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Polynomial-time quantum algorithm for the simulation of chemical dynamics
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'Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
“Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139
3Department of Physics, Haverford College, Haverford, PA 19041

The computational cost of exact methods for quantum sinaulatsing classical computers grows exponen-
tially with system size. As a consequence, these technicaresnly be applied to small systems. By contrast,
we demonstrate that quantum computers could exactly siealemical reactions in polynomial time. Our
algorithm uses the split-operator approach and explisitiyulates all electron-nuclear and inter-electronic in-
teractions in quadratic time. Surprisingly, this treattiemot only more accurate than the Born-Oppenheimer
approximation, but faster and more efficient as well, foradictions with more than about four atoms. This
is the case even though the entire electronic wavefunctgoropagated on a grid with appropriately short
timesteps. Although the preparation and measurement ifaagbstates on a quantum computer is inefficient,
here we demonstrate how to prepare states of chemical shteffeciently. We also show how to efficiently
obtain chemically relevant observables, such as stastate-transition probabilities and thermal reaction rates
Quantum computers using these techniques could outperdarment classical computers with one hundred
qubits.

Accurate simulations of quantum-mechanical processeproximation would not necessarily simplify simulationgpe
have greatly expanded our understanding of the fundaformed on quantum computers. Indeed, except for the small-
mentals of chemical reaction dynamics. In particular, re-est systems, an explicit treatment of all the particles wdnal
cent years have seen tremendous progress in methods dmth more accurate and more efficient, even for nearly adia-
velopment, which has enabled simulations of increasinglpatic chemical reactions.

complex quantum systems. While it is strictly speaking Feynman’s idea of using a quantum machine to mimic the
true that exact quantum simulation requires resources th%fuantum Hamiltonian of a system of interest was one of the
scale exponentially with system size, several techniquegunding ideas of the field of quantum computation! [13].
are a.Va.iIable that can treat I’ealiStiC Chemical problems, a_k)yd [14] Subsequenﬂy showed that quantum Computers
a given accuracy, with only a polynomial cost. Certaincould be used to simulate systems which can be formulated
fully quantum methods—such as multiconfigurational time-jn terms of local interactions, using resources that scalg o
dependent Hartree (MCTDH) [1], matching pursuit/split- polynomially with system size. Zalka and Wiesner! [15, 16]
operator Fourier transform (MP/SOFT) [2], or full multiple developed a quantum simulation algorithm for particlesa r
spawning (FMS)L[3]—solve the nuclear Schrodinger equaspace and Lidar and Warlg [17] applied it to the calculation of
tion, including nonadiabatic effects, given analytic @®r the thermal rate constant of chemical reactions. Smietov
sions for the potential energy surfaces and the couplings by [1€] proposed an analog quantum simulator for chemical
tween them. These techniques have permitted the simulatidactions using quantum dots. We have previously shown [19]
of large systems; as examples we can give MCTDH simulathat quantum computers could be used to simulatestttic
tions of a penta-atomic chemical reaction [4] and of a spinproperties of molecules, and in this work we present a génera
boson model with 80 degrees of freedam [5], or an MP/SOFTscheme for using quantum computers for the stucyynfm-
simulation of photoisomerization in rhodopsin using 25 de-ical chemical properties.

grees of freedom [6]. Ab initio molecular dynamics tech-
nigues such aab initio multiple spawning (AIMS)|[7] avoid
analytic expresions for potential energy surfaces aneaust
solve electronic Schrodinger equation at every timestéys
allows one to gain insight into dynamical problems such a
isomerizations through conical intersections [8].

To simulate a quantum system we must prepare its initial
guantum state, propagate it in time, and finally extract data
of chemical relevance, such as rate constants. For an &fficie
guantum simulation, all these tasks must be carried ougusin
Yesources which increase polynomially with increasing sys
tem size. We present a quantum algorithm that meets these re-

However’ there are also chemical processes which are be%t,lirements. We also show that for all chemical reactionk wit
treated by completely avoiding the Born-Oppenheimer apmore than about four atoms, it is more efficient for a quan-
proximation. As examples we can cite strong-field electroni tum computer to simulate the complete nuclear and electroni
dynamics in atoms and multi-electron ionizatioh [[9, 10], ortime-evolution rather than to use the Born-Oppenheimer ap-
atomic and molecular fragmentation caused by collisionls wi Proximation.
energetic electrons or photons|[L1, 12]. Systems thatitbsis The polynomial scaling of these methods means they would
application of the Born-Oppenheimer approximation reguir enable the study of systems which are in principle out oftreac
very general techniques, and the consequent unfavoraddle scfor any classical computer. However, large quantum comput-
ing has restricted such simulations to systems with a feti-par ers are far in the future, and so determining the requiresnent
cles. Here, however, we show that the Born-Oppenheimer amf interesting calculations in absolute terms is, perhaps,
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more interest than their scaling alone. We show that a quan- 1)
tum computer using these techniques could outperform cur-
rent classical computers using one hundred qubits, witten t 1)
design limits of a proposed 300-qubit quantum computer.[20]
While we focus on chemical applications, these techniqres a
generally applicable to many physical systems, from s#ongr|G. 1: The quantum simulation algorithm. The potential &id
field, multielectron ionization to quantum liquids and con- netic energy unitaries are applied to a quantum state inwith the
densed matter systems. transformation between position and momentum represensabe-
This article is organized as follows. We first review Zalka ing performed with the efficient quantum Fourier transfo@F().
and Wiesner’s algorithm and show how the difficulty of com- The ancilla register is required for phase kickback and mesnan-

puting a wavefunction’s time evolution depends only on thechanged throughout the simulation, while the boxed timp Eee-

. . . . : peated/dt times. The proposed algorithm, unlike that of Zalka [15],
complexity of evaluating the interaction potential. Werthe goeg not require that functions be uncomputed and is theréfdce
consider three approaches to the calculation of the inierac 55 fast.

potential, including a fully non-adiabatic treatment otaf

ical reactions. We consider the problem of state preparatio X X

for all of the schemes, and finally address the problem opropagator/(t) = e~ ", Given a sufficiently small time
measurement. We present three readout schemes for reactistepdt, we can write to first order

dynamics—reaction probabilities, thermal rate constaanrtd X R R

state-to-state probabilities—which would allow for eféiot U(8t) = e 0 = T3,V L (6542,
evaluation of many parameters accessible to experiment.

Repeat time-step iteration

The operatorg—*V%* and e~*7%* are diagonal in the posi-

tion and momentum representations, respectively. A quantu
QUANTUM DYNAMICS computer can efficiently transform between the two represen

tations using the quantum Fourier transform (QFET) [23]:

The problem of simulating quantum dynamics is that of de- N iT(p)st st
termining the properties of the wavefunctipn(t)) of a sys-  1¥(01)) = U(6%) [$:(0)) ~ QFTe QFT'e [1(0)) -
tem at timet, given the initial wavefunctior/(0)) and the
HamiltonianH of the system. If the final state can be prepare
by propagating the initial state, any observable of intares/
be computed.

We employ an improved version of the real-space quan-
tum simulation technique developed by Zalka and Wiesner in

which a discrete variable representation of the wavefoncti Th licati £ di | unitaries is straightf q

is used|[15| 16]. In the one-dimensional case, the domain of € appt|ca lon © ¢ |agosna uni a:|hest IS shra|g orwtar

the wavefunction is divided into a discrete position badis o ON @ quantum computer. - Suppose that we have a gale se-
uence which acts on an arbitrary position eigenstafe)as:

N = 2" equidistant points. The wavefunction is representeogfiv(x)& ix). Since|w) is a superposition of position eigen-

dThe procedure is iterated as many times as necessary ta obtai
the system wavefunctiop(t)) after an arbitrary time to a
desired accuracy.

as- states, when this gate sequence is applidad fpone obtains
2" -1 eVt |1} in a single application.

(1) = Y ax(t)lx) =ag|0...00)+...4az1[1...11).  We depart from Zalka and Wiesner's method in the imple-
z=0 Tqu’bi:/ mentation of this gate sequence. We are free to take thetowes

value of the potential in the domain &sand use such units

The spatial wavefunction is stored in the Hilbert space of th that the maximum value of the potentiallig,., = 2™ — 1,
qubits, and so the spatial resolution grows exponentiailly w with m an integer. With this choice of unifg takes inte-
the number of qubits. For a system witldimensionsd reg-  ger values, and we chooselarge enough thdlt’ is resolved
isters ofn qubits each are uselk) = |z1) - - - |xq), represent-  with sufficient precision. The integer is therefore the num-
ing a grid of29" points. The states of multiple particles can ber of qubits required to represent the desired range of po-
be stored by adding position registers for each particlerd@h tential values with the desired precision. The gate seqenc
fore, only a polynomially large number of qubits is requiredV which computes the potentidl acts so tha®’ |x,y) =
to store the system wavefunction. |x,y & V(x)), wherey is anm-bit integer labeling a basis

For simplicity we assume a time-independent Hamiltoniarnstate of the ancilla register ardl denotes addition modulo
whose potential depends only on positiol, = 7'+ V  2™.
where T’ = p?/2m and vV = V(%) are the kinetic and We apply the diagonal unitary by phase kickback. The com-
potential energy operators, respectively. The split cpera puter is initialized in the statg)) ® [1),,, where|1),  in the
method [15| 21, 22] computes the time evolution by separatancilla register represents the stéfe..001) in m qubits.
ing the kineticI’' and potential/ energy contributions to the Applying the inverse QFT to the ancilla register, followed b
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V, produces for a system of3 particles, there are onl9(B?) terms in the
sum. [43]
& e2miv/M Vst W e2miv/M The fact that the Coulomb potential can be evaluated in
Ve > BVl ly) | =e DY UM ) O(B*m?) time implies that chemical dynamics could be sim-
y=0 v=0 ulated on a quantum computer @(B2m?) time, an expo-
where M = 2™ and we choosét = 2=. The equal- nential advantage over known classical techniques fortexac

ity obtains since the ancilla state is an eigenstate of addduantum simulation. Her8 is the number of particles and
tion (with eigenvaluee=27/M corresponding to the addi- 'S the binary precision the potential in the region of insére

tion of ) [24]. We see that applying results in the reg- We want to emphasize that a quantum simulation Woulql be
uisite diagonal unitary action on the wavefunction registe Substantially different from what is usually done on cleasi
The states of register and ancilla are separable beforefand £0MPuters. Most significantly, we are proposing to expicit
ter each potential evaluation. We can also define a quantuffck all the nuclei and electrons on a Cartesian grid wrsch i
gate sequenc which computes the kinetic energ§/2m: sufficiently fine and W_lth time s_teps sufﬁc!ently short to €ap
TIp,y) = |p,y @ T(p)). This gate is diagonal in the mo- ture the true electronic dynamics. We will show that this is

mentum basis, and has efficiently computable entries on thB0t Only more accurate, but also requires fewer quantum re-

diagonal (namelyy?). Thus, we use the quantum Fourier SOUrCes. _ . _
transform to conjugate into the momentum basis Z&rid im- The Supplementary Information contains a detailed com-

plemented by phase kickback in exactly the same way.as putation of_the n_umbers of gates and qubit_s required for the
The quantum circuit for this algorithm is shown in FIig. 1. guantum simulation of the Coulomb potential. The number

This simulation algorithm is numerically exact in the sense®! €lémentary gates required to evaluate this potentidirieet

that all introduced approximations are controlled, so that ~dimensions ig m? 4 3.m?) per pair of particles (Fig.12).
error in the calcuation can be arbitrarily reduced with an ad W& chose a method which minimizes the number of ancilla
ditional polynomial cost. The only approximations empldye qu|ts ar_1d sois suited for small num_bers of qubits. Note that
are the discretization of time, space, and the potehtiad). S scaling is not asymptotically optimal (the asympto&e
The error due to discretization can be made exponentiallfluirement would b& (")), so further improvement could
small by adding more qubits. The error due to time discretizaP® achiéved for computations with high precision (largp
tion can be systematically improved by use of higher—ordeif suitable anth_metlcal aIgonthms_ were implemented.riigp
Trotter schemed [25]. The computational cost of the algo{N® wavefunction of a system withdegrees of freedom re-
rithm per iteration is the evaluation &f(x), T'(p) and two  duiresnd qubits, so a system @ particles, withd = 35 — 6
QFT's. While the QFT's and the quadratic form in the kinetic degrees of freedom, require¢3B — 6) qubits. To this one

energy p? in the simplest case) can be computed in polyno-m”St add the qubits needed for the ancilla registers, only fo

mial time [23] 25], the evaluation of the potential enebg) 0}‘ which are required for_ the Cou!omb potential, meanir]g tha
may not be efficient in general. For example, a random potersimulating these potentials require§35 — 6) + 4m qubits

tial stored in an exponentially large database requires<an e Fig.[2).

ponentially large number of queries to evaluate. However, a

classical algorithm running i@( f (n)) time can be adapted to

a reversible quantum algorithm also runningff (n)) time On a small quantum computer, the computational cost of
[27). Therefore, the potential enerdy(x) will be efficiently ~ simulating the interactions between many particles mayepro
calculable on a quantum computer if it is efficiently caleula Prohibitive. One could try to simplify matters and focusyonl

ble on a classical computer. Fortunately, this is true for alon the nuclear motion by employing the Born-Oppenheimer
chemically relevant cases. approximation. Here, the solution of the electronic struc-

ture problem provides a potential energy surface on which
the nuclei move. However, we show that quantum comput-
CHEMICAL DYNAMICS ers would benefit from the Born-Oppenheimer approximation
only rarely: for many chemical reactions, simulating thi fu
Every isolated system of chemical interest has the sam@ynamics of both electrons and nuclei will not only yield mor

Hamiltonian, which in atomic units is accurate results, but will also, remarkably, be fasters T$hin
) sharp contrast to the study of chemical dynamics on cldssica
o bi 44 computers, where there is frequent need to simplify calcula
— 2M = Tij tions using the Born-Oppenheimer approximation.

It is difficult to estimate the precise computational cost
where the sums are over the nuclei and electrpnis,the mo-  of using the Born-Oppenheimer approximation, since differ
mentum of the'*® particle, M; its massy; its charge and;; ent potential energy surfaces have different functionahf
is the distance between particleandj. Both the potential Nevertheless, for any general fitting technique, the coraple
and kinetic terms can be efficiently evaluated since th&-arit ity of the interpolating function grows exponentially wi
metical operations can be performediim?) time [26], and  creasing dimension of the system, since exponentially many
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the potential, and more for chemical accuracy. With= 15,
the exponential growth implies that even for heavy elements

- 3007 (Z =~ 100), the fully-dimensional diabatic treatment is faster
5§ 250¢ for all reactions involving more than four atoms, and evan fo
g% 200l many smaller reactions, as shown in FEig. 3.

g § It is perhaps beneficial to briefly discuss the intuitive rea-
5 o 150} sons why the use of pre-computed potential energy surfaces
=2 100t is not as useful on quantum computers as it is on classical
S 3 machines. Classically, an exponential amount of memory is
2 5ot required in general to store the wavefunction. However, the
ob ratio of computing power to memory in most classical com-
2 3 4 5 6 7 8 9 10 11 puters is large and the basic floating point operations a ha
& wired. Since the storage capacity is often the limiting dact
0 % 1000y if a wavefunction can be stored in memory, its motion on a
‘gé g00l surface can probably be com_puted. Quantum. computers, on
ES the other hand, require only linearly many qubits to stoee th
52 o0l wavefunction in a superposition state. However, using a pre
ir g computed potential requires either the evaluation of a com-
g5 400 plicated function or a look-up in a potentially large tablée
ez potential energies must be computed on the fly in order to take
2L 200 advantage of quantum parallelism and it is therefore imper-
g ative to keep the interaction potential as simple as passibl

2 3 4 5 6 7 8 9 10 11 This is achieved by treating all the particles explicitlyteir-
Number of particles acting via the Coulomb interaction.
An alternative way to compute a potential energy surface
would be to embed an on-the-fly calculation of electronic

FIG. 2: Resource requirements for a quantum simulatioB gfar-  structure in the quantum algorithm and thus avoid a classi-
ticles interacting through a pairwise potential. The clehsym-  cally precomputed fit. This can be done efficiently since-elec
bols correspond to the simulation of the full Coulomb dyrzsvof  tronjc structure calculations can be performed in polyradmi
the corresponding atom (nucleus and electrons). The aedashed time on quantum computers [19]. Hence, the quantum cir-

line represents the approximate current limit of nhumelycakact . S
guantum simulation on classical computers on a grid [18).Tptal cuit v would be replaced by a black box containing the ef-

qubits required. We require qubits for each degree of freedom and ficiént quantum version of the full configuration interaatio
m qubits for each ancilla, four of which are needed for the 6owi ~ (FCI) procedurel[19]. Because the quantum simulation algo-
potential. Hence, a total of(3B — 6) + 4m qubits are needed (see rithm exploits quantum effects, a single evaluation of elec

Supplementary Information for details). The horizontatteid line  tronic structure is sufficient for each time step: all thelaac
represents a 300-qubit quantum computer, which is believdie  configyrations are evaluated in superposition. However, th
feasible with near-future technology [20]. We assume a gfigf electronic structure circuit for the proposed algorithmuvdo

points, which corresponds to = 10 and would suffice for the sim- require the atomic positions as inout. This would require a
ulation of many chemical reactions or the strong-field iatian of 9 P put. q

atoms [D 28]. B) Total elementary gates required. The 300-qubit Modification of the original algorithm so that the Coulomb
computer is expected to achieve one billion elementarymuanp- ~ and exchange integrals are computed using a quantum circuit
erations. The dotted line represents the largest possibldation of  rather than classically. While this approach, unlike therBo

1000 time steps, assuming ten bits of numerical accufacy= 10). Oppenheimer approximation, is asymptotically appeating,

Computing the Coulomb potential requirégm?® + 5-m”) gates  |arge overhead required to compute the exchange integrals

per pair of particles (see Supplementary Information fdails). quantum mechanically makes it uninteresting for nearrfutu
implementation.

Steane has recently proposed a design for a 300-qubit,
data points must be used in the fit if one is to maintain uni-error-corrected, trapped-ion quantum computer that could
form accuracy over the entire domain. We can provide an egperform aroundl0® quantum operations using methods for
timate of the computational cost for a potential energyatef quantum gates that have already been experimentally imple-
which is an interpolating polynomial of degré&along each mented|[20]. On a three-dimensional grid23f points, such
dimension (see Supplementary Information). In that cdee, t a computer could store the wavefunction of a ten-particte sy
total cost of the adiabatic simulationi&®*®~¢ (2m?3 + 5m?)  tem (Fig[22). By comparison, classical computers implement
per nuclear time step (which is usually about a thousandstimeing a comparable grid based algorithm are limited to com-
longer than an electronic time step). Numerical experismentputing the full quantum evolution of a three-particle syste
with the BKMP2 surface foH; [29] indicate thatX’ must be  such as a helium atom/[9,/10]. Even a relatively modest quan-
chosen to equal at least 15 if one aspires to 0.1% accuracy ilmm computer with 100 qubits could simulate the electron dy-
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15 nuclear and electronic wavefunctions, each in its own quan-

tum register.

Nuclear motions can be expressed in normal mode coordi-
nates if the displacements from equilibrium are small, Wwhic
is the case in molecules at chemically relevant temperature
The nuclear wavefunction is then, along each coordinate, a
superposition of harmonic oscillator eigenstates, whiah a
themselves products of Gaussians and Hermite polynomials.
Itis known that superpositions corresponding to efficieimt
tegrable functions can be prepared on a quantum computer in
polynomial time [15| 31]. Therefore, Gaussian wavepackets
and Hermite polynomials are efficiently preparable, megnin
FIG. 3: Estimated number of elementary quantum operatigae$)  that we can prepare good approximations to molecular vibra-
required for the simulation of chemical reactions. Stadddorn-  tional states and Gaussian wave packets.
Oppenheimer potential-energy-surface calculationsiredime re- Gaussian wavepackets can also be used to prepare the
sources exponential in the size of the system (fullline)lewn fully - gjectronic wavefunction. Indeed, it is customary in elec-
nonadiabatic, nuclear and electronic calculation woutglire only tronic structure theory to expand molecular orbitals inmer

polynomial time (dotted). The resulting cutoff indicatésit for all . . . e
reactions with more than four atoms (dashed) the Born-Cigierer of atomic orbitals, which themselves are superpositions of

approximation is always less efficient on a quantum compim Gaussie_ln-type orbitals. The orbital occupatio.n numbens ca
a diabatic treatment. The complexity of the diabatic compan ~ be obtained from electronic structure calculations, idirlg
depends only on the atomic numhg&y while the potential energy our earlier quantum algorithm [19]. Consequently, the eccu

surfaces are modeled as polynomials of dedteslong each axis. A pied orbitals, which are superpositions of Gaussians, ttan a
value of K’ > 15 is required to obtain 0.1% agreement with surfacespo prepared efficiently.

such as BKMP2[[29]. The position of the cutoff does not signifi . . L .
cantly depend on the accuracy of the evaluated potential (To One final consideration is the exchange symmetry of multi

obtain the gate counts, we assume 20 bits of accufacy= 20), electron Wavefunf:tions._ Abram; and Llqu proposed a
enough for chemical precision. The gate counts reflect thietfiat ~ Method for preparing antisymmetric wavefunctions [32itsta
an appropriate nuclear time step is about 1000 times lotgeran  ing with a Hartree product of molecular orbitals. We propose
electronic time step. to use this method for preparation of multi-electron wanefu
tions, noting that it suffices to prepare the initial statéhwie
correct exchange symmetry, since the exchange operater com
namics or ionization of the lithium atom, a task beyond themytes with the Hamiltonian.
reach of classical computers using grid based methods [10]. Of course, other strategies for state preparation can be pur
The simplest chemical reactioH,+ H> — Hs + H, isasix-  sued, such as the phase estimation algorithrh [33]. If we
particle system, and could therefore be simulated by Steanegre able to prepare a stat§) that has a significant over-
computer in a fully-dimensional diabatic regime. While@th |ap (S| E) with an eigenstatér) (not necessarily the ground
classical methods may be able to reach somewhat larger extate), phase estimation followed by measurement will col-
amples, the exponential scaling of all known classical exaciapse the wavefunction to the desired eigenstate with proba
methods means that the examples given here are close to thgity |(S|E)|*. Alternatively, the ground state can be pre-
crossover point between classical and quantum computing fgyared by the adiabatic state preparation algorithr [19]s Th
chemical dynamics. There remain two questions: how to prefs of particular significance to the simulation of full cheai
pare the initial state of the quantum computer, and how tynamics, since the electronic ground state is usually @ goo

Born—Oppenheimer
(K = 35,25,15)

[N
N
T

©O

I Fully quantum
(Z =110 90)

(=2}
T

w
T

Elementary quantum gates required
per nuclear time step (10%%)

3 4 5
Number of atoms of atomic number Z

extract useful information out of the final state. approximation for the reactants.
MEASUREMENT
STATE PREPARATION After preparing the initial state and simulating its timeev

lution using the methods described above, we must extract
The preparation of an arbitrary quantum state is expoehemically relevant information from the final system wave-
nentially hard in general [30]. Nevertheless, we show thafunction. In general, quantum tomography is the most génera
most commonly used chemical wavefunctions can be preapproach to the estimation of an unknown quantum state or
pared efficiently. Since the significant deviations fromfor a quantum process [27] by measuring the expectation values
Oppenheimer behavior occur during evolution and usually dof a complete set of observables on an ensemble of identi-
not concern initial states, we will prepare the initial stas-  cal quantum systems. However, this full characterizatibn o
ing the Born-Oppenheimer approximation. Thatis, the syste quantum systems always requires resources that grow expo-
wavefunction will be a product staté) = |tnuc) [elec) OF nentially with the size of the system. In order to avoid such



problems, alternative approaches for the direct estimaifo  the correct thermal mixed state. In that case, the expecta-
certain properties of quantum dynamical systems have bedion value of the reaction probability would equal the rate
recently developed [34, B5]. Here we likewise show that theconstant, up to a known factor. The required initial state
data of greatest chemical significance can be obtainedtlyirec is p(0) = C? >erl (£, T)? |go (¢, E)) (o (¢, E)| where

with only a polynomial number of measurements. In particuT(E’ T) = (exp(—E/kpT)AE/2rh Q(T))W is the square

lar, we present algorithms for obtaining the reaction pbiba 5ot of the appropriate Boltzmann factd, is a normaliza-

ity, the rate constant, and state-to-state transitionadiies. gy constant, andi (¢, E)) is a real-space reactant eigen-
The reaction probability, given a certain initial wavefenc ¢,nction corresponding to quantum numbersand energy

tion of the reactants, is the likelihood of observing, ater r |5 we propagatep(0) for time ¢ using the simulation

suffi_cier_ltly Iong t_ime, the products of the.chemical reattio algorithm, the system will be in the final stajet) =

To flnd it, we _dI.VIde the real-space do_ma|n of the wavgfunc—cg Zc LT (E, T)Q 60 (¢, E)) (6 (¢, E)|, whereldy (¢, E))

tion into r disjoint regions corresponding to sub-domains oanW denotes the time-evolved version of state (¢, E))

chemical interest. In chemistry these regions are typicall (note that, except in exceptional casgs, (¢, £)) is n7ot an

few simple polytopes. The simplest division is into only two eigenfunction of either reactants or produé:ts). If we have a

regions, one for the reactants and one for the products; S€Pguantum register in this mixed state, we can add an ancilla

rated by the transition state dividing surface (TSDS). e r gubit and use the technique of dividin,g the domain into reac-

actiqn probability is t.he sum of the pr.obabilitie.s of f!nding tant and product regions as described above. Finally, a mea-
the final wavepacket in the product region(s). It is strdfyht surement of the ancilla qubit products with probability
ward to construct a classical point location circuit for thiec- C2k(T). The precision of(T) thus obtained goes as'’M
tion F(x) which, given a nuclear position vecteridentifies iy the number of measurements if we use amplitude es-

Wh'Ch region 't_ is in by retgrmng an mtege_r label co_rresp(_)n timation. The previously proposed approach for estimating
ing to that region. There is a corresponding reversibleutirc reaction rates [17] evaluates the rate constant by congpatin

that performs the transformatidm) [y) — |x) |y ® R(x)).  fyx fiux correlation function based on a polynomial-sizexsa

we %a_mhapply g:j's circgi(;_t_o thel fina_I”stajt$>_ - Zxﬂ‘;" ), ple of the wavefunction in the position basis. In contrast, 0
to which we add an additional ancilla register witlig, 7] 5500ach carries out the integration explicitly on the quan
qubits. Thatis, applying this reversible circuip) |0) yields tum computer using amplitude amplification, which provides

,ZX. ax |x) |R(.x.)>' Meas:uring the ancilla regigtgr wiII_ret}Jrn a quadratic improvement over algorithms that rely on ctadsi
¢ with probability P;, which equals the probability of finding sampling and post-processing.

the wavepacket in the regianWe can obtain all the probabil-

ities P, by employing an ensemble measurement of the ancilla The thermal state(0) can be prepared efficiently on a

register. Since individual measurements are uncorrelgied quantum computer. We begin by preparing a superposi-

error of the estimate of the probabilities decreasek/aél/  tion of the reactant state labels in terms @fand £, i.e.,

for M repetitions of the experiment. However, it is possibleC >_¢ g T (E,T)[C, E), with C andT" as defined above.

to achieve a convergence bfM, which is the ultimate limit Here, |, E)) contain only the state labels, and not position-

of quantum metrology [36], using techniques such as ampliSPace wavefunctions. If we assume that the thermally acces-

tude estimation [37. 38]. Next, we use these disjoint regjion Sible states can be enumerated by a polynomial number of

to compute the rate constant. qubits and that the energy can be specified to a certain pre-
The rate constant(T) at temperaturd is a thermally ~ CiSIONAE, we see that the statg, £) require only polyno-

weighted average of cumulative reaction probabilifie§:[39 ~ Mially many qubits to store. The superposition itself can be
prepared efficiently sincE(E, T') is an exponential function

K(T) = 1 /oo N(B) e~ E/T g of the energy and is therefore efficiently preparablel[15, 31
2nh Q(T) Jo The next step is to generate, by doing state
~ 1 ZPT(QE) e~ E/keT AR preparation in superposition, the statéd) =
2nh Q(T) &5 CY T (B, T)|¢ E)|do (¢, E)), in which each term
is the tensor product df, E) and the corresponding real-
whereF is the energyQ(T) is the reactant partition function, space reactant eigenstate (¢, F)). The statese, (¢, F))
and N(FE) is the cumulative reaction probabilitfy (E) =  must have definite enerdy. Hence, one can represent an ini-
ZC P.(¢, E). The vector¢ is a specification of all the quan- tial state as a direct product of discrete reactant intestadits
tum numbers of the reactants aii({, F) is the reaction (specified by¢ with energy E(¢)) and a wavepacket with
probability given that the reactants are in the eigensfageis  kinetic energyE, = F — E(¢) [39]. The discrete part can
fied by¢ andE. The sum ranges over all possilgleand with  be prepared using the state-preparation approach dedcribe
E from zero to a cutoff. Note that on a quantum computerabove. The incoming wavepacket can be approximated with
the cutoff can be made exponentially large, or the energy stea Gaussian with a kinetic energy expectation valuezpf
AE exponentially small, by adding more qubits. This approximation can be improved by increasing the width
We can compute the rate constant on a quantum conef the Gaussian, which can be doubled by the addition of a
puter if we propagate in time not a pure wavefunction butsingle qubit to the paosition register. This would halve the



momentum uncertainty of the wavepacket. With sufficiently CONCLUSION
many qubits, the error incurred in this approximation could
be made smaller than errors from other sources, such as
grid discretization. Once we have prepatéd), we will no
longer use the register containing the state&). If we trace
this register out, we can see that the remaining state eggist

is a mixed state with density operajef)), as desired. ity of calculating the potential and because the laws of reatu

Fllan?anl)/t we ISVTOVE[’ hﬁw to Iobtalnt_ state—to-s;ate trandsnéonare usually captured by simple, few-body interactions. For
probabilities. ~ost chemical reactions can be regarde agxample, by using a quantum computer to study atoms in the
scattering processes, and it is therefore desirable to khew

. . : . presence of a strong, time-dependent electric field, onklcou
scatteringS-matrix. In particular, it is these state-to-state tran-

i litud hich ible t . ‘1 simulate such effects as multielectron ionization or &ttes
sttioh amplitudes which are accessibie lo experiment. taere pulse generation![9, [10,/28]. Quantum computers also
fore we have considered the joint wavefunction of all the

: ... offer the promise of predicting real-time properties of s
molecular species. To compute state-to-state probaisiliti : P g prop P

h : that h tant molecule is i fluids [40,.41], and of providing tests for effective poteidi
owever, we must ensure that each reactant molecule ising@ .. phases [42].

well-defined molecular state. For example, to probe thestat ] ) o
to-state dynamics of thH + H, reaction, we would need to ~ We close by reiterating the need for a careful reexamination
prepare a particular state of the hydrogen atom plus a state gf the suitability of traditional quar_wtum approximatiore f

the hydrogen molecule, and not simply a state of the overalS€ On quantum computers. Previously we have shown that
H; aggregate. Given these states, prepared in the center-Gt-guantum implementation of full configuration interaction
mass coordinate systems of each molecule, one must perforgy@/es better than coupled cluster approaches (in paticul
coordinate transformations to put them on a common grid©CSD(T)), and in this work we show that simulating the com-
For each molecule, the Cartesian coordinates of the pesticl plete nuclear and electronic time evolution is more efficien
are linear, invertible functions of their center-of-masseli- ~ On quantum computers than using the Born-Oppenheimer ap-

nates. Since the coordinate transformations can be coohput®roximation, a central tool of theoretical chemistry. We ca
by an efficient, reversible, classical circuit, they carodle ~ imagine the development of a wide variety of new tech-
efficiently computed quantum mechanically. niques and approaches tailored for natural quantum simula-

We concentrate here on obtaining only the vibrational stateters: Which, themselves relying on the rules of quantum me-
to-state distributions. Using the techniques of state gmasp Chanics, give us a deeper understanding of physical phenom-
tion above, we prepare each reactant molecule in a vibtion €&
eigenstate, so that along each of its normal mode coordinate We wish to thank Eric J. Heller and Jacob Biamonte for
the molecule is in an eigenstate of the corresponding patent valuable discussions, as well as the Army Research Office
After all the molecules are thus prepared, their wavefomsti  (project W911NF-07-1-0304 and the QuaCCR program) and
are transformed to a common Cartesian system. This initighe Joyce and Zlatko Balokovi¢ Scholarship for funding.
state is evolved as usual until the molecules separatesato i
lated products.
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tion and the normal mode coordinates again become separa[-l] U. Manthe. H.-D. Mever. and L. S. Cederbaum. J. Chem. Phvs
ble. Therefore, an orthogonal transformation can be agplie 97 3199 (i99'2).' yer, T T Ny
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particles. Simulating potentials other that the Coulomtepe  For the C-ADD, we first apply a QFT to the accumulator, as
tial could be applied to situations such as liquid heliunstdus,  in Draper’s algorithm (we will also apply an inverse QFT at
and although we do not discuss them in detail, the preseot alg the end, and these two requité steps in all). Each C-ADD
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requires‘gm% operations, giving a total a3 m® + m?) gates
for a multiplication. However, since half of the CC-rotatfo
are to the insignificant bits of the accumulator and are sub-
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sequently discarded, we only need to perfc@m?’ + m2) We represent the potential ag-alimensional interpolating
gates for a multiplication. polynomial:
To compute the Coulomb potential, the distandeetween
two particles,r? = (x2 — 21)? + (y2 — 91)? + (22 — 21)%, K
must be known. Evaluating? requires 3 subtractions and  V(X) = D Chykgeky @) 25 -2l
3 squarings (the two additions are performed automatically k1,kg...ka=0
since the squarings are really additions that can use the sam K K K
accumulator). For squaring, we multiply the number by ftsel = Z bkla?’fl Z bk1k2x§2 Z bk1k2---kd17§d
using the multiplication circuit, giving the total requinent k1=0 k2=0 ka=0

of (£2m? + £m?) gates for computing?. The same com- _ _ _ _
putation would be used in momentum space for computing which can be evaluated using Horner's method starting with
or for simulating a harmonic oscillator potential. the innermost sum. That is, one has to evaluate one dtder-
The evaluation of the Coulomb potential is complicated bypociyrl‘om'al inz,, K" such polynomials iz, and so on until
the need for a square root. Since evaluatjfis just as dif- &“ " polynomials inz4. That s, the total number of polyno-

B — - d
ficult as evaluating /v/S, we can findl/r from 72 in one  mials that need to be evaluatedi¥ | K’ ~ £~ In order

computation using the Newton-Raphson method, with the itthat the results of these calculations be available as aotsst
erationz, 11 = 4 (3 —r2. x%) The number of iterations for higher-level polynomials, all the intermediate polymal

will depend on the desired final accuracy, but numerical exevaluations have to be saved in temporary memory along the
periments show that for many rangesSffour iterations suf-  way. The number of required registers%:—ll.

fice to compute /+/S to within less thar).03% over the en- Each polynomial that is evaluated has the form

tire range. Each iteration requires one subtraction arekethr

multiplications (one of them bit-shifted due to the factdr o K

1). So the requirement for/v/S is (15m® + 18m?) gates, P(z) = Zpkafk =po+z (p1-- + 2 (pr—2 + = (Pr—1 + Tpi)))
which together with calculating the distancg gives the to- k=0

tal requirement for the Coulomb potential@ m® + 2m?) _ _
gates for each pair of particles. wherepy, is some constant. Therefore, each polynomial eval-

Potentials fitted from first-principles calculations. When ~ Uation requires preciseli( additions ands mu_ItlpI;catmns.
using the Born-Oppenheimer approximation, one uses a pdS We have se(_an.abpveé a:? add2|t|on rqulgezs oOpera-
tential V(x) which is a function of only the nuclear coordi- tions, and a multiplicatiofgm? +m?), meaning thatin total
nates. It is the total energy of the molecule assuming treat theach polynomial evaluation requirs(3m? + 5m?) gates.
electrons are in their ground state given the potentialdgedu  Therefore, the total number of gates required to calcutate
by the nuclei at coordinates In general, this ground state is K=t (3m? + 3m?) ~ K¢ (3m? + 3m?). Furthermore,
energy is difficult to compute on a classical computer. Thusthe total qubit requirement is.o; = nd + m%.
interpolation schemes may be used to approxiniafe).

Here we analyze the computational resources needed for such 1. T. G. Drapel, quant-ph/0008033 (2000).
schemes.
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