20 research outputs found
Understanding the Stakeholders as a Success Factor for Effective Occupational Health Care
Effective occupational health care at the workplace requires collaboration, partnerships and alliances with internal, interface and external stakeholders. Essential steps for solid work with various stakeholders are identification of key stakeholders, systematic analysis of their views and positions, and development of stakeholder participation and involvement. Stakeholder analysis aims to evaluate and understand stakeholders from the perspective of an organization. Stakeholder analysis starts with identifying and classifying the key stakeholders. After their identification, questions are asked about their position, interest, influence, inter-relations, networks and other characteristics of stakeholders, with reference to their past and present positions, and future potential. The results are presented as stakeholder maps as well as by the power-interest matrix of the stakeholders. Stakeholder analysis serves an organization and its various actors as a guideline in identifying, planning and implementing strategies for managing stakeholder relationships and utilizing the full potential of various stakeholders in developing occupational health care
Humalassa se onnistuu vieraan kanssa... : päihteiden käyttö suomalaisten miestenlehtien fiktioissa
Summary : Intoxication makes for better success with a new partner... : the use of intoxicants in fiction in Finnish magazines for men
Eurooppalainen verkottuminen etäopetuksessa
Euroopassa on perinteisesti ollut koulutuksen ja tutkimuksen alueella monia korkeatasoisia osaamisen keskuksia. Näiden yksiköiden ongelmana on kuitenkin usein ollut – kansainvälisesti tarkasteltuna – pienehkö koko ja etenkin yhteistyön puute muiden eurooppalaisten osaamiskeskusten kanssa. Toinen vallitseva piirre monissa Euroopan maissa on ollut yliopistojen ja tutkimuslaitosten satunnainen yhteistyö yritysten kanssa.
Monet Euroopan unionin piirissä 1980-luvulla käynnistetyt ohjelmat ovat pyrkineet lisäämään sekä eri maissa toimivien osaamiskeskusten keskinäistä yhteistyötä että yliopistojen ja tutkimuslaitosten yhteistyötä yritysten ja julkisen hallinnon kanssa.
Eräiden raporttien ja EU:n työohjelmien taustamuistiot korostavat määrätietoista panostamista avoimen opetuksen ja etäopetuksen kehittämiseen sekä uuden teknologian hyödyntämiseen koulutusmateriaalien tuottamisessa ja levittämisessä. Euroopan tasolla esteitä ovat mm. standardien puute, monimuoto-opetuksessa tuotteiden korkea yksikköhinta sekä eri etäopetuksen tuotteiden korkea käyttökynnys
Genome sequencing and population genomic analyses provide insights into the adaptive landscape of silver birch
Silver birch (Betula pendula) is a pioneer boreal tree that can be induced to flower within 1 year. Its rapid life cycle, small (440-Mb) genome, and advanced germplasm resources make birch an attractive model for forest biotechnology. We assembled and chromosomally anchored the nuclear genome of an inbred B. pendula individual. Gene duplicates from the paleohexaploid event were enriched for transcriptional regulation, whereas tandem duplicates were overrepresented by environmental responses. Population resequencing of 80 individuals showed effective population size crashes at major points of climatic upheaval. Selective sweeps were enriched among polyploid duplicates encoding key developmental and physiological triggering functions, suggesting that local adaptation has tuned the timing of and cross-talk between fundamental plant processes. Variation around the tightly-linked light response genes PHYC and FRS10 correlated with latitude and longitude and temperature, and with precipitation for PHYC. Similar associations characterized the growth-promoting cytokinin response regulator ARR1, and the wood development genes KAK and MED5A.Peer reviewe
Recommended from our members
Author Correction: Genome sequencing and population genomic analyses provide insights into the adaptive landscape of silver birch.
In the version of this article initially published, there was a mistake in the calculation of the nucleotide mutation rate per site per generation: 1 × 10−9 mutations per site per generation was used, whereas 9.5 × 10−9 was correct. This error affects the interpretation of population-size changes over time and their possible correspondence with known geological events, as shown in the original Fig. 4 and supporting discussion in the text, as well as details in the Supplementary Note. Neither the data themselves nor any other results are affected. Figure 4 has been revised accordingly. Images of the original and corrected figure panels are shown in the correction notice