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Polynomial-time quantum algorithm for the simulation of chemical dynamics
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The computational cost of exact methods for quantum simulation using classical computers grows exponen-
tially with system size. As a consequence, these techniquescan only be applied to small systems. By contrast,
we demonstrate that quantum computers could exactly simulate chemical reactions in polynomial time. Our
algorithm uses the split-operator approach and explicitlysimulates all electron-nuclear and inter-electronic in-
teractions in quadratic time. Surprisingly, this treatment is not only more accurate than the Born-Oppenheimer
approximation, but faster and more efficient as well, for allreactions with more than about four atoms. This
is the case even though the entire electronic wavefunction is propagated on a grid with appropriately short
timesteps. Although the preparation and measurement of arbitrary states on a quantum computer is inefficient,
here we demonstrate how to prepare states of chemical interest efficiently. We also show how to efficiently
obtain chemically relevant observables, such as state-to-state transition probabilities and thermal reaction rates.
Quantum computers using these techniques could outperformcurrent classical computers with one hundred
qubits.

Accurate simulations of quantum-mechanical processes
have greatly expanded our understanding of the funda-
mentals of chemical reaction dynamics. In particular, re-
cent years have seen tremendous progress in methods de-
velopment, which has enabled simulations of increasingly
complex quantum systems. While it is strictly speaking
true that exact quantum simulation requires resources that
scale exponentially with system size, several techniques
are available that can treat realistic chemical problems, at
a given accuracy, with only a polynomial cost. Certain
fully quantum methods—such as multiconfigurational time-
dependent Hartree (MCTDH) [1], matching pursuit/split-
operator Fourier transform (MP/SOFT) [2], or full multiple
spawning (FMS) [3]—solve the nuclear Schrödinger equa-
tion, including nonadiabatic effects, given analytic expres-
sions for the potential energy surfaces and the couplings be-
tween them. These techniques have permitted the simulation
of large systems; as examples we can give MCTDH simula-
tions of a penta-atomic chemical reaction [4] and of a spin-
boson model with 80 degrees of freedom [5], or an MP/SOFT
simulation of photoisomerization in rhodopsin using 25 de-
grees of freedom [6]. Ab initio molecular dynamics tech-
niques such asab initio multiple spawning (AIMS) [7] avoid
analytic expresions for potential energy surfaces and instead
solve electronic Schrödinger equation at every timestep.This
allows one to gain insight into dynamical problems such as
isomerizations through conical intersections [8].

However, there are also chemical processes which are best
treated by completely avoiding the Born-Oppenheimer ap-
proximation. As examples we can cite strong-field electronic
dynamics in atoms and multi-electron ionization [9, 10], or
atomic and molecular fragmentation caused by collisions with
energetic electrons or photons [11, 12]. Systems that resist the
application of the Born-Oppenheimer approximation require
very general techniques, and the consequent unfavorable scal-
ing has restricted such simulations to systems with a few parti-
cles. Here, however, we show that the Born-Oppenheimer ap-

proximation would not necessarily simplify simulations per-
formed on quantum computers. Indeed, except for the small-
est systems, an explicit treatment of all the particles would be
both more accurate and more efficient, even for nearly adia-
batic chemical reactions.

Feynman’s idea of using a quantum machine to mimic the
quantum Hamiltonian of a system of interest was one of the
founding ideas of the field of quantum computation [13].
Lloyd [14] subsequently showed that quantum computers
could be used to simulate systems which can be formulated
in terms of local interactions, using resources that scale only
polynomially with system size. Zalka and Wiesner [15, 16]
developed a quantum simulation algorithm for particles in real
space and Lidar and Wang [17] applied it to the calculation of
the thermal rate constant of chemical reactions. Smirnovet
al. [18] proposed an analog quantum simulator for chemical
reactions using quantum dots. We have previously shown [19]
that quantum computers could be used to simulate thestatic
properties of molecules, and in this work we present a general
scheme for using quantum computers for the study ofdynam-
ical chemical properties.

To simulate a quantum system we must prepare its initial
quantum state, propagate it in time, and finally extract data
of chemical relevance, such as rate constants. For an efficient
quantum simulation, all these tasks must be carried out using
resources which increase polynomially with increasing sys-
tem size. We present a quantum algorithm that meets these re-
quirements. We also show that for all chemical reactions with
more than about four atoms, it is more efficient for a quan-
tum computer to simulate the complete nuclear and electronic
time-evolution rather than to use the Born-Oppenheimer ap-
proximation.

The polynomial scaling of these methods means they would
enable the study of systems which are in principle out of reach
for any classical computer. However, large quantum comput-
ers are far in the future, and so determining the requirements
of interesting calculations in absolute terms is, perhaps,of
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more interest than their scaling alone. We show that a quan-
tum computer using these techniques could outperform cur-
rent classical computers using one hundred qubits, within the
design limits of a proposed 300-qubit quantum computer [20].
While we focus on chemical applications, these techniques are
generally applicable to many physical systems, from strong-
field, multielectron ionization to quantum liquids and con-
densed matter systems.

This article is organized as follows. We first review Zalka
and Wiesner’s algorithm and show how the difficulty of com-
puting a wavefunction’s time evolution depends only on the
complexity of evaluating the interaction potential. We then
consider three approaches to the calculation of the interaction
potential, including a fully non-adiabatic treatment of chem-
ical reactions. We consider the problem of state preparation
for all of the schemes, and finally address the problem of
measurement. We present three readout schemes for reaction
dynamics—reaction probabilities, thermal rate constants, and
state-to-state probabilities—which would allow for efficient
evaluation of many parameters accessible to experiment.

QUANTUM DYNAMICS

The problem of simulating quantum dynamics is that of de-
termining the properties of the wavefunction|ψ(t)〉 of a sys-
tem at timet, given the initial wavefunction|ψ(0)〉 and the
HamiltonianĤ of the system. If the final state can be prepared
by propagating the initial state, any observable of interest may
be computed.

We employ an improved version of the real-space quan-
tum simulation technique developed by Zalka and Wiesner in
which a discrete variable representation of the wavefunction
is used [15, 16]. In the one-dimensional case, the domain of
the wavefunction is divided into a discrete position basis of
N = 2n equidistant points. The wavefunction is represented
as:

|ψ(t)〉 =

2n−1∑

x=0

ax(t)|x〉 = a0 |0 . . . 00〉
︸ ︷︷ ︸

n qubits

+ . . .+a2n−1 |1 . . . 11〉 .

The spatial wavefunction is stored in the Hilbert space of the
qubits, and so the spatial resolution grows exponentially with
the number of qubits. For a system withd dimensions,d reg-
isters ofn qubits each are used,|x〉 = |x1〉 · · · |xd〉, represent-
ing a grid of2dn points. The states of multiple particles can
be stored by adding position registers for each particle. There-
fore, only a polynomially large number of qubits is required
to store the system wavefunction.

For simplicity we assume a time-independent Hamiltonian
whose potential depends only on position,Ĥ = T̂ + V̂
where T̂ = p̂2/2m and V̂ = V (x̂) are the kinetic and
potential energy operators, respectively. The split operator
method [15, 21, 22] computes the time evolution by separat-
ing the kineticT̂ and potential̂V energy contributions to the

|ψ〉 /

V
QFT †

T
QFT · · ·

|1〉 / QFT † · · ·
Repeat time-step iteration

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _
�

�

�

�

�

�

�

�

�

�

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _

FIG. 1: The quantum simulation algorithm. The potential andki-
netic energy unitaries are applied to a quantum state in turn, with the
transformation between position and momentum representations be-
ing performed with the efficient quantum Fourier transform (QFT).
The ancilla register is required for phase kickback and remains un-
changed throughout the simulation, while the boxed time step is re-
peatedt/δt times. The proposed algorithm, unlike that of Zalka [15],
does not require that functions be uncomputed and is therefore twice
as fast.

propagatorÛ(t) = e−iĤt. Given a sufficiently small time
stepδt, we can write to first order

Û(δt) = e−iĤδt = e−iT̂ (x)δte−iV̂ (x)δt +O(δt2).

The operatorse−iV̂ δt and e−iT̂ δt are diagonal in the posi-
tion and momentum representations, respectively. A quantum
computer can efficiently transform between the two represen-
tations using the quantum Fourier transform (QFT) [23]:

|ψ(δt)〉 = Û(δt) |ψ(0)〉 ≈ QFTe−iT (p)δt QFT† e−iV (x)δt |ψ(0)〉 .

The procedure is iterated as many times as necessary to obtain
the system wavefunction|ψ(t)〉 after an arbitrary timet to a
desired accuracy.

The application of diagonal unitaries is straightforward
on a quantum computer. Suppose that we have a gate se-
quence which acts on an arbitrary position eigenstate as|x〉 →
e−iV (x)δt |x〉. Since|ψ〉 is a superposition of position eigen-
states, when this gate sequence is applied to|ψ〉, one obtains
e−iV̂ δt |ψ〉 in a single application.

We depart from Zalka and Wiesner’s method in the imple-
mentation of this gate sequence. We are free to take the lowest
value of the potential in the domain as0, and use such units
that the maximum value of the potential isVmax = 2m − 1,
with m an integer. With this choice of unitsV takes inte-
ger values, and we choosem large enough thatV is resolved
with sufficient precision. The integerm is therefore the num-
ber of qubits required to represent the desired range of po-
tential values with the desired precision. The gate sequence
V which computes the potentialV acts so thatV |x, y〉 =
|x, y ⊕ V (x)〉, wherey is anm-bit integer labeling a basis
state of the ancilla register and⊕ denotes addition modulo
2m.

We apply the diagonal unitary by phase kickback. The com-
puter is initialized in the state|ψ〉 ⊗ |1〉m, where|1〉m in the
ancilla register represents the state|0 . . . 001〉 in m qubits.
Applying the inverse QFT to the ancilla register, followed by
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V , produces

V
(

|ψ〉 ⊗
M−1∑

y=0

e2πi y/M

√
M

|y〉
)

= e−iV̂ δt |ψ〉⊗
M−1∑

y=0

e2πi y/M

√
M

|y〉

whereM = 2m and we chooseδt = 2π
M . The equal-

ity obtains since the ancilla state is an eigenstate of addi-
tion (with eigenvaluee−2πiq/M corresponding to the addi-
tion of q) [24]. We see that applyingV results in the req-
uisite diagonal unitary action on the wavefunction register.
The states of register and ancilla are separable before and af-
ter each potential evaluation. We can also define a quantum
gate sequenceT which computes the kinetic energyp2/2m:
T |p, y〉 = |p, y ⊕ T (p)〉. This gate is diagonal in the mo-
mentum basis, and has efficiently computable entries on the
diagonal (namelyp2). Thus, we use the quantum Fourier
transform to conjugate into the momentum basis andT is im-
plemented by phase kickback in exactly the same way asV .
The quantum circuit for this algorithm is shown in Fig. 1.

This simulation algorithm is numerically exact in the sense
that all introduced approximations are controlled, so thatthe
error in the calcuation can be arbitrarily reduced with an ad-
ditional polynomial cost. The only approximations employed
are the discretization of time, space, and the potentialV (x).
The error due to discretization can be made exponentially
small by adding more qubits. The error due to time discretiza-
tion can be systematically improved by use of higher-order
Trotter schemes [25]. The computational cost of the algo-
rithm per iteration is the evaluation ofV (x), T (p) and two
QFT’s. While the QFT’s and the quadratic form in the kinetic
energy (p2 in the simplest case) can be computed in polyno-
mial time [23, 26], the evaluation of the potential energyV (x)
may not be efficient in general. For example, a random poten-
tial stored in an exponentially large database requires an ex-
ponentially large number of queries to evaluate. However, any
classical algorithm running inO(f(n)) time can be adapted to
a reversible quantum algorithm also running inO(f(n)) time
[27]. Therefore, the potential energyV (x) will be efficiently
calculable on a quantum computer if it is efficiently calcula-
ble on a classical computer. Fortunately, this is true for all
chemically relevant cases.

CHEMICAL DYNAMICS

Every isolated system of chemical interest has the same
Hamiltonian, which in atomic units is

Ĥ =
∑

i

p2
i

2Mi
+
∑

i<j

qiqj
rij

,

where the sums are over the nuclei and electrons,pi is the mo-
mentum of theith particle,Mi its mass,qi its charge andrij
is the distance between particlesi andj. Both the potential
and kinetic terms can be efficiently evaluated since the arith-
metical operations can be performed inO(m2) time [26], and

for a system ofB particles, there are onlyO(B2) terms in the
sum. [43]

The fact that the Coulomb potential can be evaluated in
O(B2m2) time implies that chemical dynamics could be sim-
ulated on a quantum computer inO(B2m2) time, an expo-
nential advantage over known classical techniques for exact
quantum simulation. HereB is the number of particles andm
is the binary precision the potential in the region of interest.
We want to emphasize that a quantum simulation would be
substantially different from what is usually done on classical
computers. Most significantly, we are proposing to explicitly
track all the nuclei and electrons on a Cartesian grid which is
sufficiently fine and with time steps sufficiently short to cap-
ture the true electronic dynamics. We will show that this is
not only more accurate, but also requires fewer quantum re-
sources.

The Supplementary Information contains a detailed com-
putation of the numbers of gates and qubits required for the
quantum simulation of the Coulomb potential. The number
of elementary gates required to evaluate this potential in three
dimensions is(75

4 m
3 + 51

2 m
2) per pair of particles (Fig. 2).

We chose a method which minimizes the number of ancilla
qubits and so is suited for small numbers of qubits. Note that
this scaling is not asymptotically optimal (the asymptoticre-
quirement would beO(m2)), so further improvement could
be achieved for computations with high precision (largem)
if suitable arithmetical algorithms were implemented. Storing
the wavefunction of a system withd degrees of freedom re-
quiresnd qubits, so a system ofB particles, withd = 3B− 6
degrees of freedom, requiresn(3B − 6) qubits. To this one
must add the qubits needed for the ancilla registers, only four
of which are required for the Coulomb potential, meaning that
simulating these potentials requiresn(3B − 6) + 4m qubits
(Fig. 2).

On a small quantum computer, the computational cost of
simulating the interactions between many particles may prove
prohibitive. One could try to simplify matters and focus only
on the nuclear motion by employing the Born-Oppenheimer
approximation. Here, the solution of the electronic struc-
ture problem provides a potential energy surface on which
the nuclei move. However, we show that quantum comput-
ers would benefit from the Born-Oppenheimer approximation
only rarely: for many chemical reactions, simulating the full
dynamics of both electrons and nuclei will not only yield more
accurate results, but will also, remarkably, be faster. This is in
sharp contrast to the study of chemical dynamics on classical
computers, where there is frequent need to simplify calcula-
tions using the Born-Oppenheimer approximation.

It is difficult to estimate the precise computational cost
of using the Born-Oppenheimer approximation, since differ-
ent potential energy surfaces have different functional forms.
Nevertheless, for any general fitting technique, the complex-
ity of the interpolating function grows exponentially within-
creasing dimension of the system, since exponentially many



4

2 3 4 5 6 7 8 9 10 11
0

50

100

150

200

250

300

T
ot

al
qu

bi
ts

re
qu

ire
d

to
st

or
e

th
e

w
av

ef
un

ct
io

n A

H + H2

H

He
Li

O

2 3 4 5 6 7 8 9 10 11
0

200

400

600

800

1000

Number of particles

E
le

m
en

ta
ry

qu
an

tu
m

ga
te

s
re

qu
ire

d
pe

r
tim

e
st

ep
Ht

ho
us

an
ds
L

B

H + H2

H
He

Li

O

FIG. 2: Resource requirements for a quantum simulation ofB par-
ticles interacting through a pairwise potential. The chemical sym-
bols correspond to the simulation of the full Coulomb dynamics of
the corresponding atom (nucleus and electrons). The vertical dashed
line represents the approximate current limit of numerically exact
quantum simulation on classical computers on a grid [10]. (A) Total
qubits required. We requiren qubits for each degree of freedom and
m qubits for each ancilla, four of which are needed for the Coulomb
potential. Hence, a total ofn(3B − 6) + 4m qubits are needed (see
Supplementary Information for details). The horizontal dotted line
represents a 300-qubit quantum computer, which is believedto be
feasible with near-future technology [20]. We assume a gridof 230

points, which corresponds ton = 10 and would suffice for the sim-
ulation of many chemical reactions or the strong-field ionization of
atoms [9, 28]. (B) Total elementary gates required. The 300-qubit
computer is expected to achieve one billion elementary quantum op-
erations. The dotted line represents the largest possible simulation of
1000 time steps, assuming ten bits of numerical accuracy(m = 10).
Computing the Coulomb potential requires

`

75

4
m3 + 51

2
m2

´

gates
per pair of particles (see Supplementary Information for details).

data points must be used in the fit if one is to maintain uni-
form accuracy over the entire domain. We can provide an es-
timate of the computational cost for a potential energy surface
which is an interpolating polynomial of degreeK along each
dimension (see Supplementary Information). In that case, the
total cost of the adiabatic simulation isK3B−6

(
5
4m

3 + 5
2m

2
)

per nuclear time step (which is usually about a thousand times
longer than an electronic time step). Numerical experiments
with the BKMP2 surface forH3 [29] indicate thatK must be
chosen to equal at least 15 if one aspires to 0.1% accuracy in

the potential, and more for chemical accuracy. WithK = 15,
the exponential growth implies that even for heavy elements
(Z ≈ 100), the fully-dimensional diabatic treatment is faster
for all reactions involving more than four atoms, and even for
many smaller reactions, as shown in Fig. 3.

It is perhaps beneficial to briefly discuss the intuitive rea-
sons why the use of pre-computed potential energy surfaces
is not as useful on quantum computers as it is on classical
machines. Classically, an exponential amount of memory is
required in general to store the wavefunction. However, the
ratio of computing power to memory in most classical com-
puters is large and the basic floating point operations are hard-
wired. Since the storage capacity is often the limiting factor,
if a wavefunction can be stored in memory, its motion on a
surface can probably be computed. Quantum computers, on
the other hand, require only linearly many qubits to store the
wavefunction in a superposition state. However, using a pre-
computed potential requires either the evaluation of a com-
plicated function or a look-up in a potentially large table.The
potential energies must be computed on the fly in order to take
advantage of quantum parallelism and it is therefore imper-
ative to keep the interaction potential as simple as possible.
This is achieved by treating all the particles explicitly, inter-
acting via the Coulomb interaction.

An alternative way to compute a potential energy surface
would be to embed an on-the-fly calculation of electronic
structure in the quantum algorithm and thus avoid a classi-
cally precomputed fit. This can be done efficiently since elec-
tronic structure calculations can be performed in polynomial
time on quantum computers [19]. Hence, the quantum cir-
cuit V would be replaced by a black box containing the ef-
ficient quantum version of the full configuration interaction
(FCI) procedure [19]. Because the quantum simulation algo-
rithm exploits quantum effects, a single evaluation of elec-
tronic structure is sufficient for each time step: all the nuclear
configurations are evaluated in superposition. However, the
electronic structure circuit for the proposed algorithm would
require the atomic positions as input. This would require a
modification of the original algorithm so that the Coulomb
and exchange integrals are computed using a quantum circuit
rather than classically. While this approach, unlike the Born-
Oppenheimer approximation, is asymptotically appealing,the
large overhead required to compute the exchange integrals
quantum mechanically makes it uninteresting for near-future
implementation.

Steane has recently proposed a design for a 300-qubit,
error-corrected, trapped-ion quantum computer that could
perform around109 quantum operations using methods for
quantum gates that have already been experimentally imple-
mented [20]. On a three-dimensional grid of230 points, such
a computer could store the wavefunction of a ten-particle sys-
tem (Fig. 2). By comparison, classical computers implement-
ing a comparable grid based algorithm are limited to com-
puting the full quantum evolution of a three-particle system,
such as a helium atom [9, 10]. Even a relatively modest quan-
tum computer with 100 qubits could simulate the electron dy-
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FIG. 3: Estimated number of elementary quantum operations (gates)
required for the simulation of chemical reactions. Standard Born-
Oppenheimer potential-energy-surface calculations require time re-
sources exponential in the size of the system (full line), while an fully
nonadiabatic, nuclear and electronic calculation would require only
polynomial time (dotted). The resulting cutoff indicates that for all
reactions with more than four atoms (dashed) the Born-Oppenheimer
approximation is always less efficient on a quantum computerthan
a diabatic treatment. The complexity of the diabatic computation
depends only on the atomic numberZ, while the potential energy
surfaces are modeled as polynomials of degreeK along each axis. A
value ofK ≥ 15 is required to obtain 0.1% agreement with surfaces
such as BKMP2 [29]. The position of the cutoff does not signifi-
cantly depend on the accuracy of the evaluated potential (m). To
obtain the gate counts, we assume 20 bits of accuracy(m = 20),
enough for chemical precision. The gate counts reflect the fact that
an appropriate nuclear time step is about 1000 times longer than an
electronic time step.

namics or ionization of the lithium atom, a task beyond the
reach of classical computers using grid based methods [10].
The simplest chemical reaction,H + H2 → H2 + H, is a six-
particle system, and could therefore be simulated by Steane’s
computer in a fully-dimensional diabatic regime. While other
classical methods may be able to reach somewhat larger ex-
amples, the exponential scaling of all known classical exact
methods means that the examples given here are close to the
crossover point between classical and quantum computing for
chemical dynamics. There remain two questions: how to pre-
pare the initial state of the quantum computer, and how to
extract useful information out of the final state.

STATE PREPARATION

The preparation of an arbitrary quantum state is expo-
nentially hard in general [30]. Nevertheless, we show that
most commonly used chemical wavefunctions can be pre-
pared efficiently. Since the significant deviations from Born-
Oppenheimer behavior occur during evolution and usually do
not concern initial states, we will prepare the initial state us-
ing the Born-Oppenheimer approximation. That is, the system
wavefunction will be a product state|ψ〉 = |ψnuc〉 |ψelec〉 of

nuclear and electronic wavefunctions, each in its own quan-
tum register.

Nuclear motions can be expressed in normal mode coordi-
nates if the displacements from equilibrium are small, which
is the case in molecules at chemically relevant temperatures.
The nuclear wavefunction is then, along each coordinate, a
superposition of harmonic oscillator eigenstates, which are
themselves products of Gaussians and Hermite polynomials.
It is known that superpositions corresponding to efficiently in-
tegrable functions can be prepared on a quantum computer in
polynomial time [15, 31]. Therefore, Gaussian wavepackets
and Hermite polynomials are efficiently preparable, meaning
that we can prepare good approximations to molecular vibra-
tional states and Gaussian wave packets.

Gaussian wavepackets can also be used to prepare the
electronic wavefunction. Indeed, it is customary in elec-
tronic structure theory to expand molecular orbitals in terms
of atomic orbitals, which themselves are superpositions of
Gaussian-type orbitals. The orbital occupation numbers can
be obtained from electronic structure calculations, including
our earlier quantum algorithm [19]. Consequently, the occu-
pied orbitals, which are superpositions of Gaussians, can all
be prepared efficiently.

One final consideration is the exchange symmetry of multi-
electron wavefunctions. Abrams and Lloyd proposed a
method for preparing antisymmetric wavefunctions [32] start-
ing with a Hartree product of molecular orbitals. We propose
to use this method for preparation of multi-electron wavefunc-
tions, noting that it suffices to prepare the initial state with the
correct exchange symmetry, since the exchange operator com-
mutes with the Hamiltonian.

Of course, other strategies for state preparation can be pur-
sued, such as the phase estimation algorithm [33]. If we
are able to prepare a state|S〉 that has a significant over-
lap 〈S|E〉 with an eigenstate|E〉 (not necessarily the ground
state), phase estimation followed by measurement will col-
lapse the wavefunction to the desired eigenstate with proba-
bility |〈S|E〉|2. Alternatively, the ground state can be pre-
pared by the adiabatic state preparation algorithm [19]. This
is of particular significance to the simulation of full chemical
dynamics, since the electronic ground state is usually a good
approximation for the reactants.

MEASUREMENT

After preparing the initial state and simulating its time evo-
lution using the methods described above, we must extract
chemically relevant information from the final system wave-
function. In general, quantum tomography is the most general
approach to the estimation of an unknown quantum state or
a quantum process [27] by measuring the expectation values
of a complete set of observables on an ensemble of identi-
cal quantum systems. However, this full characterization of
quantum systems always requires resources that grow expo-
nentially with the size of the system. In order to avoid such
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problems, alternative approaches for the direct estimation of
certain properties of quantum dynamical systems have been
recently developed [34, 35]. Here we likewise show that the
data of greatest chemical significance can be obtained directly
with only a polynomial number of measurements. In particu-
lar, we present algorithms for obtaining the reaction probabil-
ity, the rate constant, and state-to-state transition probabilities.

The reaction probability, given a certain initial wavefunc-
tion of the reactants, is the likelihood of observing, aftera
sufficiently long time, the products of the chemical reaction.
To find it, we divide the real-space domain of the wavefunc-
tion into r disjoint regions corresponding to sub-domains of
chemical interest. In chemistry these regions are typically a
few simple polytopes. The simplest division is into only two
regions, one for the reactants and one for the products, sepa-
rated by the transition state dividing surface (TSDS). The re-
action probability is the sum of the probabilities of finding
the final wavepacket in the product region(s). It is straightfor-
ward to construct a classical point location circuit for thefunc-
tionR(x) which, given a nuclear position vectorx, identifies
which region it is in by returning an integer label correspond-
ing to that region. There is a corresponding reversible circuit
that performs the transformation|x〉 |y〉 → |x〉 |y ⊕R(x)〉.
We can apply this circuit to the final state|ψ〉 =

∑

x
ax |x〉,

to which we add an additional ancilla register with⌈log2 r⌉
qubits. That is, applying this reversible circuit to|ψ〉 |0〉 yields
∑

x
ax |x〉 |R(x)〉. Measuring the ancilla register will return

i with probabilityPi, which equals the probability of finding
the wavepacket in the regioni. We can obtain all the probabil-
itiesPi by employing an ensemble measurement of the ancilla
register. Since individual measurements are uncorrelated, the
error of the estimate of the probabilities decreases as1/

√
M

for M repetitions of the experiment. However, it is possible
to achieve a convergence of1/M , which is the ultimate limit
of quantum metrology [36], using techniques such as ampli-
tude estimation [37, 38]. Next, we use these disjoint regions
to compute the rate constant.

The rate constantk(T ) at temperatureT is a thermally
weighted average of cumulative reaction probabilities [39]:

k(T ) =
1

2π~Q(T )

∫ ∞

0

N(E) e−E/kBTdE

≈ 1

2π~Q(T )

∑

ζ,E

Pr(ζ, E) e−E/kBT ∆E,

whereE is the energy,Q(T ) is the reactant partition function,
andN(E) is the cumulative reaction probability,N(E) =
∑

ζ Pr(ζ, E). The vectorζ is a specification of all the quan-
tum numbers of the reactants andPr(ζ, E) is the reaction
probability given that the reactants are in the eigenstate speci-
fied byζ andE. The sum ranges over all possibleζ, and with
E from zero to a cutoff. Note that on a quantum computer
the cutoff can be made exponentially large, or the energy step
∆E exponentially small, by adding more qubits.

We can compute the rate constant on a quantum com-
puter if we propagate in time not a pure wavefunction but

the correct thermal mixed state. In that case, the expecta-
tion value of the reaction probability would equal the rate
constant, up to a known factor. The required initial state
is ρ(0) = C2

∑

ζ,E Γ (E, T )
2 |φ0 (ζ, E)〉 〈φ0 (ζ, E)| where

Γ(E, T ) = (exp(−E/kBT )∆E/2π~Q(T ))
1/2 is the square

root of the appropriate Boltzmann factor,C is a normaliza-
tion constant, and|φ0 (ζ, E)〉 is a real-space reactant eigen-
function corresponding to quantum numbersζ and energy
E. If we propagateρ(0) for time t using the simulation
algorithm, the system will be in the final stateρ(t) =

C2
∑

ζ,E Γ (E, T )
2 |φt (ζ, E)〉 〈φt (ζ, E)|, where|φt (ζ, E)〉

now denotes the time-evolved version of state|φ0 (ζ, E)〉
(note that, except in exceptional cases,|φt (ζ, E)〉 is not an
eigenfunction of either reactants or products). If we have a
quantum register in this mixed state, we can add an ancilla
qubit and use the technique of dividing the domain into reac-
tant and product regions as described above. Finally, a mea-
surement of the ancilla qubit produces|1〉 with probability
C2k(T ). The precision ofk(T ) thus obtained goes as1/M
with the number of measurements if we use amplitude es-
timation. The previously proposed approach for estimating
reaction rates [17] evaluates the rate constant by computing a
flux-flux correlation function based on a polynomial-size sam-
ple of the wavefunction in the position basis. In contrast, our
approach carries out the integration explicitly on the quan-
tum computer using amplitude amplification, which provides
a quadratic improvement over algorithms that rely on classical
sampling and post-processing.

The thermal stateρ(0) can be prepared efficiently on a
quantum computer. We begin by preparing a superposi-
tion of the reactant state labels in terms ofζ andE, i.e.,
C
∑

ζ,E Γ (E, T ) |ζ, E〉, with C and Γ as defined above.
Here, |ζ, E〉 contain only the state labels, and not position-
space wavefunctions. If we assume that the thermally acces-
sible states can be enumerated by a polynomial number of
qubits and that the energy can be specified to a certain pre-
cision∆E, we see that the states|ζ, E〉 require only polyno-
mially many qubits to store. The superposition itself can be
prepared efficiently sinceΓ(E, T ) is an exponential function
of the energy and is therefore efficiently preparable [15, 31].

The next step is to generate, by doing state
preparation in superposition, the state|Φ0〉 =
C
∑

ζ,E Γ (E, T ) |ζ, E〉 |φ0 (ζ, E)〉, in which each term
is the tensor product of|ζ, E〉 and the corresponding real-
space reactant eigenstate|φ0 (ζ, E)〉. The states|φ0 (ζ, E)〉
must have definite energyE. Hence, one can represent an ini-
tial state as a direct product of discrete reactant internalstates
(specified byζ with energyE(ζ)) and a wavepacket with
kinetic energyEk = E − E(ζ) [39]. The discrete part can
be prepared using the state-preparation approach described
above. The incoming wavepacket can be approximated with
a Gaussian with a kinetic energy expectation value ofEk.
This approximation can be improved by increasing the width
of the Gaussian, which can be doubled by the addition of a
single qubit to the position register. This would halve the
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momentum uncertainty of the wavepacket. With sufficiently
many qubits, the error incurred in this approximation could
be made smaller than errors from other sources, such as
grid discretization. Once we have prepared|Φ0〉, we will no
longer use the register containing the states|ζ, E〉. If we trace
this register out, we can see that the remaining state register
is a mixed state with density operatorρ(0), as desired.

Finally, we show how to obtain state-to-state transition
probabilities. Most chemical reactions can be regarded as
scattering processes, and it is therefore desirable to knowthe
scatteringS-matrix. In particular, it is these state-to-state tran-
sition amplitudes which are accessible to experiment. Hereto-
fore we have considered the joint wavefunction of all the
molecular species. To compute state-to-state probabilities,
however, we must ensure that each reactant molecule is in a
well-defined molecular state. For example, to probe the state-
to-state dynamics of theH + H2 reaction, we would need to
prepare a particular state of the hydrogen atom plus a state of
the hydrogen molecule, and not simply a state of the overall
H3 aggregate. Given these states, prepared in the center-of-
mass coordinate systems of each molecule, one must perform
coordinate transformations to put them on a common grid.
For each molecule, the Cartesian coordinates of the particles
are linear, invertible functions of their center-of-mass coordi-
nates. Since the coordinate transformations can be computed
by an efficient, reversible, classical circuit, they can also be
efficiently computed quantum mechanically.

We concentrate here on obtaining only the vibrational state-
to-state distributions. Using the techniques of state prepara-
tion above, we prepare each reactant molecule in a vibrational
eigenstate, so that along each of its normal mode coordinates
the molecule is in an eigenstate of the corresponding potential.
After all the molecules are thus prepared, their wavefunctions
are transformed to a common Cartesian system. This initial
state is evolved as usual until the molecules separate into iso-
lated products.

At large inter-molecular separation, the center-of-mass mo-
tion and the normal mode coordinates again become separa-
ble. Therefore, an orthogonal transformation can be applied
to each product molecular fragment so that its Cartesian coor-
dinates can be transformed into normal modes. The quantum
phase estimation algorithm can then be employed to extract
the populations and eigenenergies of the product vibrational
states.

For an isolated product molecule, we can expand the final
state in terms of the normal modes:|Ψ′〉 =

∑

v′ α′v′ |ξ′

v′〉,
where|ξ′

v′〉 is the position representation of the eigenstate
corresponding to product occupation number vectorv

′. The
state-to-state transition probabilities are thenPv′←v = |α′

v′ |2,
and as mentined above, they can be determined using the
phase estimation algorithm of Abrams and Lloyd [33] for each
degree of freedom. We can obtain good measurement statis-
tics with only a polynomial number of measurements because
at typical temperatures, the products of chemical reactions
will have appreciable population in only a small number of
vibrational eigenstates.

CONCLUSION

The advantages of the methods presented here are not lim-
ited to chemical reaction dynamics, but can be applied to
many areas of physics. This is true in particular because the
complexity of the algorithm is proportional to the complex-
ity of calculating the potential and because the laws of nature
are usually captured by simple, few-body interactions. For
example, by using a quantum computer to study atoms in the
presence of a strong, time-dependent electric field, one could
simulate such effects as multielectron ionization or attosec-
ond pulse generation [9, 10, 28]. Quantum computers also
offer the promise of predicting real-time properties of super-
fluids [40, 41], and of providing tests for effective potentials
for water phases [42].

We close by reiterating the need for a careful reexamination
of the suitability of traditional quantum approximations for
use on quantum computers. Previously we have shown that
a quantum implementation of full configuration interaction
scales better than coupled cluster approaches (in particular
CCSD(T)), and in this work we show that simulating the com-
plete nuclear and electronic time evolution is more efficient
on quantum computers than using the Born-Oppenheimer ap-
proximation, a central tool of theoretical chemistry. We can
imagine the development of a wide variety of new tech-
niques and approaches tailored for natural quantum simula-
tors, which, themselves relying on the rules of quantum me-
chanics, give us a deeper understanding of physical phenom-
ena.

We wish to thank Eric J. Heller and Jacob Biamonte for
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(project W911NF-07-1-0304 and the QuaCCR program) and
the Joyce and Zlatko Baloković Scholarship for funding.
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with cost ofO
`

m2BN
´

if they only contain arithmetic that re-
quiresO(m2) time. For example, the Lennard-Jones potential
could be computed using

`

75

4
m3 + 51

2
m2

´

gates per pair of
particles. Simulating potentials other that the Coulomb poten-
tial could be applied to situations such as liquid helium clusters,
and although we do not discuss them in detail, the present algo-
rithm could simulate such potentials with minimal adjustments.

SUPPLEMENTARY INFORMATION: QUANTUM
RESOURCE ESTIMATION

There are two kinds of quantum register in the simulation
algorithm: the state registers, used to store the wavefunction,
and the ancilla registers, used to store the potential energy and
the intermediate calculation results. If we assume a simulation
of ad-dimensional system in which each Cartesian coordinate
is divided into a uniform grid ofN = 2n points, the represen-
tation of the wavefunction requires a total ofnd qubits ind
registers. As for the ancilla registers, their total numberwill
depend on the complexity of evaluating the potential and the
kinetic energy. At least one register is always required, tobe
used as the target of addition for the purpose of phase kick-
back. The ancilla registers will requirem qubits each, where
m is chosen in such a way that the registers can store the value
of V (x) with desired accuracy, in the form of a binary integer
between0 and2m.

The time required for the simulation is the number of el-
ementary (one- and two-qubit) gates required to perform the
algorithm. Except in trivial cases, the evaluation of the po-
tential energy will be much more complicated than that of the
kinetic energyT , which is a simple quadratic form. We there-
fore approximate the total gate count as being equal to the
complexity of evaluating the potential: even for the simple
Coulomb potential, the error thus introduced to the resource
count is substantially less than one percent.

Coulomb potential. The simulation of chemical dynamics
depends on computing the Coulomb potential, and here we
provide a detailed count of the resources required for evaluat-
ing it on a quantum computer. We begin by developing some
necessary quantum arithmetic.

For addition, we adopt Draper’s quantum addition algo-
rithm [1], which is based on the quantum Fourier transform
(QFT), and requires only32m

2 controlled rotations. While
it is not asymptotically optimal (i.e., it scales asO(m2) and
notO(m) as does the schoolbook addition algorithm), it both
has a small prefactor that makes it attractive for the addition
of small numbers, and it is easily adapted for multiplication.
Subtraction requires the same number of rotations, except that
they are performed in the opposite direction.

We perform multiplication using the schoolbook method.
The first multiplicand is repeatedly bit shifted and added to
the accumulator if the corresponding bit of the second multi-
plicand is 1. Since each number hasm bits, we need to make
a total ofm such controlled additions (C-ADD). The prod-
uct will have2m bits, but we will only keep them most sig-
nificant ones, essentially performing floating-point arithmetic.
For the C-ADD, we first apply a QFT to the accumulator, as
in Draper’s algorithm (we will also apply an inverse QFT at
the end, and these two requiren2 steps in all). Each C-ADD
requires1

2m
2 CC-rotations, which each can be implemented

using two CNOTs and three C-rotations. Hence, each C-ADD
requires5

2m
2 operations, giving a total of

(
5
2m

3 +m2
)

gates
for a multiplication. However, since half of the CC-rotations
are to the insignificant bits of the accumulator and are sub-
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sequently discarded, we only need to perform
(

5
4m

3 +m2
)

gates for a multiplication.
To compute the Coulomb potential, the distancer between

two particles,r2 = (x2 − x1)
2 + (y2 − y1)

2 + (z2 − z1)
2,

must be known. Evaluatingr2 requires 3 subtractions and
3 squarings (the two additions are performed automatically
since the squarings are really additions that can use the same
accumulator). For squaring, we multiply the number by itself
using the multiplication circuit, giving the total requirement
of
(

15
4 m

3 + 15
2 m

2
)

gates for computingr2. The same com-
putation would be used in momentum space for computingp2

or for simulating a harmonic oscillator potential.
The evaluation of the Coulomb potential is complicated by

the need for a square root. Since evaluating
√
S is just as dif-

ficult as evaluating1/
√
S, we can find1/r from r2 in one

computation using the Newton-Raphson method, with the it-
erationxn+1 = xn

2

(
3 − r2 · x2

n

)
. The number of iterations

will depend on the desired final accuracy, but numerical ex-
periments show that for many ranges ofS, four iterations suf-
fice to compute1/

√
S to within less than0.03% over the en-

tire range. Each iteration requires one subtraction and three
multiplications (one of them bit-shifted due to the factor of
1
2 ). So the requirement for1/

√
S is (15m3 + 18m2) gates,

which together with calculating the distancer2 gives the to-
tal requirement for the Coulomb potential as

(
75
4 m

3 + 51
2 m

2
)

gates for each pair of particles.
Potentials fitted from first-principles calculations. When

using the Born-Oppenheimer approximation, one uses a po-
tentialV (x) which is a function of only the nuclear coordi-
nates. It is the total energy of the molecule assuming that the
electrons are in their ground state given the potential induced
by the nuclei at coordinatesx. In general, this ground state
energy is difficult to compute on a classical computer. Thus,
interpolation schemes may be used to approximateV (x).
Here we analyze the computational resources needed for such
schemes.

We represent the potential as ad-dimensional interpolating
polynomial:

V (x) =

K∑

k1,k2...kd=0

ck1k2···kd
xk1

1 x
k2

2 · · ·xkd

d

=

K∑

k1=0

bk1
xk1

1

K∑

k2=0

bk1k2
xk2

2 · · ·
K∑

kd=0

bk1k2···kd
xkd

d

which can be evaluated using Horner’s method starting with
the innermost sum. That is, one has to evaluate one order-K
polynomial inx1, K such polynomials inx2, and so on until
Kd−1 polynomials inxd. That is, the total number of polyno-
mials that need to be evaluated is

∑d−1
i=1 K

i ≈ Kd

K−1 . In order
that the results of these calculations be available as constants
for higher-level polynomials, all the intermediate polynomial
evaluations have to be saved in temporary memory along the
way. The number of required registers isKd−1

K−1 .
Each polynomial that is evaluated has the form

P (x) =

K∑

k=0

pkx
k = p0+x (p1 · · · + x (pk−2 + x (pk−1 + xpk)))

wherepk is some constant. Therefore, each polynomial eval-
uation requires preciselyK additions andK multiplications.
As we have seen above, an addition requires3

2m
2 opera-

tions, and a multiplication
(

5
4m

3 +m2
)
, meaning that in total

each polynomial evaluation requiresK
(

5
4m

3 + 5
2m

2
)

gates.
Therefore, the total number of gates required to calculateV

is Kd+1

K−1

(
5
4m

3 + 5
2m

2
)
≈ Kd

(
5
4m

3 + 5
2m

2
)
. Furthermore,

the total qubit requirement isntot = nd+mKd−1

K−1 .
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