33 research outputs found

    Statistical Measure of Quadratic Vector Fiedls

    Get PDF
    In this paper we use a statistical method to provide estimations of the relative frequency for such regions. We also give estimations of the relative frequencies for the regions of phase portraits having nodes, foci and limit cycles

    Topological Classification of Quadratic Polynomial Differential Systems with a Finite Semi-Elemental Triple Saddle

    Get PDF
    Agraïments: the second author is is partially supported by CNPq grant "Projeto Universal" 472796/2013-5, by CAPES CSF-PVE-88881.030454/2013-01, by Projeto Temático FAPESP number 2014/00304-2. The third author is supported by CNPq-PDE 232336/2014-8.The study of planar quadratic differential systems is very important not only because they appear in many areas of applied mathematics but due to their richness in structure, stability and questions concerning limit cycles, for example. Even though many papers have been written on this class of systems, a complete understanding of this family is still missing. Classical problems, and in particular Hilbert's 16th problem [Hilbert, 1900, 1902], are still open for this family. In this article, we make a global study of the family QTS of all real quadratic polynomial differential systems which have a finite semi-elemental triple saddle (triple saddle with exactly one zero eigenvalue). This family modulo the action of the affine group and time homotheties is three-dimensional and we give its bifurcation diagram with respect to a normal form, in the three-dimensional real space of the parameters of this normal form. This bifur- cation diagram yields 27 phase portraits for systems in QTS counting phase portraits with and without limit cycles. Algebraic invariants are used to construct the bifurcation set and we present the phase portraits on the Poincar ́e disk. The bifurcation set is not just algebraic due to the presence of a surface found numerically, whose points correspond to connections of separatrices

    Structurally unstable quadratic vector fields of codimension two : families possessing a finite saddle-node and an infinite saddle-node

    Get PDF
    In 1998, Artés, Kooij and Llibre proved that there exist 44 structurally stable topologically distinct phase portraits modulo limit cycles, and in 2018 Artés, Llibre and Rezende showed the existence of at least 204 (at most 211) structurally unstable topologically distinct codimension-one phase portraits, modulo limit cycles. Artés, Oliveira and Rezende (2020) started the study of the codimension-two systems by the set (AA), of all quadratic systems possessing either a triple saddle, or a triple node, or a cusp point, or two saddle-nodes. They got 34 topologically distinct phase portraits modulo limit cycles. Here we consider the sets (AB) and (AC). The set (AB) contains all quadratic systems possessing a finite saddle-node and an infinite saddle-node obtained by the coalescence of an infinite saddle with an infinite node. The set (AC) describes all quadratic systems possessing a finite saddle-node and an infinite saddle-node, obtained by the coalescence of a finite saddle (respectively, finite node) with an infinite node (respectively, infinite saddle). We obtain all the potential topological phase portraits of these sets and we prove their realization. From the set (AB) we got 71 topologically distinct phase portraits modulo limit cycles and from the set (AC) we got 40 ones

    Structurally unstable quadratic vector fields of codimension two : families possessing either a cusp point or two finite saddle-nodes

    Get PDF
    The goal of this paper is to contribute to the classification of the phase portraits of planar quadratic differential systems according to their structural stability. Artés et al. (Mem Am Math Soc 134:639, 1998) proved that there exist 44 structurally stable topologically distinct phase portraits in the Poincaré disc modulo limit cycles in this family, and Artés et al. (Structurally unstable quadratic vector fields of codimension one, Springer, Berlin, 2018) showed the existence of at least 204 (at most 211) structurally unstable topologically distinct phase portraits of codimension-one quadratic systems, modulo limit cycles. In this work we begin the classification of planar quadratic systems of codimension two in the structural stability. Combining the sets of codimension-one quadratic vector fields one to each other, we obtain ten new sets. Here we consider set AA obtained by the coalescence of two finite singular points, yielding either a triple saddle, or a triple node, or a cusp point, or two saddle-nodes. We obtain all the possible topological phase portraits of set AA and prove their realization. We got 34 new topologically distinct phase portraits in the Poincaré disc modulo limit cycles. Moreover, in this paper we correct a mistake made by the authors in the book of Artés et al. (Structurally unstable quadratic vector fields of codimension one, Springer, Berlin, 2018) and we reduce to 203 the number of topologically distinct phase portrait of codimension one modulo limit cycles

    Structurally unstable quadratic vector fields of codimension two : Families possessing a finite saddle-node and an infinite saddle-node

    Get PDF
    In 1998, Artés, Kooij and Llibre proved that there exist 44 structurally stable topologically distinct phase portraits modulo limit cycles, and in 2018 Artés, Llibre and Rezende showed the existence of at least 204 (at most 211) structurally unstable topologically distinct codimension-one phase portraits, modulo limit cycles. Artés, Oliveira and Rezende (2020) started the study of the codimension-two systems by the set (AA), of all quadratic systems possessing either a triple saddle, or a triple node, or a cusp point, or two saddle-nodes. They got 34 topologically distinct phase portraits mod-ulo limit cycles. Here we consider the sets (AB) and (AC). The set (AB) contains all quadratic systems possessing a finite saddle-node and an infinite saddle-node obtained by the coalescence of an infinite saddle with an infinite node. The set (AC) describes all quadratic systems possessing a finite saddle-node and an infinite saddle-node, obtained by the coalescence of a finite saddle (respectively, finite node) with an infinite node (re-spectively, infinite saddle). We obtain all the potential topological phase portraits of these sets and we prove their realization. From the set (AB) we got 71 topologically distinct phase portraits modulo limit cycles and from the set (AC) we got 40 ones

    Global phase portraits of quadratic polynomial differential systems with a semi-elemental triple node

    Get PDF
    Agraïments: The second author is supported by CAPES/DGU grant number BEX 9439/12-9 and the last author is partially supported by CAPES/DGU grant number 222/2010Planar quadratic differential systems occur in many areas of applied mathematics. Although more than one thousand papers have been written on these systems, a complete understanding of this family is still missing. Classical problems, and in particular, Hilbert's 16th problem [Hilbert, 1900, Hilbert, 1902], are still open for this family. In this article we make a global study of the family QT N of all real quadratic polynomial differential systems which have a semi-elemental triple node (triple node with exactly one zero eigenvalue). This family modulo the action of the affine group and time homotheties is three-dimensional and we give its bifurcation diagram with respect to a normal form, in the three-dimensional real space of the parameters of this form. This bifurcation diagram yields 28 phase portraits for systems in QT N counting phase portraits with and without limit cycles. Algebraic invariants are used to construct the bifurcation set. The phase portraits are represented on the Poincaré disk. The bifurcation set is not only algebraic due to the presence of a surface found numerically. All points in this surface correspond to connections of separatrices

    The geometry of quadratic polynomial differential systems with a finite and an infinite saddle-node (C)

    Get PDF
    Agraïments: The second author is supported by CAPES/DGU grant number BEX 9439/12-9 and CAPES/CSF-PVE's 88887.068602/2014-00 and CAPES/CSF-PVE's 88881.030454/2013-01 and CNPq grant "Projeto Universal 472796/2013-5".Planar quadratic differential systems occur in many areas of applied mathematics. Although more than one thousand papers have been written on these systems, a complete understanding of this family is still missing. Classical problems, and in particular, Hilbert's 16th problem [Hilbert, 1900, Hilbert, 1902], are still open for this family. Our goal is to make a global study of the family QsnSN of all real quadratic polynomial differential systems which have a finite semi-elemental saddle-node and an infinite saddle-node formed by the collision of two infinite singular points. This family can be divided into three different subfamilies, all of them with the finite saddle-node in the origin of the plane with the eigenvectors on the axes and with the eigenvector associated with the zero eigenvalue on the horizontal axis and (A) with the infinite saddle-node in the horizontal axis, (B) with the infinite saddle-node in the vertical axis and (C) with the infinite saddle-node in the bisector of the first and third quadrants. These three subfamilies modulo the action of the affine group and time homotheties are three-dimensional and we give the bifurcation diagram of their closure with respect to specific normal forms, in the three-dimensional real projective space. The subfamilies (A) and (B) have already been studied [Artés et al., 2013b] and in this paper we provide the complete study of the geometry of the last family (C). The bifurcation diagram for the subfamily (C) yields 371 topologically distinct phase portraits with and without limit cycles for systems in the closure QsnSN(C) within the representatives of QsnSN(C) given by a chosen normal form. Algebraic invariants are used to construct the bifurcation set. The phase portraits are represented on the Poincaré disk. The bifurcation set of QsnSN(C) is not only algebraic due to the presence of some surfaces found numerically. All points in these surfaces correspond to either connections of separatrices, or the presence of a double limit cycle
    corecore