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Open quantum system approaches are widely used in the description of physical, chemical and
biological systems. A famous example is electronic excitation transfer in the initial stage of photo-
synthesis, where harvested energy is transferred with remarkably high efficiency to a reaction center.
This transport is affected by the motion of a structured vibrational environment, which makes sim-
ulations on a classical computer very demanding. Here we propose an analog quantum simulator
of complex open system dynamics with a precisely engineered quantum environment. Our setup is
based on superconducting circuits, a well established technology. As an example, we demonstrate
that it is feasible to simulate exciton transport in the Fenna-Matthews-Olson photosynthetic com-
plex. Our approach allows for a controllable single-molecule simulation and the investigation of
energy transfer pathways as well as non-Markovian noise-correlation effects.

Understanding strongly interacting quantum systems
with many degrees of freedom is one of the big chal-
lenges in physics and chemistry [1]. Classical computa-
tional methods are restricted by exponentially increasing
amount of resources required for the simulations. Quan-
tum computers are conjectured to be a possible solution
as the resources to simulate arbitrary quantum systems
grow polynomially with the size of the system under
study [2, 3]. However, universal quantum computers of
sufficient size and performance are not available yet, one
of the big problems being the loss of quantum mechanical
coherence, i.e., decoherence [4]. Designing a special quan-
tum system in the laboratory, which mimics the quantum
dynamics of a particular model of interest, see for exam-
ple, Refs. [5–10], can be a more viable alternative to an
all-purpose quantum computer.

Here we propose a quantum simulator architecture us-
ing superconducting quantum bits (qubits) that is ca-
pable of simulating complex open quantum systems us-
ing currently-available technology in realizable parame-
ter ranges. We will focus on the Fenna-Matthews-Olson
(FMO) pigment-protein complex on a single molecule
level. The recent observations [11, 12] of quantum
beatings and long-lived quantum coherence in several
photosynthetic light-harvesting complexes, such as the
FMO complex in the green sulfur bacterium Chlorobium

tepidum or the reaction center of the purple bacterium
Rhodobacter sphaeroides, suggest possible evidence that
quantum effects give rise to the high energy transport ef-
ficiency found for these complexes. There is a remarkable
amount of recent theoretical research related to the ques-
tion of the molecular structure, vibrational environment,
the origin and the role of long-lived quantum coherences
[13–23]. The electronic degrees of freedom are coupled
to a finite temperature vibrational environment and the
dynamics of the relevant electronic system can be stud-
ied by means of open quantum system approaches. In

quantum computing, the focus of much of the research
has been on reducing the magnitude and influence of en-
vironmental decoherence and dissipation. However, con-
trolled coupling to a dissipative environment can also be
exploited [24–26]. In this work, we focus on engineering

the decoherence to simulate open quantum systems that
are challenging to study using classical computers.

We propose two approaches for simulating the vibra-
tional environment. The first approach is based on en-
gineering a classical noise source such that it represents
the atomistic fluctuations of the protein environment. A
prototypical experiment of environment-assisted quan-
tum transport (ENAQT) can be performed [16]. The
second approach allows for the precise engineering of
the complex non-Markovian environment, i.e., an envi-
ronment that has long-term memory. This is achieved
by the explicit coupling of quantum inductor-resistor-
capacitor (LRC) oscillators to the qubits which allows for
energy and coherence exchange between the resonators
and the qubits. Both approaches are based on present-
day superconducting qubit implementations. Fabrication
of superconducting circuitry is done by several research
labs. We focus here on flux qubits, where two-qubit
coupling was shown to be sign- and magnitude-tunable
[27, 28] and methods of scaling to a moderate number
of qubits have been discussed in Refs [29, 30]. We show
that realistic simulation of photosynthetic energy transfer
is feasible with current superconducting circuit devices.

I. THE MODEL HAMILTONIAN

We are interested in the dynamics of a finite dimen-
sional system which is linearly coupled to a bath of har-
monic oscillators. In the following we refer to the system
as “electronic system” and to the quantum environment
as “phonon bath” or “vibrational environment”. The

http://arxiv.org/abs/1106.1683v3
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corresponding total Hamiltonian is written as

Htot = Hel +Hph +Hel−ph . (1)

A. The system

We are often (e.g., in the FMO complex) inter-
ested in the transfer of a single electronic excita-
tion. Thus basis states |j〉 are defined by the elec-
tronic excitation residing on molecule (site) j and all
other sites being in their electronic ground state. The
electronic Hamiltonian in this site basis is given by

Hel =
∑N

j=1 ε̃j |j〉 〈j|+
∑N

i<j Vij (|i〉 〈j|+ |j〉 〈i|) , [31].
The diagonal energies ε̃j are identified with the electronic
transition energies of site j and the off-diagonal elements
Vij are the intermolecular (transition-dipole-dipole) cou-
plings between sites i and j. Different local electrostatic
fields of the protein at different sites shift the electronic
transition energies [15], resulting in a complicated energy
landscape.

B. Coupling to the quantum environment

The vibrational environment is represented by a set
of displaced harmonic oscillators. The Hamiltonian of

the phonon bath is written as Hph =
∑N

j=1 H
j
ph , where

Hj
ph =

∑

ℓ ~ω
j
ℓ(a

j
ℓ

†
ajℓ + 1/2) with ajℓ

†
(ajℓ) being the cre-

ation (annihilation) operator of excitations in the ℓ-th
bath mode of site j. In the present work we restrict to
the situation where each site has its own phonon envi-
ronment which is uncorrelated with the phonon modes
at the other sities. This is motivated by recent results
obtained for the FMO complex [32, 33]. The diagonal
part of the electronic Hamiltonian couples linearly to the
phonon modes. The electron-phonon coupling term can
be written as

Hel−ph =
N∑

j=1

Hj
el−ph =

N∑

j=1

|j〉 〈j|
[
∑

ℓ

χjℓ (a
j
ℓ

†
+ ajℓ)

]

.

(2)

Here χjℓ = ~ωj
ℓ djℓ is the coupling between the j-th site

and the ℓ-th phonon mode with ωj
ℓ being the frequency

of the ℓ-th phonon mode coupled to the j-th site and djℓ
is the dimensionless displacement of the minima of the
ground and excited state potentials of the ℓ-th phonon
mode at site j. Notice that the so-called reorganization
energy λj ≡

∑

ℓ ~ω
j
ℓ d

2
jℓ/2 was implicitly included in the

above electronic transition energy ε̃j = εj + λj , with εj
being the energy difference of the minima of the poten-
tial energy surfaces for site j, see Figure 1 (a) and the
Supporting Information for more details.
It is known that complete information about the effect

of the environment on a quantum system is determined
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FIG. 1. (a) Model of exciton-phonon dynamics in a system
with two electronic states |g〉 and |e〉 and two dissipative vi-
brational modes q1 and q2. After a vertical Franck-Condon
electronic excitation the phonon degrees of freedom are in a
non-equilibrium position (I) from which the system relaxes to
the displaced equilibrium configuration in the excited state
(II). The displacements are given by d1 and d2 and the en-
ergy scale associated with this relaxation is the reorganization
energy λ. This vibrational reorganization is not captured in
most Markovian models. (b) Energy levels of the electronic
Hamiltonian for the FMO complex denoted by M(i, j), where
(i, j) indicate the two most significant BChl pigments par-
ticipating in the delocalized excitonic states M . The red ar-
rows indicate the dominant pathways for the energy transport
based on Redfield theory [17].

by the spectral density (SD) function [34], which is de-
fined by

Jj(ω) =
∑

ℓ

|χjℓ|2δ(ω − ωjℓ) (3)

for site j. Due to the high number of modes of the
environment, Jj(ω) can be considered as a continu-
ous function of ω. To account for finite temperature,
we transform the spectral density [35, 36] Cj(ω, T ) =
{1 + coth [~ω/(2kBT )]}JA

j (ω), where the subscript “A”

denotes the antisymmetric spectral density JA
j (ω) =

Jj(ω) if ω ≥ 0 ; and JA
j (ω) = −Jj(−ω) if ω < 0 . The

spectral density Cj(ω, T ) fulfills the detailed balance con-
dition [35] and we name it “temperature-dependent spec-
tral density”.

It turns out that the relevant spectral densities of
our problem can be approximated by a finite number of
broadened peaks. These broadened peaks can often be
associated with the vibrational modes of the molecules.
Upon electronic excitation of a molecule, the vibronic
Gaussian wavepacket of the ground state is projected into
a displaced wavepacket in the excited state at the Franck-
Condon point, see Figure 1 (a). The nuclei wavepacket
then moves on the excited state potential energy surface
and reorganizes to the minimum point while the reorga-
nization energies of the respective modes are dissipated.

Finally, to facilitate the comparison with flux qubits
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we rewrite the total Hamiltonian 1 using Pauli matrices

Htot =
1

2

N∑

j=1

ε̃j σ
j
z +

1

2

N∑

i<j

Vij(σ
i
xσ

j
x + σi

yσ
j
y)

+

N∑

j=1

∑

ℓ

~ωj
ℓ

(

ajℓ
†
ajℓ +

1

2

)

+

N∑

j=1

∑

ℓ

χjℓ σ
j
z

(

ajℓ
†
+ ajℓ

)

. (4)

Expressing the above Hamiltonian in the system en-
ergy eigenbasis, defined by Hel |M〉 = EM |M〉, we have

Htot =
∑

M EM |M〉 〈M |+∑M,N,ℓ K ℓ
MN |M〉 〈N | (ajℓ

†
+

ajℓ) +Hph with K ℓ
MN =

∑

j〈M |j〉〈j|N〉χjℓ. This shows
that the system-bath coupling is off-diagonal in the eigen-
basis.

C. The classical noise approximation

Although the main goal of the present paper is to sim-
ulate the fully quantum mechanical Hamiltonian 4, it is
also useful to consider the much simpler (but important)
case where the quantum environment is replaced by time-
dependent fluctuations of the transition energies. This is
the basis of the often employed Haken-Strobl-Reineker
(HSR) model for excitation transfer [37]. Furthermore,
atomistic MD/QM/MM simulations [32, 33] can readily
provide noise time-series. In the classical noise approach,
the system dynamics is obtained by averaging over many
trajectories with the time-dependent Hamiltonian

H̃tot =
1

2

N∑

j=1

[ε̃j + δε̃j(t)] σ
j
z +

1

2

N∑

i<j

Vij(σ
i
xσ

j
x + σi

yσ
j
y) ,

(5)

where the influence of the environment is solely contained
in the time-dependent site energy fluctuations δε̃j(t). Of-
ten, as in the HSR model, it is assumed that the fluctu-
ations are uncorrelated Gaussian white noise.

II. THE FMO COMPLEX

The model Hamiltonian 1 can be used to describe a
single excitation in the FMO complex. The FMO com-
plex acts as a highly efficient excitation wire, transferring
the energy harvested by the photosynthetic antennae to
a reaction center. The FMO trimer has a trimeric struc-
ture exhibiting C3-symmetry and each of the monomers
consists of a network of eight [23] bacteriochlorophyll a
(BChl a) pigment molecules. Since the coupling between
monomers is very small and can be neglected on the
time-scales of interest, we focus on a single monomer in
the following. The BChl pigments in the monomer are
surrounded by a protein environment. Conformational

motions of this protein environment (static disorder) are
slow compared to the timescale of interest and affect en-
ergy levels of the pigments by electrostatic interaction
[15]. The ranges of site energy differences |ε̃i − ε̃j | and
couplings Vij are given in table I. These parameters lead
to the energy spectrum of the FMO monomer given in
Figure 1 (b).
In the present work, we consider two spectral densities

relevant to the FMO complex. First, a model super-
Ohmic SD [14], J(ω) = λ (ω/ωc)

2 exp(−ω/ωc) with re-
organization energy λ = 35 cm−1 and cutoff frequency
ωc = 150 cm−1, shown as the transformed C(ω, T ) by the
blue dashed line in Figure 4 (a). We have dropped the
subscript j under the assumption that all 8 sites have
same spectral density and reorganization energy. Sec-
ond, the experimental spectral density [14, 38] shown by
blue dashed line in Figure 4 (b). Notice that it is very
challenging to simulate the experimental SD with current
computational methods because of the apparent peaks,
see Figure 4 (b), and the mixing of vibrational dynam-
ics caused by the electronic interaction between the sites.
This structured spectral density with strong peaks is ex-
pected to lead to strong non-Markovian behavior.
In the biological situation, the FMO complex most

likely obtains the excitation at sites 1, 6, or 8, since these
BChls are close to the chlorosomal antennas, where pho-
tons are absorbed. It is often assumed that this excita-
tion is initially local to these sites. Low energy site 3
is the target site for the excitation and is close to the
reaction center where further biochemical processes take
place. In the ultrafast experiments, broad laser pulses ex-
cite a superposition of several delocalized exciton states.

III. THE SIMULATOR

It is challenging to simulate the open quantum system
described in the previous section on conventional com-
puters [20, 36, 39], even using modern parallel processing
units [40–42]. Here we propose using flux qubits cou-
pled with tunable flux-flux couplings for this task. The
environment is modeled by classical noise or quantum
oscillators coupled to the flux qubits.

A. The system Hamiltonian

Consider first a single flux qubit. The relevant quan-
tum states are the ones with magnetic flux pointing
up |↑〉 and down |↓〉 or, equivalently, opposite direc-
tions of persistent current along the loop. In this
bare basis, the Hamiltonian of a flux qubit is given by
H = (E σz +∆σx)/2, where E is the energy bias be-
tween |↑〉 and |↓〉 and ∆ is the tunnel splitting between
the two states. Here E = 2Ip(φx − φ0/2) [43] with Ip
being the persistent current of the qubit and φ0 = h/2e
being the flux quantum. E can be tuned to zero to ne-
glect the E σz term.
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FIG. 2. Circuit diagram of the proposed quantum simulator.
(a) The qubit states are encoded in the quantized circulating
current of the qubit loop. The red crosses denote Joseph-
son junctions. Two flux qubits are coupled with a tunable
σzσz-coupling. Each of the qubits is independently coupled
to a finite number of quantum LRC oscillators to simulate the
non-Markovian vibrational environment. (b) Simulating the
vibrational environment by adding a classical noise to each
qubit.

A tunable transverse interaction between flux qubits
equivalent to that in Hel can be realized using ad-
ditional ‘coupler’ qubits [27, 44]. A schematic of
such a simulator is given in Figure 2 (a). The
Hamiltonian of the coupled qubit system can be writ-

ten as Hq =
∑N

j=1 ∆j σ
j
x/2 +

∑N
i<j gij(∆

c
ij)σ

i
z σ

j
z with

gij(∆
c
ij) being the coupling strength between flux qubits i

and j, which is given by gij(∆
c
ij) ≈ Jij − 2JicJjc/δij ,

where ∆c
ij is the (tunable) tunnel splitting of the cou-

pler qubit and we have defined δij ≡ ∆c
ij − (∆i +∆j)/2

and Jmn ≡ MmnI
m
p Inp with m,n ∈ i, j, c [44]. Here,

Mmn is the mutual inductance between qubits m and
n. This expression is valid to leading order when
δij ≫ |∆i − ∆j |,Jic,Jjc. Notice that by choos-
ing the magnitude of ∆c

ij to be smaller or larger than
(∆i + ∆j)/2 we can change the sign of the effective
coupling. Rewriting the above Hamiltonian in the en-
ergy eigenbasis of the qubit |±〉 = (|↓〉+ |↑〉) /

√
2 con-

verts σj
x → σj

z and σi
z σ

j
z → σi

x σ
j
x ≈

(
σi
xσ

j
x + σi

yσ
j
y

)
/2

in the rotating wave approximation (neglecting strongly
off-resonant couplings). This results in

Hq ≈ 1

2

N∑

j=1

∆j σ
j
z +

1

2

N∑

i<j

gij(∆
c
ij)
(
σi
x σ

j
x + σi

y σ
j
y

)
,

(6)

which is of exactly the same form as the system part
(first line) of Eq. 4 with ∆j and gij(∆

c
ij) corresponding

to ε̃j and Vij , respectively. It is advantageous for the
experimental implementation to note that the dynamics
of Eqs. 4 and 6 does not depend on absolute site energies
ε̃j and ∆j but only on energy differences |ε̃i − ε̃j | and
|∆i −∆j |, respectively.

Q1

Q7

Q3
Q8

Q2

Q6

Q5

Q4

Sink

FIG. 3. Experimental layout for simulating the exci-
ton dynamics and environment assisted quantum transport
(ENAQT) in the FMO complex (the architecture is based on
the interactions given in Ref. [23], where for simplicity of the
graphic the couplings below 15 cm−1 are not shown). Qi

represent single flux qubits. To simulate a biologically rele-
vant case, one of these qubits, Q8 shown in green, is prepared
initially in the excited state while the others are set to the
ground state. The measurement is performed on the target
site, Q3 shown in red. Sinks can be used to trap the energy
and quantify the transfer efficiency.

The system of two coupled flux qubits shown in Fig-
ure 2 (a) can be extended to eight flux qubits with a
special arrangement to simulate eight chlorophylls. An
experimental layout simulating the electronic part of the
FMO Hamiltonian is given in Figure 3, where Qj repre-
sent flux qubits. Static disorder can be simulated in our
proposed scheme by varying the tunnel splittings ∆j in
the flux qubits with each run of the experiment. First
all the qubits are in the ground state by simply allow-
ing the system to relax. Then they are initialized in a
certain desired initial state to start the dynamics. The
excitation of a qubit is straightforward to achieve with
the application of a resonant microwave excitation (π-
pulse) carried by a microwave line which is connected
to the respective qubit. The technique has been used
extensively, e.g., for the observation of Rabi oscillations
in a flux qubit [43, 45]. After some evolution time the
populations of the |±〉 states of the qubits are measured.
The measurement is initiated by applying a flux pulse to
shift the qubit adiabatically away from E = 0 so that its
eigenstates become largely | ↑〉 and | ↓〉 which can be dis-
tinguished via the flux induced in a nearby DC SQUID
loop. In addition, to capture the effect of reaction centers
on the dynamics, we propose to add excitation sinks into
the superconducting circuit, see Figure 3. This is done
with additional terminated transmission lines or shunt
resistors coupled to those sites that are supposed to leak
excitations.

B. Engineering classical noise

We will first discuss the more simple case of an en-
vironment treated within the classical noise formalism
of Eq. 5. We propose two schemes, an active approach
and a passive one. The basic idea of both approaches
is to simulate the fluctuations of the transition energies
by coupling classical noise to the qubits via the flux Φj

c,
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see Figure 2 (b). Such a noise affects the tunnel split-
ting ∆j in the qubit Hamiltonian. On one hand, the
noise can be actively created and send to the qubit by
a time-dependent voltage Ṽ applied to a control loop
[46]. Regarding the passive approach, an environmen-
tal loop exhibits standard Johnson-Nyquist noise [47].
The bath spectrum J(ω) of the noise seen by the qubit
can be related to the real part of the impedance Z(ω)
[48]: J(ω) = K ωRe [Z(ω)] , with K being a constant de-
pending on the self-inductance of the environment loop
and its coupling strength to the flux qubit. With clas-
sical circuit design Z(ω) can be tailored to produce the
desired frequency dependence, for example, the ones in
Refs. [13, 14, 20]
With simple classical noise a prototypical experiment

of ENAQT can be performed [16], see Figure 3. In the
FMO complex, the initial state of the simulation can be
one of the sites Q1, Q6, or Q8 which are close to the an-
tenna in the biological system. Measurement of success
of the transport is performed at site Q3 or by evaluating
the population lost to the sink. Such an experiment can
show that the environment is not always adversarial, but
instead can make certain processes, like quantum trans-
port, more efficient (see the Supporting Information for
more details). This transport efficiency should exhibit a
maximum at a dephasing rate that corresponds to room
temperature in the biological system [16]. Similar ideas
of simulating ENAQT have been pursued in [49, 50].

C. Non-Markovian approach

In order to simulate the complex environment de-
scribed by Eq. 4 and capture the non-Markovian effects,
we propose to couple each of the flux qubits inductively
to an independent set of a few damped quantum LRC os-
cillators, see Figure 2 (a). The coupling Hamiltonian be-
tween the qubits and oscillators [51] in the energy eigen-

basis is given by Hq−osc =
∑NLRC

j=1

∑

k ηjk σ
j
z(b

j
k

†
+ bjk),

with bjk
†
(bjk) being the creation (annihilation) operator

of the k-th oscillator in site j. The coupling strength is

given by ηjk ≡ Mjk I
jk
0 (d∆j/dΦ

j
c), where Ik0 is the root

mean square (RMS) amplitude of the current in the k-th
oscillator ground state.
To simulate the original spectral density 3, we have to

design the frequencies and couplings of the oscillators in
such a way that the spectral density is reproduced up to
a global scaling factor. From the implementation point
of view, we are limited to a finite number of oscillators.
Thus, we decompose the spectral density of interest into
a moderate number of spectral densities of damped os-
cillators. The spectral density of a single oscillator cou-
pled to a flux qubit can be derived by using a quantum
Langevin equation approach [52, 53] and following the
detailed balance condition [35]

Cosc(ω, T ) = D

[
e~ω/kBT

κ2 + 4(ω − 2πω0)2
+

1

κ2 + 4(ω + 2πω0)2

]

,
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200

(a)

(b)

C
(ω

,T
)

ω [cm-1]

0

FIG. 4. The parametrization of the temperature-dependent
(a) super-Ohmic spectral density and (b) experimental [38]
spectral density of the FMO complex into distinct quantum
oscillators. The blue dashed lines are the spectral densities
and the red solid lines are highly accurate simulation with
LRC-oscillators coupled to the flux qubits, see Figure 2 (a).
The temperature for both spectral densities is 300 K. The
super-Ohmic spectral density is simulated with 6 damped
LRC-Oscillators and the experimental one is simulated with
15 damped oscillators. The blue bars show the transition en-
ergies [14] for the FMO complex. The obtained parameters
are given in the Supporting Information.

where D = (
√

8/π κ η2)/(e~ω0/kBT + 1) with ω0 being
the transition frequency of the oscillator and η being
the coupling strength of the oscillator to the flux qubit.
Here, κ = κ0 exp(−|ω|/α)ω2/ω2

0 with κ0 being the damp-
ing rate and α being a free parameter chosen reasonably
to get the desired spectral density. By knowing the above
spectral density for the damped quantum oscillators, we
first simulate the temperature-dependent super-Ohmic
spectral density. At 300 K this spectral density can be
simulated with a set of 6 LRC oscillators coupled to each
of the flux qubits, see Figure 4 (a), and at 77 K it can
be simulated with a set of 7 oscillators (see Figure S1 (a)
in the Supporting Information). For the experimental
spectral density, we need to couple, for example, 15 os-
cillators to each qubit, see Figure 4 (b). Notice that the
so-obtained SDs in Figure 4 are highly accurate and we
can use fewer coupled oscillators if we are interested in
less details of the spectral densities. The coupling of the
oscillators to the flux qubit results in an additional shift
of the qubit tunnel splitting ∆j due to the reorganiza-
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tion energy of the oscillators. This has to be taken into
account in the design of the circuit energy landscape.

IV. EXPERIMENTAL FEASIBILITY

The simulation of the time evolution of the FMO com-
plex requires a moderately coherent eight-qubit system,
which would be realizable using the flux qubits demon-
strated in Ref. [28] and the coupling geometries and
methods of Refs. [27, 44]. In the FMO complex the
site energies/chlorophyll excitation energies are around
12500 cm−1, with the average site-dependent static shifts
of the order of 250 cm−1. We emphasize again that only
the site-energy differences, not the site energies them-
selves, play a role in the single-exciton dynamics. The
magnitudes of the coupling strengths between the chloro-
phyll molecules are smaller than 120 cm−1 [14]. For su-
perconducting flux qubits, implementable range of the
tunnel bias ∆j is in the range of approximately zero to
13 GHz [28], while the coupling strengths gij were mea-
sured in the range of one GHz to approximately zero [27].
The parameters of the proposed quantum simulator

are scaled through the time scale of quantum beatings
(τosc) to be consistent internally as well as with the im-
plementation restrictions, see Table I. Photosynthesis oc-
curs at ambient temperatures, e.g., 300 K, which then
maps to 60 mK in superconducting-circuit experiments.
The FMO dynamics is usually considered for up to 5
ps, which translates to the timescale of 25 ns in the flux
qubits. The energy relaxation time (T1) of a single qubit
has been found [45, 54] to be on the order of a few µs,
being a few orders of magnitude larger than the required
exciton transfer time. Several coherent beatings between
two coupled qubits have been observed [27]. Table I rep-
resents the summary of the required range of parameters
for the superconducting simulator to imitate the dynam-
ics of the FMO complex.
In simulating the quantum environment of the FMO

complex, the required transition frequency of the LRC
oscillators are in the range of 120 MHz to 3 GHz and the
coupling to the qubits are around 8 MHz to 100 MHz, see
Tables S2 and S3 in the Supporting Information. These
parameters are experimentally reasonable. The geometry
of Figure 3 may cause space problems in implementing
this system. To avoid this, the parallel combination of
resonators used to implement the desired spectral density
can be mapped, for example, to a linear chain of oscilla-
tors [55–57], such that only a single resonator would need
to be coupled directly to each qubit, see Figure S2 in the
Supporting Information. The quality factor (transition
frequency/bandwidth) of the quantum oscillators in our
proposed simulator are up to 50 or less (i.e., each of the
oscillators is strongly overcoupled to an output 50 Ohm
line). The coupling to the output line can be tunable to
adjust the quality factor of each oscillator in situ. Fi-
nally, low-frequency flux noise (1/f noise) is one of the
decoherence sources in flux qubits. In our proposal, this

noise is suppressed at the optimal working point [58],
where E = 0. All of the above numbers and observations
suggest that the site energy differences to coupling ratios
of the FMO complex as well as corresponding temper-
ature and environmental couplings are achievable with
superconducting circuits.

V. CONCLUSION

We have demonstrated that an appropriately designed
network of superconducting qubit-resonator design can
simulate not only the coherent exciton transport in pho-
tosynthetic complexes, but also the effect of a com-
plicated quantum environment. We have highlighted
its experimental feasibility with present-day technology.
In particular, we have shown that a straightforward
combination of superconducting qubits (representing the
chlorophyll molecules) and resonators (simulating the
phonon environment) can be used to obtain a reason-
able approximation to the exciton and phonon degrees
of freedom in the FMO complex. For example, we show
ways to engineer a spectral density that reproduces the
one of the biological system. One of the advantages of
our proposed quantum simulator, compared to the com-
putational methods, is simulating both diagonal and off-
diagonal noise. Because of the additional complexity
of considering the off-diagonal noise most of the non-
Markovian computational methods only take the diago-
nal noise into the account. Another advantage is that,
by design, we have a single molecule setup while all the
ultrafast experiments use an ensemble of light harvest-
ing complexes. This allows for more detailed studies of
non-Markovian energy transfer pathways.
An important feature of our proposal is the potential to

achieve a high level of environment engineering, in such
a way that external noise is used to benefit the quan-
tum coherent energy transfer process inside the molecule.
However, the broader scope of our work is along the lines
of biomimesis : the artificial recreation of biological pro-
cesses, which are already highly optimized through evo-
lution.
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Parameter FMO model Quantum simulator

decay time (T1) ≈ ns ≈ 10 µs

average exciton transfer time ≈ 5 ps ≈ 25 ns

decay time between the exciton states ≈ ps ≈ 5 ns

dephasing in exciton manifold ≈ 100 fs ≈ 500 ps

time scale of quantum beatings (τosc) ≈ 200 fs ≈ 1 ns

coupling between sites ≈ 10 cm−1 - 122 cm−1 ≈ 60 MHz - 730 MHz

relative static site energy shifts ≈ 10 cm−1 - 500 cm−1 ≈ 60 MHz - 3 GHz

temperature 300 K 60 mK

TABLE I. Comparison of parameters for the FMO complex and the quantum simulator. The timescales shown below are for
the dressed states of flux qubits coupled to the quantum harmonic oscillators. For more details see Figure S3 and Tabels S1, S2,
and S3 in the Supporting Information. Notice that the decay time in a single qubit (T1) does not need to be mapped directly
from the FMO dynamics. With nowadays achievable decay times in superconducting qubits, which are 3 orders of magnitude
larger than the excitation transfer time between the qubits, the dynamics of the FMO complex can be simulated.
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I. SUPPORTING INFORMATION

II. COORDINATE REPRESENTATION OF THE

MODEL HAMILTONIAN

In this section we derive the model Hamiltonian of a
single molecule (Eq. [1] in the main article for N = 1)
from the Born-Oppenheimer approximation. Restricting
to two electronic states, the ground state |g〉 and the ex-
cited state |e〉, the Hamiltonian in the Born-Oppenheimer
approximation is [1]:

H = Hnuc,g(R)|g〉〈g|+Hnuc,e(R)|e〉〈e| , (1)

where R describes the collection of 3Nnuc modes rele-
vant to the molecule (both local and protein modes),
R = {R1, · · · , R3Nnuc

}, with Nnuc being the number of
nuclei. The Hamiltonians Hnuc,g/e(R) describe the ki-
netic and potential energy of the nuclei, Tnuc and Vnuc,
respectively: Hnuc,g/e(R) = Tnuc + Vnuc,g/e(R). The po-
tential energy is given by Vnuc,g/e(R) = Vnuc−nuc(R) +
Eg/e(R) with the inter-nuclear potential energy Vnuc−nuc

and the potential energy due to the electrons Ea(R). We
assume a displaced harmonic oscillator model for the po-
tential of ground and excited state:

Vnuc,g(q) = Ug +

3Nnuc∑

i=1

~ωi

2
q2i , (2)

Vnuc,e(q) = Ue +

3Nnuc∑

i=1

~ωi

2
(qi − di)

2. (3)

Here, we introduced the renormalized coordinates q =
R − R0, where R0 are the equilibrium positions in the
electronic ground state (minimum of the ground state
potential energy surface). The respective energies of the
electronic states at the minimum of the respective poten-
tials are Ug and Ue. We have assumed that the frequency
ωi of mode i remains unchanged in the exited state. The
displacement of the ith mode in the excited state is given
by di. The q-dependent energy gap is given by the dif-
ference of the two potentials:

Vnuc,e(q)−Vnuc,g(q) = ∆U +

3Nnuc∑

i=1

~ωi

2
d2i −

3Nnuc∑

i=1

~ωidiqi ,

where the first term ∆U = Ue − Ug is the energy differ-
ence between the potential minima of ground and excited
state. The second term gives the reorganization energy:

λ =
∑

i

λi =
∑

i

~ωi

2
d2i . (4)

The third term gives the linear dependence of the gap
on the coordinates of the harmonic oscillator, and is the
exciton-vibrational coupling term. The total Hamilto-
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FIG. 1. The parametrization of the temperature-dependent
(a) super-Ohmic mode density and (b) experimental [2] mode
density of the FMO complex into distinct quantum oscillators.
The blue dashed lines are the mode densities and the red solid
lines are accurate simulation with LRC-oscillators coupled to
the flux qubits, see Figure 1 (a) of the main article. The tem-
perature for both mode densities is 77 [K]. The super-Ohmic
mode density is simulated with 7 damped LRC-oscillators and
the experimental one is simulated with 15 damped oscillators.
The blue bars show the transition energies [3] for the FMO
complex.

nian in the harmonic approximation is thus:

Htot =

(

∆U +
∑

i

λi

)

|e〉〈e|
︸ ︷︷ ︸

Hel

+

(

Tnuc +
∑

i

~ωi

2
q2i

)

1

︸ ︷︷ ︸

Hph

+
∑

i

~ωidiqi|e〉〈e|
︸ ︷︷ ︸

Hel−ph

. (5)

Here we defined the respective Hamiltonians for the elec-
tronic system, phonon bath and electron-phonon cou-
pling, Hel, Hph, and Hel−ph. The system identity op-
erator is given by 1 = |g〉〈g|+ |e〉〈e|.

http://arxiv.org/abs/1106.1683v3
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FIG. 2. The parallel combination of LRC oscillators shown
in Figure. 2 (a) of the main article can be mapped to a linear
chain of oscillators, such that only a single resonator would
need to be coupled directly to each qubit. The oscillators can
be coupled, for example, capacitively via capacitors Cj

mn.

III. ENERGY TRANSFER PATHWAYS FOR

THE FMO COMPLEX

We briefly explain the red arrows in Figure 1 (b), which
show schematically the downwards energy transfer path-
ways for the FMO complex, similar to Ref. [4] which
considered seven-site model for the FMO complex.
From a system-bath model like Eq. (1) (main article),

one can derive a master equation for the density ma-
trix by using, for example, Redfield theory with the sec-
ular approximation [5]. Redfield theory assumes weak
coupling and a Markovian bath. This leads to decoher-
ence rates in the energy basis between energy states M
and N given by [3] (without loss of generality ~ωMN =
EM − EN > 0):

Γ↑
MN = 2π γMNJ(ωMN )n(ωMN ) , (6)

Γ↓
MN = 2π γMNJ(ωMN ) [n(ωMN ) + 1] . (7)

Here, Γ↑
MN (Γ↓

MN ) is the rate up (down) in energy and
n(ωMN ) is the mean number of vibrational quanta with
energy ~ωMN that are excited at a given temperature T :

n(ωMN ) = 1/[exp(~ωMN/kBT )− 1] . (8)

The factor γMN =
∑

j |〈M |j〉|2|〈j|N〉|2 arises from the
basis transformation between site and energy basis. In
Figure 1 (a), the red arrows show a selected number of
downward transitions with γMNJ(ωMN ) ≥ 0.3 cm−1.

IV. ENVIRONMENT-ASSISTED QUANTUM

TRANSPORT

Here we briefly discuss the main features of
environment-assisted quantum transport and what is to
be expected from an experiment scanning the ratio of
dephasing rate over system energy scale. For the qubit
system in our proposed quantum simulator, the couplings

and the differences in the qubit splittings give a general
energy scale Λ. The site energy level fluctuations lead
to pure dephasing as the dominant decoherence mech-
anism, which is phenomenologically characterized by a
pure dephasing rate γ. In the active noise engineering
case, each site is driven, for example, by white noise with
an amplitude

√
γ. The amplitude can be easily tuned

in the external noise generator. In the passive case, the
noise level can be regulated by the temperature of the
sample. For both cases, if the dephasing rate γ is much
smaller than the energy scale Λ, quantum localization is
predicted to arise from the disorder in the energy levels.
This leads to a small population at the target site. In-
creasing the dephasing rate such that γ ≈ Λ is expected
[7] to lead to an increased population at the target site.
Finally, it is expected that for the dephasing rate γ ≫ Λ
diminished population arrives at the target site, since
quantum transport is suppressed by the Zeno effect.

|g >

(a)

|M >
(b)

|g >

|M >

|g >

|M >

(c) (d)

|N > |N > |N >

|g >

|M >

|g >

|M >

|g >

|M >

FIG. 3. Sketch of the basic processes in excitonic energy
transfer. Confer to Table 1 in the main text (or Table S1)
for numerical values of the time scales of the respective pro-
cesses. Let |g〉 be the electronic ground state and |M〉 and
|N〉 be two delocalized electronic excited states. (a) Decay
between an excited state and the ground state, characterized
with the decay time T1 (Another name for this process is
exciton recombination). (b) Dephasing of a superposition be-
tween ground state and an excited state. This process usually
happens on a very fast time scale and is not relevant for the
present discussion. (c) Decay in the single exciton manifold
without the loss of the excitation to the ground state, charac-
terized by the decay time between exciton states. (d) Dephas-
ing in the single exciton manifold. Consider a superposition
of exciton states |ψ〉 = 1

√

2
(|M〉 + |N〉). Then this dephasing

process causes the initial density matrix |ψ〉〈ψ| to decay to
an equal mixture 1/2(|M〉〈M | + |N〉〈N |) at long times. The
time scale of this process is characterized by the dephasing

time in the single exciton manifold.
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Parameter FMO model Quantum simulator

decay time (T1) ≈ ns ≈ 10 µs

(single site electron-hole recombination)

average exciton transfer time ≈ 5 ps ≈ 25 ns

(from site 8 to site 3)

decay time between the exciton states ≈ ps ≈ 5 ns

(jump between exciton states)

dephasing in exciton manifold ≈ 100 fs ≈ 500 ps

(pure dephasing)

time scale of quantum beatings (τosc) ≈ 200 fs ≈ 1 ns

coupling between sites ≈ 10 cm−1 - 122 cm−1 ≈ 60 MHz - 730 MHz

relative static site energy shifts ≈ 10 cm−1 - 500 cm−1 ≈ 60 MHz - 3 GHz

|ε̃i − ε̃j | ≡ |∆i −∆j |

dynamic fast fluctuations [6] ≈ 250 ± 100 cm−1 at 300 K ≈ 1.5 GHz ± 600 MHz

(dephasing rate) ≈ 40 ± 10 cm−1 at 77 K ≈ 240 MHz ± 60 MHz

300 K ≈ 208 cm−1 60 mk ≈ 1.2 GHz

temperature 100 K ≈ 69.5 cm−1 20 mk ≈ 417 MHz

77 K ≈ 53 cm−1 15 mk ≈ 317 MHz

TABLE I. Comparison of parameters for the FMO complex and the quantum simulator. The timescales shown below are for
the dressed states of flux qubits coupled to the quantum harmonic oscillators. Notice that the decay time in a single qubit
(T1) does not need to be mapped directly from the FMO dynamics. With nowadays achievable decay times in superconducting
qubits, which are 3 orders of magnitude larger than the excitation transfer time between the qubits, the dynamics of the FMO
complex can be simulated.
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FMO complex

transition frequency coupling strength quality factor

oscillator No. 1 ≈ 27 cm−1 ≈ 2.42 cm−1 ≈ 0.67

oscillator No. 2 ≈ 74 cm−1 ≈ 8.60 cm−1 ≈ 0.49

oscillator No. 3 ≈ 140 cm−1 ≈ 11.98 cm−1 ≈ 0.47

oscillator No. 4 ≈ 246 cm−1 ≈ 14.10 cm−1 ≈ 0.80

oscillator No. 5 ≈ 380 cm−1 ≈ 10.00 cm−1 ≈ 1.27

oscillator No. 6 ≈ 560 cm−1 ≈ 5.40 cm−1 ≈ 1.84

Quantum simulator

transition frequency coupling strength quality factor

oscillator No. 1 ≈ 162 MHz ≈ 14.50 MHz ≈ 0.67

oscillator No. 2 ≈ 444 MHz ≈ 51.56 MHz ≈ 0.49

oscillator No. 3 ≈ 839 MHz ≈ 71.83 MHz ≈ 0.47

oscillator No. 4 ≈ 1.5 GHz ≈ 84.54 MHz ≈ 0.80

oscillator No. 5 ≈ 2 GHz ≈ 59.95 MHz ≈ 1.27

oscillator No. 6 ≈ 3 GHz ≈ 32.38 MHz ≈ 1.84

TABLE II. Decomposition of the temperature-dependent super-Ohmic mode density at 300 K shown in Figure 4 (a) of the
main article and simulation with 6 LRC-oscillators coupled to each flux qubit, see Figure 2 (a) of the main article.
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FMO complex

transition frequency coupling strength quality factor

oscillator No. 1 ≈ 20 cm−1 ≈ 3.0 cm−1 ≈ 0.93

oscillator No. 2 ≈ 37 cm−1 ≈ 5.9 cm−1 ≈ 1.35

oscillator No. 3 ≈ 72 cm−1 ≈ 9.7 cm−1 ≈ 1.89

oscillator No. 4 ≈ 118 cm−1 ≈ 7.8 cm−1 ≈ 4.00

oscillator No. 5 ≈ 142 cm−1 ≈ 2.8 cm−1 ≈ 9.00

oscillator No. 6 ≈ 190 cm−1 ≈ 16.5 cm−1 ≈ 5.00

oscillator No. 7 ≈ 237 cm−1 ≈ 10.4 cm−1 ≈ 8.80

oscillator No. 8 ≈ 260 cm−1 ≈ 6.1 cm−1 ≈ 10.80

oscillator No. 9 ≈ 282 cm−1 ≈ 9.9 cm−1 ≈ 11.75

oscillator No. 10 ≈ 325 cm−1 ≈ 4.8 cm−1 ≈ 18.06

oscillator No. 11 ≈ 363 cm−1 ≈ 6.3 cm−1 ≈ 20.17

oscillator No. 12 ≈ 380 cm−1 ≈ 5.3 cm−1 ≈ 29.23

oscillator No. 13 ≈ 426 cm−1 ≈ 4.4 cm−1 ≈ 30.43

oscillator No. 14 ≈ 478 cm−1 ≈ 3.4 cm−1 ≈ 48.00

oscillator No. 15 ≈ 500 cm−1 ≈ 1.3 cm−1 ≈ 35.71

Quantum simulator

transition frequency coupling strength quality factor

oscillator No. 1 ≈ 120 MHz ≈ 18.00 MHz ≈ 0.93

oscillator No. 2 ≈ 222 MHz ≈ 35.38 MHz ≈ 1.35

oscillator No. 3 ≈ 432 MHz ≈ 58.16 MHz ≈ 1.89

oscillator No. 4 ≈ 707 MHz ≈ 46.77 MHz ≈ 4.00

oscillator No. 5 ≈ 851 MHz ≈ 16.79 MHz ≈ 9.00

oscillator No. 6 ≈ 1.1 GHz ≈ 98.93 MHz ≈ 5.00

oscillator No. 7 ≈ 1.4 GHz ≈ 62.36 MHz ≈ 8.80

oscillator No. 8 ≈ 1.6 GHz ≈ 36.57 MHz ≈ 10.80

oscillator No. 9 ≈ 1.7 GHz ≈ 59.36 MHz ≈ 11.75

oscillator No. 10 ≈ 1.9 GHz ≈ 28.78 MHz ≈ 18.06

oscillator No. 11 ≈ 2.2 GHz ≈ 37.77 MHz ≈ 20.17

oscillator No. 12 ≈ 2.3 GHz ≈ 31.79 MHz ≈ 29.23

oscillator No. 13 ≈ 2.6 GHz ≈ 26.38 MHz ≈ 30.43

oscillator No. 14 ≈ 2.9 GHz ≈ 20.39 MHz ≈ 48.00

oscillator No. 15 ≈ 3 GHz ≈ 7.79 MHz ≈ 35.71

TABLE III. Decomposition of the temperature-dependent experimental [2] mode density at 300 K shown in Figure 4 (b) of the
main article and simulation with 15 LRC-oscillators coupled to each flux qubit, see Figure 2 (a) of the main article.
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