantage of a simultaneous synoptic view of the full
urban surface. Methods include the analysis of surface temperature patterns, spatial (biophysical) indicators for urban heat island
modelling, and flux measurements. Another approach is the automated classification of urban morphologies or structural types.
In this study it was tested, whether Local Climate Zones (a new typology of thermally 'rather' homogenous urban morphologies) can
be automatically classified from multisensor and multitemporal earth observation data. Therefore, a large number of parameters
were derived from different datasets, including multitemporal Landsat data and morphological profiles as well as windowed
multiband signatures from an airborne IFSAR-DHM.
The results for Hamburg, Germany, show that different datasets have high potential for the differentiation of urban morphologies.
Multitemporal thermal data performed very well with up to 96.3 % overall classification accuracy with a neuronal network
classifier. The multispectral data reached 95.1 % and the morphological profiles 83.2 %.The multisensor feature sets reached up to
97.4 % with 100 selected features, but also small multisensoral feature sets reached good results. This shows that microclimatic
meaningful urban structures can be classified from different remote sensing datasets.
Further, the potential of the parameters for spatiotemporal modelling of the mean urban heat island was tested. Therefore, a
comprehensive mobile measurement campaign with GPS loggers and temperature sensors on public buses was conducted in order to
gain in situ data in high spatial and temporal resolution
Contributing to WUDAPT: A Local Climate Zone Classification of Two Cities in Ukraine
Local climate zones (LCZs) divide the urban landscape into homogeneous types based on urban structure (i.e.,morphology of streets and buildings), urban cover (i.e., permeability of surfaces), construction materials, and human activities (i.e., anthropogenic heat). This classification scheme represents a standardized way of capturing the basic urban form of cities and is currently being applied globally as part of the world urban database and portal tools (WUDAPT) initiative. This paper assesses the transferability of the LCZ concept to two Ukrainian cities, i.e., Kyiv and Lviv, which differ in urban form and topography, and considers three ways to validate and verify this classification
scheme. An accuracy of 64% was achieved for Kyiv using an independent validation dataset while a comparison of the LCZ maps with the GlobeLand30 land cover map resulted in a match that was greater than 75% for both cities. There was also good correspondence between the urban classes in the LCZ maps and the urban points of interest in OpenStreetMap (OSM). However, further research is still required to produce a standardized validation protocol that could be used on a regular basis by contributors to WUDAPT to help produce more accurate LCZ maps in the future
Long-Term Potentiation: One Kind or Many?
Do neurobiologists aim to discover natural kinds? I address this question in this chapter via a critical analysis of classification practices operative across the 43-year history of research on long-term potentiation (LTP). I argue that this 43-year history supports the idea that the structure of scientific practice surrounding LTP research has remained an obstacle to the discovery of natural kinds
The use of urinary proteomics in the assessment of suitability of mouse models for ageing
Ageing is a complex process characterised by a systemic and progressive deterioration of biological functions. As ageing is associated with an increased prevalence of age-related chronic disorders, understanding its underlying molecular mechanisms can pave the way for therapeutic interventions and managing complications. Animal models such as mice are commonly used in ageing research as they have a shorter lifespan in comparison to humans and are also genetically close to humans. To assess the translatability of mouse ageing to human ageing, the urinary proteome in 89 wild-type (C57BL/6) mice aged between 8–96 weeks was investigated using capillary electrophoresis coupled to mass spectrometry (CE-MS). Using age as a continuous variable, 295 peptides significantly correlated with age in mice were identified. To investigate the relevance of using mouse models in human ageing studies, a comparison was performed with a previous correlation analysis using 1227 healthy subjects. In mice and humans, a decrease in urinary excretion of fibrillar collagens and an increase of uromodulin fragments was observed with advanced age. Of the 295 peptides correlating with age, 49 had a strong homology to the respective human age-related peptides. These ortholog peptides including several collagen (N = 44) and uromodulin (N = 5) fragments were used to generate an ageing classifier that was able to discriminate the age among both wild-type mice and healthy subjects. Additionally, the ageing classifier depicted that telomerase knock-out mice were older than their chronological age. Hence, with a focus on ortholog urinary peptides mouse ageing can be translated to human ageing
Potentiality in Biology
We take the potentialities that are studied in the biological sciences (e.g., totipotency) to be an important subtype of biological dispositions. The goal of this paper is twofold: first, we want to provide a detailed understanding of what biological dispositions are. We claim that two features are essential for dispositions in biology: the importance of the manifestation process and the diversity of conditions that need to be satisfied for the disposition to be manifest. Second, we demonstrate that the concept of a disposition (or potentiality) is a very useful tool for the analysis of the explanatory practice in the biological sciences. On the one hand it allows an in-depth analysis of the nature and diversity of the conditions under which biological systems display specific behaviors. On the other hand the concept of a disposition may serve a unificatory role in the philosophy of the natural sciences since it captures not only the explanatory practice of biology, but of all natural sciences. Towards the end we will briefly come back to the notion of a potentiality in biology
Modeling Life as Cognitive Info-Computation
This article presents a naturalist approach to cognition understood as a
network of info-computational, autopoietic processes in living systems. It
provides a conceptual framework for the unified view of cognition as evolved
from the simplest to the most complex organisms, based on new empirical and
theoretical results. It addresses three fundamental questions: what cognition
is, how cognition works and what cognition does at different levels of
complexity of living organisms. By explicating the info-computational character
of cognition, its evolution, agent-dependency and generative mechanisms we can
better understand its life-sustaining and life-propagating role. The
info-computational approach contributes to rethinking cognition as a process of
natural computation in living beings that can be applied for cognitive
computation in artificial systems.Comment: Manuscript submitted to Computability in Europe CiE 201
The climate of the Canary Islands by annual cycle parameters
Annual cycle parameters (ACP) provide a global climatology of annual land surface temperature (LST) based on daily 1 km MODIS
observations. These are based on a simple model of the annual temperature cycle and allow estimating LST patterns under largely
cloud-free conditions for every day of year. Further, they deliver measures for the LST variability and the frequency of cloud
occurrence. It has been demonstrated, that they reproduce important surface climate characteristics at global and urban scale but
their ability to reproduce topo-climates has yet to be studied in detail. In this paper their suitability to investigate climatic variability
at km scale were studied at the case of the Canary Islands (Spain). This Archipelago, has a very stable climate dominated by the
Azores high and the trade wind belt, but shows a large number of micro-climates ranging from arid hot climates to cold climates. It
was found that ACPs are a relevant source of climatic information at km scale in complex orography. Specifically, known features
such as subsidence inversion, the resulting sea of clouds, the strong differentiation in precipitation between the flat and high islands,
as well as the northern and southern slopes at the latter were clearly visible in the parameters
WUDAPT: Facilitating advanced urban canopy modeling for weather, climate and air quality applications
Environmental issues and impacts to society will be exacerbated with increased population, diminishing resources and the prospects for extreme weather events and climate changes. Current community-based models available for weather, climate and air quaity applications are powerful state-of-science modeling systems, which, with careful considerations, can be employed to address the impact of these issues fo urban areas. Given the complex and high degree of spatial inhomogeneity of the underlying surface area we will review mesh size, appropriate multi-scale science and morphological descriptions and their data requirements including unique city specific gridded morphology and material composition for their forecasting and climate applications.
For this presentation, we discuss, describe and show examples from an ongoing but preliminary prototypic collaborative effort, whose design bases is to provide the experience and recommendations toward extending the scope of the National Urban Database and Access Portal Tools (NUDAPT) to worldwide coverage (WUDAPT). WUDAPT would thus provide requisite gridded data for urban applications of advanced forecast and climate models throughout the world. Strategically, the prototypic efforts will be designed to provide proven protocols for the facilitaton of the data gathering and processing based on available remote sensing and ground-based sampling. Tactically, we employ an iterative approach first obtaining coarse gridded Local Climate Zone (LCZ) classification derived from available Web-based products such as Google-Earth, and Landsat satellite magery. Further sub-class discretization of LCZs and the application of GeoWiki technology facilitates further refinements and ground truthing to yield the desired gridded building morphological distribution parameters and their material composition. Local experts would be encouraged to become involved to ensure factors unique to their area in the world would be incorporated. Finally, given that model applications may require data with different grid resolution we present an outline that employs the new and powerful Multiple Resolution Analyses scheme that can address this need within the scope of WUDAPT
- …
