1,941 research outputs found
Lateral sediment sources and knickzones as controls on spatio-temporal variations of sediment transport in an Alpine river
Modern mixed alluvial-bedrock channels in mountainous areas provide natural laboratories for understanding the time scales at which coarse-grained material has been entrained and transported from their sources to the adjacent sedimentary sink, where these deposits are preserved as conglomerates. This article assesses the shear stress conditions needed for the entrainment of the coarse-bed particles in the Glogn River that drains the 400 km2 Val Lumnezia basin, eastern Swiss Alps. In addition, quantitative data are presented on sediment transport patterns in this stream. The longitudinal stream profile of this river is characterized by three ca 500 m long knickzones where channel gradients range from 0·02 to 0·2 m mâ1, and where the valley bottom confined into a <10 m wide gorge. Downstream of these knickzones, the stream is flat with gradients <0·01 m mâ1 and widths â„30 m. Measurements of the grain-size distribution along the trunk stream yield a mean D84 value of ca 270 mm, whereas the mean D50 is ca 100 mm. The consequences of the channel morphology and the grain-size distribution for the time scales of sediment transport were explored by using a one-dimensional step-backwater hydraulic model (Hydrologic Engineering Centre â River Analysis System). The results reveal that, along the entire trunk stream, a two to 10 year return period flood event is capable of mobilizing both the D50 and D84 fractions where the Shields stress exceeds the critical Shields stress for the initiation of particle motion. These return periods, however, varied substantially depending on the channel geometry and the pebble/boulder size distribution of the supplied material. Accordingly, the stream exhibits a highly dynamic boulder cover behaviour. It is likely that these time scales might also have been at work when coarse-grained conglomerates were constructed in the geological past
Quantum Stochastic Processes: A Case Study
We present a detailed study of a simple quantum stochastic process, the
quantum phase space Brownian motion, which we obtain as the Markovian limit of
a simple model of open quantum system. We show that this physical description
of the process allows us to specify and to construct the dilation of the
quantum dynamical maps, including conditional quantum expectations. The quantum
phase space Brownian motion possesses many properties similar to that of the
classical Brownian motion, notably its increments are independent and
identically distributed. Possible applications to dissipative phenomena in the
quantum Hall effect are suggested.Comment: 35 pages, 1 figure
Discrete approximation of the free Fock space
International audienceWe prove that the free Fock space {\F}(\R^+;\C), which is very commonly used in Free Probability Theory, is the continuous free product of copies of the space \C^2. We describe an explicit embeding and approximation of this continuous free product structure by means of a discrete-time approximation: the free toy Fock space, a countable free product of copies of \C^2. We show that the basic creation, annihilation and gauge operators of the free Fock space are also limit of elementary operators on the free toy Fock space. When applying these constructions and results to the probabilistic interpretations of these spaces, we recover some discrete approximations of the semi-circular Brownian motion and of the free Poisson process. All these results are also extended to the higher multiplicity case, that is, {\F}(\R^+;\C^N) is the continuous free product of copies of the space \C^{N+1}
Modification of the GANIL injectors
http://accelconf.web.cern.ch/AccelConf/c89/papers/d-08.pdfInternational audienc
Relation between the Dynamics of the Reduced Purity and Correlations
A general property of the relation between the dynamics of the reduced purity
and correlations is investigated in quantum mechanical systems. We show that a
non-zero time-derivative of the reduced purity of a system implies the
existence of non-zero correlations with its environment under any unbounded
Hamiltonians with finite variance. This shows the role of local dynamical
information on the correlations, as well as the role of correlations in the
mechanism of purity change.Comment: 7 page
Origin of the excitonic recombinations in hexagonal boron nitride by spatially resolved cathodoluminescence spectroscopy
The excitonic recombinations in hexagonal boron nitride (hBN) are
investigated with spatially resolved cathodoluminescence spectroscopy in the UV
range. Cathodoluminescence images of an individual hBN crystallite reveals that
the 215 nm free excitonic line is quite homogeneously emitted along the
crystallite whereas the 220 nm and 227 nm excitonic emissions are located in
specific regions of the crystallite. Transmission electron microscopy images
show that these regions contain a high density of crystalline defects. This
suggests that both the 220 nm and 227 nm emissions are produced by the
recombination of excitons bound to structural defects
Non-equilibrium states of a photon cavity pumped by an atomic beam
We consider a beam of two-level randomly excited atoms that pass one-by-one
through a one-mode cavity. We show that in the case of an ideal cavity, i.e. no
leaking of photons from the cavity, the pumping by the beam leads to an
unlimited increase in the photon number in the cavity. We derive an expression
for the mean photon number for all times. Taking into account leaking of the
cavity, we prove that the mean photon number in the cavity stabilizes in time.
The limiting state of the cavity in this case exists and it is independent of
the initial state. We calculate the characteristic functional of this
non-quasi-free non-equilibrium state. We also calculate the energy flux in both
the ideal and open cavity and the entropy production for the ideal cavity.Comment: Corrected energy production calculations and made some changes to
ease the readin
Testing fluvial erosion models using the transient response of bedrock rivers to tectonic forcing in the Apennines, Italy
The transient response of bedrock rivers to a drop in base level can be used to
discriminate between competing fluvial erosion models. However, some recent studies of
bedrock erosion conclude that transient river long profiles can be approximately
characterized by a transportâlimited erosion model, while other authors suggest that a
detachmentâlimited model best explains their field data. The difference is thought to be
due to the relative volume of sediment being fluxed through the fluvial system. Using a
pragmatic approach, we address this debate by testing the ability of endâmember fluvial
erosion models to reproduce the wellâdocumented evolution of three catchments in the
central Apennines (Italy) which have been perturbed to various extents by an
independently constrained increase in relative uplift rate. The transportâlimited model is
unable to account for the catchmentsâresponse to the increase in uplift rate, consistent with
the observed low rates of sediment supply to the channels. Instead, a detachmentâlimited
model with a threshold corresponding to the fieldâderived median grain size of the
sediment plus a slopeâdependent channel width satisfactorily reproduces the overall
convex long profiles along the studied rivers. Importantly, we find that the prefactor in the
hydraulic scaling relationship is uplift dependent, leading to landscapes responding faster
the higher the uplift rate, consistent with field observations. We conclude that a slopeâ
dependent channel width and an entrainment/erosion threshold are necessary ingredients
when modeling landscape evolution or mapping the distribution of fluvial erosion rates in
areas where the rate of sediment supply to channels is low
Fluctuations of Quantum Currents and Unravelings of Master Equations
The very notion of a current fluctuation is problematic in the quantum
context. We study that problem in the context of nonequilibrium statistical
mechanics, both in a microscopic setup and in a Markovian model. Our answer is
based on a rigorous result that relates the weak coupling limit of fluctuations
of reservoir observables under a global unitary evolution with the statistics
of the so-called quantum trajectories. These quantum trajectories are
frequently considered in the context of quantum optics, but they remain useful
for more general nonequilibrium systems.
In contrast with the approaches found in the literature, we do not assume
that the system is continuously monitored. Instead, our starting point is a
relatively realistic unitary dynamics of the full system.Comment: 18 pages, v1-->v2, Replaced the former Appendix B by a (thematically)
different one. Mainly changes in the introductory Section 2+ added reference
First results of the 14.5 GHz GANIL ECR source with the C.W. and the pulsed operation mode
International audienceA 14.5 GHz ECR source has been designed and built at GANIL in order to improve the currents, mainly the heaviest ion beam intensities (Pb, U). We give the first results obtained with the C.W operation used on the cyclotron machines, and those we can get with the pulsed operalion mode which concerns Linacs and other machines
- âŠ