3,085 research outputs found
Even Between-Lap Pacing Despite High Within-Lap Variation During Mountain Biking
Purpose: Given the paucity of research on pacing strategies during competitive events, this study examined
changes in dynamic high-resolution performance parameters to analyze pacing profiles during a multiple-lap
mountain-bike race over variable terrain. Methods: A global-positioning-system (GPS) unit (Garmin, Edge
305, USA) recorded velocity (m/s), distance (m), elevation (m), and heart rate at 1 Hz from 6 mountain-bike
riders (mean ± SD age = 27.2 ± 5.0 y, stature = 176.8 ± 8.1 cm, mass = 76.3 ± 11.7 kg, VO2max = 55.1 ± 6.0 mL
· kg–1 . min–1) competing in a multilap race. Lap-by-lap (interlap) pacing was analyzed using a 1-way ANOVA
for mean time and mean velocity. Velocity data were averaged every 100 m and plotted against race distance
and elevation to observe the presence of intralap variation. Results: There was no significant difference in lap times (P = .99) or lap velocity (P = .65) across the 5 laps. Within each lap, a high degree of oscillation in velocity was observed, which broadly reflected changes in terrain, but high-resolution data demonstrated additional
nonmonotonic variation not related to terrain. Conclusion: Participants adopted an even pace strategy across
the 5 laps despite rapid adjustments in velocity during each lap. While topographical and technical variations
of the course accounted for some of the variability in velocity, the additional rapid adjustments in velocity
may be associated with dynamic regulation of self-paced exercise
Molecular footprints of the Holocene retreat of dwarf birch in Britain
© 2014 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited
Diffusion-weighted imaging for evaluating inflammatory activity in Crohn's disease: comparison with histopathology, conventional MRI activity scores, and faecal calprotectin
PURPOSE: To evaluate whether the extent of enteric diffusion-weighted imaging (DWI) signal abnormality reflects inflammatory burden in Crohn's disease (CD), and to compare qualitative and quantitative grading. METHODS: 69 CD patients (35 male, age 16-78) undergoing MR enterography with DWI (MRE-D) and the same-day faecal calprotectin (cohort 1) were supplemented by 29 patients (19 male, age 16-70) undergoing MRE-D and terminal ileal biopsy (cohort 2). Global (cohort 1) and terminal ileal (cohort 2) DWI signal was graded (0 to 3) by 2 radiologists and segmental apparent diffusion coefficient (ADC) calculated. Data were compared to calprotectin and a validated MRI activity score [MEGS] (cohort 1), and a histopathological activity score (eAIS) (cohort 2) using nonparametric testing and rank correlation. RESULTS: Patients with normal (grades 0 and 1) DWI signal had lower calprotectin and MEGS than those with abnormal signal (grades 2 and 3) (160 vs. 492 μg/l, p = 0.0004, and 3.3 vs. 21, p 120 μg/l) were 83% and 52%, respectively. There was a negative correlation between ileal MEGS and ADC (r = -0.41, p = 0.017). There was no significant difference in eAIS between qualitative DWI scores (p = 0.42). Mean ADC was not different in those with and without histological inflammation (2077 vs. 1622 × 10(-6)mm(2)/s, p = 0.10) CONCLUSIONS: Qualitative grading of DWI signal has utility in defining the burden of CD activity. Quantitative ADC measurements have poor discriminatory ability for segmental disease activity
Lower glycemic load meals reduce diurnal glycemic oscillations in women with risk factors for gestational diabetes
Objective Maternal glycemia plays a key role in fetal growth. We hypothesized that lower glycemic load (GL) meals (lower glycemic index, modestly lower carbohydrate) would substantially reduce day-long glucose variability in women at risk of gestational diabetes mellitus (GDM). Research design and methods A crossover study of 17 women (mean±SD age 34.8±4 years; gestational weeks 29.3±1.3; body mass index 23.8±4.7 kg/m2) who consumed a low GL or a high GL diet in random order, 1-day each, over 2 consecutive days. Diets were energy-matched and fiber-matched with 5 meals per 24 hours. All food was provided. Continuous glucose monitoring was used to assess diurnal glycemia. Results Maternal glucose levels were 51% lower on the low GL day with lower incremental area under the curve (iAUC±SEM 549±109 vs 1120±198 mmol/L min, p=0.015). Glycemic variability was significantly lower on the low GL day, as demonstrated by a lower average SD (0.7±0.1 vs 0.9±0.1, p<0.001) and lower mean amplitude of glycemic excursions (2.1±0.2 vs 2.7±0.2 mmol/L, p<0.001). Conclusions A lower GL meal plan in pregnancy acutely halves day-long maternal glucose levels and reduces glucose variability, providing further evidence to support the utility of a low GL diet in pregnancy
Insights from echocardiography, magnetic resonance imaging, and microcomputed tomography relative to the mid-myocardial left ventricular echogenic zone.
Background: The anatomical substrate for the mid-mural ventricular hyperechogenic zone remains uncertain, but it may represent no more than ultrasound reflected from cardiomyocytes orientated orthogonally to the ultrasonic beam. We sought to ascertain the relationship between the echogenic zone and the orientation of the
cardiomyocytes.
Methods: We used 3D echocardiography, diffusion tensor imaging, and microcomputed tomography to analyze the location and orientation of cardiomyocytes within the echogenic zone.
Results: We demonstrated that visualization of the echogenic zone is dependent on the position of the transducer and is most clearly seen from the apical window. Diffusion tensor imaging and microcomputed tomography show that the echogenic zone seen from the apical window corresponds to the position of the circumferentially orientated cardiomyocytes. An oblique band seen in the parasternal view relates to cardiomyocytes orientated orthogonally to the ultrasonic beam.
Conclusions: The mid-mural ventricular hyperechogenic zone represents reflected ultrasound from cardiomyocytes aligned orthogonal to the ultrasonic beam. The echogenic zone does not represent a space, a connective tissue sheet, a boundary between ascending and descending limbs of a hypothetical helical ventricular myocardial band, nor an abrupt change in cardiomyocyte orientation
Characterisation of road bumps using smartphones
Introduction: Speed bumps are used as the main means of controlling vehicle speeds all over the world. It is not too infrequent, especially in the emerging economies, to have unmarked bumps that can be perilous for the passengers. Fortuitously, the roadways and mobile phone networks have grown simultaneously in emerging economies. This paper demonstrates the capability of smartphones placed inside the vehicles in characterisation of road bumps. The smart mobile phones have accelerometers and position sensors that can be useful for autonomous monitoring roads. This can empower the user community in monitoring of roads. However, the capability of the smartphone in discerning different types of speed bumps while travelling in heterogeneous vehicle types needs to be examined. Methods: A range of road vehicles is mathematically modelled as mass, spring, and damper systems. The mathematical model of the vehicle is excited with parameters analogous to some common speed bumps and its acceleration response is calculated. The accelerometer of a smartphone is validated by comparing it with high precision accelerometers. The acceleration response of the phone while passing over the corresponding road bumps, which was used in the model earlier, is recorded using an Android based application. The experiment is repeated for different classes of vehicles. Filters have been used to reduce noise in the signals. A time averaging technique has been employed to compress the collected data.Results and conclusions: The acceleration signals have been digitally processed to capture road bumps. The importance of using a mathematical model to understand the acceleration response of a vehicle has been established. Also, the use of pass filters to extract the signal of concern from the noisy data has been exhibited. The ability of the technique to discern different types of speed bumps while travelling in a variety of vehicle types has been demonstrated. This investigation demonstrates the potential to automatically monitor the condition of roadways obviating costly manual inspections. As smartphones are ubiquitous, the methodology has the potential to empower the user community in the maintenance of infrastructure
Insights from echocardiography, magnetic resonance imaging, and microcomputed tomography relative to the mid-myocardial left ventricular echogenic zone.
BACKGROUND: The anatomical substrate for the mid-mural ventricular hyperechogenic zone remains uncertain, but it may represent no more than ultrasound reflected from cardiomyocytes orientated orthogonally to the ultrasonic beam. We sought to ascertain the relationship between the echogenic zone and the orientation of the cardiomyocytes. METHODS: We used 3D echocardiography, diffusion tensor imaging, and microcomputed tomography to analyze the location and orientation of cardiomyocytes within the echogenic zone. RESULTS: We demonstrated that visualization of the echogenic zone is dependent on the position of the transducer and is most clearly seen from the apical window. Diffusion tensor imaging and microcomputed tomography show that the echogenic zone seen from the apical window corresponds to the position of the circumferentially orientated cardiomyocytes. An oblique band seen in the parasternal view relates to cardiomyocytes orientated orthogonally to the ultrasonic beam. CONCLUSIONS: The mid-mural ventricular hyperechogenic zone represents reflected ultrasound from cardiomyocytes aligned orthogonal to the ultrasonic beam. The echogenic zone does not represent a space, a connective tissue sheet, a boundary between ascending and descending limbs of a hypothetical helical ventricular myocardial band, nor an abrupt change in cardiomyocyte orientation
Congestive Heart Failure Leads to Prolongation of the PR Interval and Atrioventricular Junction Enlargement and Ion Channel Remodelling in the Rabbit.
Heart failure is a major killer worldwide. Atrioventricular conduction block is common in heart failure; it is associated with worse outcomes and can lead to syncope and bradycardic death. We examine the effect of heart failure on anatomical and ion channel remodelling in the rabbit atrioventricular junction (AVJ). Heart failure was induced in New Zealand rabbits by disruption of the aortic valve and banding of the abdominal aorta resulting in volume and pressure overload. Laser micro-dissection and real-time polymerase chain reaction (RT-PCR) were employed to investigate the effects of heart failure on ion channel remodelling in four regions of the rabbit AVJ and in septal tissues. Investigation of the AVJ anatomy was performed using micro-computed tomography (micro-CT). Heart failure animals developed first degree heart block. Heart failure caused ventricular myocardial volume increase with a 35% elongation of the AVJ. There was downregulation of HCN1 and Cx43 mRNA transcripts across all regions and downregulation of Cav1.3 in the transitional tissue. Cx40 mRNA was significantly downregulated in the atrial septum and AVJ tissues but not in the ventricular septum. mRNA abundance for ANP, CLCN2 and Navβ1 was increased with heart failure; Nav1.1 was increased in the inferior nodal extension/compact node area. Heart failure in the rabbit leads to prolongation of the PR interval and this is accompanied by downregulation of HCN1, Cav1.3, Cx40 and Cx43 mRNAs and anatomical enlargement of the entire heart and AVJ
Statistical modeling of ground motion relations for seismic hazard analysis
We introduce a new approach for ground motion relations (GMR) in the
probabilistic seismic hazard analysis (PSHA), being influenced by the extreme
value theory of mathematical statistics. Therein, we understand a GMR as a
random function. We derive mathematically the principle of area-equivalence;
wherein two alternative GMRs have an equivalent influence on the hazard if
these GMRs have equivalent area functions. This includes local biases. An
interpretation of the difference between these GMRs (an actual and a modeled
one) as a random component leads to a general overestimation of residual
variance and hazard. Beside this, we discuss important aspects of classical
approaches and discover discrepancies with the state of the art of stochastics
and statistics (model selection and significance, test of distribution
assumptions, extreme value statistics). We criticize especially the assumption
of logarithmic normally distributed residuals of maxima like the peak ground
acceleration (PGA). The natural distribution of its individual random component
(equivalent to exp(epsilon_0) of Joyner and Boore 1993) is the generalized
extreme value. We show by numerical researches that the actual distribution can
be hidden and a wrong distribution assumption can influence the PSHA negatively
as the negligence of area equivalence does. Finally, we suggest an estimation
concept for GMRs of PSHA with a regression-free variance estimation of the
individual random component. We demonstrate the advantages of event-specific
GMRs by analyzing data sets from the PEER strong motion database and estimate
event-specific GMRs. Therein, the majority of the best models base on an
anisotropic point source approach. The residual variance of logarithmized PGA
is significantly smaller than in previous models. We validate the estimations
for the event with the largest sample by empirical area functions. etc
- …