133 research outputs found

    Nonradiative lifetimes in intermediate band materials - absence of lifetime recovery

    Get PDF
    Intermediate band photovoltaics hold the promise of being highly efficient and cost effective photovoltaic cells. Intermediate states in the band gap, however, are known to facilitate nonradiative recombination. Much effort has been dedicated to producing metallic intermediate bands in hopes of producing lifetime recovery -- an increase in carrier lifetime as doping levels increase. We show that lifetime recovery induced by the insulator-to-metal transition will not occur, because the metallic extended states will be localised by phonons during the recombination process. Only trivial forms of lifetime recovery, e.g., from an overall shift in intermediate levels, are possible. Future work in intermediate band photovoltaics must focus on optimizing subgap optical absorption and minimizing recombination, but not via lifetime recovery.Comment: 8 page

    Scaling and localization lengths of a topologically disordered system

    Get PDF
    We consider a noninteracting disordered system designed to model particle diffusion, relaxation in glasses, and impurity bands of semiconductors. Disorder originates in the random spatial distribution of sites. We find strong numerical evidence that this model displays the same universal behavior as the standard Anderson model. We use finite-size-scaling to find the localization length as a function of energy and density, including localized states away from the delocalization transition. Results at many energies all fit onto the same universal scaling curve.Comment: 5+ page

    Mechanistic Regimes of Vibronic Transport in a Heterodimer and the Design Principle of Incoherent Vibronic Transport in Phycobiliproteins

    Get PDF
    Following the observation of coherent oscillations in non-linear spectra of photosynthetic pigment protein complexes, particularly phycobilliprotein such as PC645, coherent vibronic transport has been suggested as a design principle for novel light harvesting materials operating at room temperature. Vibronic transport between energetically remote pigments is coherent when the presence of a resonant vibration supports transient delocalization between the pair of electronic excited states. Here, we establish the mechanism of vibronic transport for a model heterodimer across a wide range of molecular parameter values. The resulting mechanistic map demonstrates that the molecular parameters of phycobiliproteins in fact support incoherent vibronic transport. This result points to an important design principle: incoherent vibronic transport is more efficient than a coherent mechanism when energetic disorder exceeds the coupling between the donor and vibrationally excited acceptor states. Finally, our results suggest that the role of coherent vibronic transport in pigment protein complexes should be reevaluated

    Scientific intuition inspired by machine learning-generated hypotheses

    Get PDF
    Machine learning with application to questions in the physical sciences has become a widely used tool, successfully applied to classification, regression and optimization tasks in many areas. Research focus mostly lies in improving the accuracy of the machine learning models in numerical predictions, while scientific understanding is still almost exclusively generated by human researchers analysing numerical results and drawing conclusions. In this work, we shift the focus on the insights and the knowledge obtained by the machine learning models themselves. In particular, we study how it can be extracted and used to inspire human scientists to increase their intuitions and understanding of natural systems. We apply gradient boosting in decision trees to extract human-interpretable insights from big data sets from chemistry and physics. In chemistry, we not only rediscover widely know rules of thumb but also find new interesting motifs that tell us how to control solubility and energy levels of organic molecules. At the same time, in quantum physics, we gain new understanding on experiments for quantum entanglement. The ability to go beyond numerics and to enter the realm of scientific insight and hypothesis generation opens the door to use machine learning to accelerate the discovery of conceptual understanding in some of the most challenging domains of science

    Discrete single-photon quantum walks with tunable decoherence

    Get PDF
    Quantum walks have a host of applications, ranging from quantum computing to the simulation of biological systems. We present an intrinsically stable, deterministic implementation of discrete quantum walks with single photons in space. The number of optical elements required scales linearly with the number of steps. We measure walks with up to 6 steps and explore the quantum-to-classical transition by introducing tunable decoherence. Finally, we also investigate the effect of absorbing boundaries and show that decoherence significantly affects the probability of absorption.Comment: Published version, 5 pages, 4 figure

    A correlated-polaron electronic propagator: open electronic dynamics beyond the Born-Oppenheimer approximation

    Full text link
    In this work we develop a theory of correlated many-electron dynamics dressed by the presence of a finite-temperature harmonic bath. The theory is based on the ab-initio Hamiltonian, and thus well-defined apart from any phenomenological choice of collective basis states or electronic coupling model. The equation-of-motion includes some bath effects non-perturbatively, and can be used to simulate line- shapes beyond the Markovian approximation and open electronic dynamics which are subjects of renewed recent interest. Energy conversion and transport depend critically on the ratio of electron-electron coupling to bath-electron coupling, which is a fitted parameter if a phenomenological basis of many-electron states is used to develop an electronic equation of motion. Since the present work doesn't appeal to any such basis, it avoids this ambiguity. The new theory produces a level of detail beyond the adiabatic Born-Oppenheimer states, but with cost scaling like the Born-Oppenheimer approach. While developing this model we have also applied the time-convolutionless perturbation theory to correlated molecular excitations for the first time. Resonant response properties are given by the formalism without phenomenological parameters. Example propagations with a developmental code are given demonstrating the treatment of electron-correlation in absorption spectra, vibronic structure, and decay in an open system.Comment: 25 pages 7 figure

    Polynomial-time quantum algorithm for the simulation of chemical dynamics

    Get PDF
    The computational cost of exact methods for quantum simulation using classical computers grows exponentially with system size. As a consequence, these techniques can only be applied to small systems. By contrast, we demonstrate that quantum computers could exactly simulate chemical reactions in polynomial time. Our algorithm uses the split-operator approach and explicitly simulates all electron-nuclear and inter-electronic interactions in quadratic time. Surprisingly, this treatment is not only more accurate than the Born-Oppenheimer approximation, but faster and more efficient as well, for all reactions with more than about four atoms. This is the case even though the entire electronic wavefunction is propagated on a grid with appropriately short timesteps. Although the preparation and measurement of arbitrary states on a quantum computer is inefficient, here we demonstrate how to prepare states of chemical interest efficiently. We also show how to efficiently obtain chemically relevant observables, such as state-to-state transition probabilities and thermal reaction rates. Quantum computers using these techniques could outperform current classical computers with one hundred qubits.Comment: 9 pages, 3 figures. Updated version as appears in PNA

    Spin Star as Switch for Quantum Networks

    Full text link
    Quantum state transfer is an important task in quantum information processing. It is known that one can engineer the couplings of a one-dimensional spin chain to achieve the goal of perfect state transfer. To leverage the value of these spin chains, a spin star is potentially useful for connecting different parts of a quantum network. In this work, we extend the spin-chain engineering problem to the problems with a topology of a star network. We show that a permanently coupled spin star can function as a network switch for transferring quantum states selectively from one node to another by varying the local potentials only. Together with one-dimensional chains, this result allows applications of quantum state transfer be applied to more general quantum networks.Comment: 10 pages, 2 figur

    Generalized Kasha's Scheme for Classifying Two-Dimensional Excitonic Molecular Aggregates: Temperature Dependent Absorption Peak Frequency Shift

    Full text link
    We propose a generalized theoretical framework for classifying two-dimensional (2D) excitonic molecular aggregates based on an analysis of temperature dependent spectra. In addition to the monomer-aggregate absorption peak shift, which defines the conventional J- and H-aggregates, we incorporate the peak shift associated with increasing temperature as a measure to characterize the exciton band structure. First we show that there is a one-to-one correspondence between the monomer-aggregate and the T-dependent peak shifts for Kasha's well-established model of 1D aggregates, where J-aggregates exhibit further redshift upon increasing temperature and H-aggregates exhibit further blueshift. On the contrary, 2D aggregate structures are capable of supporting the two other combinations: blueshifting J-aggregates and redshifting H-aggregates, owing to their more complex exciton band structures. Secondly, using spectral lineshape theory, the T-dependent shift is associated with the relative abundance of states on each side of the bright state. We further establish that the density of states can be connected to the microscopic packing condition leading to these four classes of aggregates by separately considering the short and long-range contribution to the excitonic couplings. In particular the T-dependent shift is shown to be an unambiguous signature for the sign of net short-range couplings: Aggregates with net negative (positive) short-range couplings redshift (blueshift) with increasing temperature. Lastly, comparison with experiments shows that our theory can be utilized to quantitatively account for the observed but previously unexplained T-dependent absorption lineshapes. Thus, our work provides a firm ground for elucidating the structure-function relationships for molecular aggregates and is fully compatible with existing experimental and theoretical structure characterization tools.Comment: 29 pages, 4 figure
    • …
    corecore