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Planar quadratic differential systems occur in many areas of applied mathematics. Although
more than one thousand papers have been written on these systems, a complete understanding
of this family is still missing. Classical problems, and in particular, Hilbert’s 16th problem
[Hilbert, 1900, Hilbert, 1902], are still open for this family. Our goal is to make a global study
of the family QsnSN of all real quadratic polynomial differential systems which have a finite
semi–elemental saddle–node and an infinite saddle–node formed by the collision of two infinite
singular points. This family can be divided into three different subfamilies, all of them with
the finite saddle–node in the origin of the plane with the eigenvectors on the axes and with the
eigenvector associated with the zero eigenvalue on the horizontal axis and (A) with the infinite
saddle–node in the horizontal axis, (B) with the infinite saddle–node in the vertical axis and
(C) with the infinite saddle–node in the bisector of the first and third quadrants. These three
subfamilies modulo the action of the affine group and time homotheties are three–dimensional
and we give the bifurcation diagram of their closure with respect to specific normal forms, in the
three–dimensional real projective space. The subfamilies (A) and (B) have already been studied
[Artés et al., 2013b] and in this paper we provide the complete study of the geometry of the
last family (C). The bifurcation diagram for the subfamily (C) yields 371 topologically distinct
phase portraits with and without limit cycles for systems in the closure QsnSN(C) within the
representatives of QsnSN(C) given by a chosen normal form. Algebraic invariants are used to
construct the bifurcation set. The phase portraits are represented on the Poincaré disk. The
bifurcation set of QsnSN(C) is not only algebraic due to the presence of some surfaces found
numerically. All points in these surfaces correspond to either connections of separatrices, or the
presence of a double limit cycle. Keywords: Quadratic differential systems; finite saddle–node;

infinite saddle–node; phase portraits; bifurcation diagram; algebraic invariants. AMS Subject

classification: Primary: 34C40, 51F14; Secondary: 14D05, 14D25.
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1. Introduction, brief review of the litera-
ture and statement of results

Here we call quadratic differential systems, or sim-
ply quadratic systems, differential systems of the
form

ẋ = p(x, y),
ẏ = q(x, y),

(1)

where p and q are polynomials over R in x and y
such that the max(deg(p),deg(q)) = 2. To such
a system one can always associate the quadratic
vector field

ξ = p
∂

∂x
+ q

∂

∂y
, (2)

as well as the differential equation

q dx− p dy = 0. (3)

The class of all quadratic differential systems (or
quadratic vector fields) will be denoted by QS.

We can also write system (1) as

ẋ = p0 + p1(x, y) + p2(x, y) = p(x, y),
ẏ = q0 + q1(x, y) + q2(x, y) = q(x, y),

(4)

where pi and qi are homogeneous polynomials of de-
gree i in the variables x and y with real coefficients
and p22 + q22 6= 0.

Even after hundreds of studies on the topology
of real planar quadratic vector fields, it is kind of
impossible to outline a complete characterization
of their phase portraits, and attempting to topo-
logically classify them, which occur rather often in
applications, is quite a complex task. This family
of systems depends on twelve parameters, but due
to the action of the group Aff(2,R) of real affine
transformations and time homotheties, the class ul-
timately depends on five parameters, but this is still
a large number.

The main goal of this paper is to complete the
study of the class QsnSN of all quadratic systems
possessing a finite saddle–node sn(2) and an infinite

saddle–node of type
(0
2

)
SN . We recall that a fi-

nite saddle–node is a semi–elemental singular point
whose neighborhood is formed by the union of two
hyperbolic sectors and one parabolic sector. By a
semi–elemental point we mean a point with zero de-
terminant of its Jacobian with only one eigenvalue
equal to zero. These points are known in classical
literature as semi–elementary, but we use the term

semi–elemental introduced in [Artés et al., 2013a]
as part of a set of new definitions more deeply re-
lated to singularities, their multiplicities and, es-
pecially, their Jacobian matrices. In addition, an

infinite saddle–node of type
(
0
2

)
SN is obtained by

the collision of an infinite saddle with an infinite
node. There are two types of infinite saddle–nodes

and the second one is denoted by
(1
1

)
SN which is ob-

tained by the collision of a finite node (respectively,
finite saddle) with an infinite saddle (respectively,
infinite node) and which will appear in some of the
phase portraits.

If we have a finite saddle–node sn(2), the pos-
sibility of having two other finite singular points is
present. Indeed, in case the remaining singularities
did not go to infinity, then there are two other sin-
gularities in the finite plane, either real, or complex,
or the origin may have higher multiplicity.

The class QsnSN is divided into three sub-
families according to the position of the infinite
saddle–node, namely QsnSN(A), QsnSN(B) and
QsnSN(C). In [Artés et al., 2014] the authors
gave a partition of the closure of the first two
subfamilies and this paper presents a continuation
in the study of this subclass QsnSN presenting
the analysis of the closure of the last subfamily
QsnSN(C).

For this analysis we follow the pattern set out
in [Artés et al., 2006] and, in order to avoid repeat-
ing technical sections which are the same for both
papers, we refer to the paper mentioned for more
complete information.

We now give the notion of graphics, which play
an important role in obtaining limit cycles when
they are due to connection of separatrices, for ex-
ample.

A (non-degenerate) graphic as defined in
[Dumortier et al., 1994] is formed by a finite se-
quence of singular points r1, r2, . . . , rn (with pos-
sible repetitions) and non–trivial connecting orbits
γi for i = 1, . . . , n such that γi has ri as α–limit
set and ri+1 as ω–limit set for i < n and γn has
rn as α–limit set and r1 as ω–limit set. Also nor-
mal orientations nj of the non–trivial orbits must
be coherent in the sense that if γj−1 has left–hand
orientation then so does γj . A polycycle is a graphic
which has a Poincaré return map.

A degenerate graphic is formed by a finite se-
quence of singular points r1, r2, . . . , rn (with pos-
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sible repetitions) and non–trivial connecting orbits
and/or segments of curves of singular points γi for
i = 1, . . . , n such that γi has ri as α–limit set and
ri+1 as ω–limit set for i < n and γn has rn as α–
limit set and r1 as ω–limit set. Also normal ori-
entations nj of the non–trivial orbits must be co-
herent in the sense that if γj−1 has left–hand ori-
entation then so does γj . For more details, see
[Dumortier et al., 1994].

In [Artés et al., 1998] the authors proved the
existence of 44 topologically different phase por-
traits for the structurally stable quadratic pla-
nar systems modulo limit cycles, also known as
the codimension–zero quadratic systems. Roughly
speaking, these systems are characterized by hav-
ing all singularities, finite and infinite, simple, no
separatrix connection, and where any nest of limit
cycles is considered as a single point with the sta-
bility of the outer limit cycle. The next step is the
classification of the structurally unstable quadratic
systems of codimension–one which have one and
only one of the simplest structurally unstable ob-
jects: a saddle–node of multiplicity two (finite or
infinite), a separatrix from one saddle point to an-
other, and a separatrix forming a loop for a saddle
point with its divergence nonzero. All the phase
portraits of codimension one are split into four
groups according to the possession of a structurally
unstable element: (A) possessing a finite semi–
elemental saddle–node, (B) possessing an infinite

semi–elemental saddle–node
(
0
2

)
SN , (C) possessing

an infinite semi–elemental saddle–node
(1
1

)
SN , and

(D) possessing saddle connection.

The study of the codimension–one systems is
already in progress [Artés & Llibre, 2014], all topo-
logical possibilities have already been found, some
of them have already been proved impossible and
many representatives have been found, but some
cases without candidate still remain. One of the
ways to obtain codimension–one phase portraits is
considering a perturbation of known phase portraits
of quadratic systems of higher codimension. This
perturbation would decrease the codimension of the
system and a representative for a topological equiv-
alence class in the family of the codimension–one
systems may be found and added to the existing
classification.

In order to contribute to this classification,
some families of quadratic systems of codimen-

sion greater than one have been studied, e.g.
systems with a weak focus of second order (see
[Artés et al., 2006]), with a finite semi–elemental
triple node (see [Artés et al., 2013b]) and the
two first subfamilies possessing saddle–nodes (see
[Artés et al., 2014]). It is worth mentioning that in
[Artés et al., 2013b], the authors show that, after a
quadratic perturbation of one of the phase portraits
of that family, a new phase portrait of codimension
one is proved being realizable.

The present study is part of this attempt of
classifying all the codimension–one quadratic sys-
tems. Although the phase portraits from subfam-
ilies QsnSN(A) and QsnSN(B) could not con-
tribute in this goal, subfamily QsnSN(C) yields
all of the phase portraits of group (A), and some of
group (B), of codimension–one quadratic systems,
including missing cases, as stated in Corollary 1.4.

In the normal form (5), the class QsnSN(C)
is partitioned into 1034 parts: 199 three–dimen-
sional ones, 448 two–dimensional ones, 319 one–
dimensional ones and 68 points. This partition is
obtained by considering all the bifurcation surfaces
of singularities, one related to the presence of in-
variant straight lines, one related to connections of
separatrices, one related to the presence of invari-
ant parabola and one related to the presence of a
double limit cycle, modulo “islands”.

Theorem 1.1. There exist 371 topologically dis-
tinct phase portraits for the closure of the family of
quadratic vector fields having a finite saddle–node

sn(2) and an infinite saddle–node of type
(0
2

)
SN

located in the bisector of the first and third quad-
rants and given by the normal form (5) (class
QsnSN(C)). The bifurcation diagram for this class
is the projective tridimensional space RP3. All these
phase portraits are shown in Figs. 1 to 11. More-
over, the following statements hold:

(a) There exist 259 topologically distinct phase por-
traits in QsnSN(C);

(b) There exist 49 phase portraits possessing at
least one simple limit cycle (or an odd number
of them taking into account their multiplicity),
and they are in the parts V5, V17, V27, V33, V54,
V80, V89, V90, V94, V99, V100, V117, V118, V134,
V137, V168, V176, V178, V179, V180, V183, V194,
1S4, 1S12, 1S13, 1S16, 1S20, 1S58, 1S59, 1S60,
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1S72, 2S49, 2S54, 2S61, 4S25, 4S26, 5S5, 5S22,
7S27, 7S28, 7S53, 7S56, 7S74, 7S81, 7S83, 1.4L3,
1.5L6, 1.7L4 and 2.5L13;

(c) There exists one phase portrait with at least one
double limit cycle (or an odd number of them
taking into account their multiplicity), and it is
in the part 10S1;

(d) There exist two phase portraits with at least two
limit cycles (or an even number of them taking
into account their multiplicity), and they are in
the parts V88 and V182;

(e) There exist 107 phase portraits with nondegen-
erate graphics (located in only one place in the
phase portrait), and they are in the parts V6,
V53, V102, V107, V113, V138, V166, V168, V172,
V173, V174, V176, V183, V189, 1S5, 1S6, 1S14,
1S15, 1S21, 1S25, 1S26, 1S28, 1S30, 1S33, 1S36,
1S37, 1S40, 1S43, 1S44, 1S45, 1S55, 1S59, 1S60,
1S65, 1S66, 1S71, 2S62, 4S13, 4S36, 4S51, 5S23,
5S33, 7S1, 7S2, 7S7, 7S10, 7S17, 7S22, 7S27,
7S29, 7S31, 7S32, 7S33, 7S41, 7S42, 7S52, 7S57,
7S58, 7S70, 7S71, 7S72, 7S74, 7S77, 7S78, 7S79,
7S81, 7S83, 7S85, 1.1L2, 1.1L3, 1.1L4, 1.4L4,
1.4L5, 1.4L7, 1.4L8, 1.4L12, 1.4L13, 1.5L4,
1.5L5, 1.7L1, 1.7L2, 1.7L3, 1.7L5, 1.7L6,
1.7L18, 1.7L21, 1.7L28, 1.7L29, 1.7L32, 1.7L33,
2.7L18, 2.7L19, 2.7L20, 2.8L1, 2.8L2, 4.7L1,
5.7L1, 5.7L9, 5.7L14, 7.7L4, 7.7L5, P31, P43,
P50, P52, P60 and P65;

(f) There exist 14 phase portraits with two dis-
joint graphics, and they are in the parts V169,
V177, 1S53, 1S56, 1S57, 7S67, 7S75, 7S76, 7S82,
1.7L27, 1.7L30, 1.7L31, 7.7L6 and 7.7L7;

(g) There exist 7 phase portraits with degenerate
graphics, and they are in the parts 1.2L8, 1.3L2,
P23, P57, P58, P64 and P65.

In Table 2 we compare the number of phase
portraits possessing some geometrical features such
as for instance limit cycles or graphics between the
class QsnSN(C) and its border.

Corollary 1.2. There exist 14 topologically dis-
tinct phase portraits which appear simultaneously
in at least two of the three families QsnSN(A),
QsnSN(B) and QsnSN(C). The correspondences

are indicated in Table 1 and the phase portraits in
each row are topologically equivalent.

Table 1. Topological equivalence among phase portraits
from families QsnSN(A), QsnSN(B) and QsnSN(C)

QsnSN(A) QsnSN(B) QsnSN(C)

V15 4S13

3S1 2.4L9

3S2 2.4L1

3S3 2.4L3

3S4 2.4L5

3.4L1 P22

5S2 5S3

V6 4S15

V7 4S44

9S1 2S41

5.9L1 2.5L10

1.2L2 1.4L1 1.3L2

P1 P1 P23

P3 P2 P57

Corollary 1.3. There exist 417 topologically dis-
tinct phase portraits in QsnSN.

Corollary 1.4. After applying a perturbation,
some chosen phase portraits in Figs. 1 to 11
yield all the topologically possible phase portrait of
codimension–one from group (A) expected to ex-
ist. So, the seven codimension–one phase por-
traits from group (A) whose realizability was miss-
ing can be constructed after perturbations of some
chosen phase portraits from QsnSN(C); and three
codimension–one phase portraits from group (B)
whose realizability was missing can be constructed
after perturbations of some chosen phase portraits
from QsnSN(C).
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V1 V2 V3 V5 V6

V7 V9 V10 V13 V15

V17 V20 V21 V22 V23

V25 V27 V31 V33 V37

V41 V42 V44 V46 V49

V51 V53 V54 V61 V62

V64 V66 V69 V71 V78

Fig. 1. Phase portraits for quadratic vector fields with a finite saddle–node sn(2) and an infinite saddle–node of type(
0
2

)
SN in the bisector of first and third quadrants



6 J.C. Artés, A.C. Rezende and R.D.S. Oliveira

V80 V83 V84 V85 V88

V89 V90 V94 V99 V100

V102 V104 V107 V108 V109

V110 V113 V114 V117 V118

V121 V122 V123 V129 V134

V136 V137 V138 V140 V141

V142 V143 V144 V145 V147

Fig. 2. Continuation of Fig. 1
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V149 V154 V155 V165 V166

V168 V169 V170 V172 V173

V174 V176 V177 V178 V179

V180 V182 V183 V189 V190

V191 V192 V194 V198 1S1

1S2 1S4 1S5 1S6
1S7

1S8 1S9 1S12 1S13 1S14

Fig. 3. Continuation of Fig. 2
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1S15 1S16 1S18 1S19 1S20

1S21 1S23 1S24 1S25 1S26

1S27 1S28 1S30 1S33 1S35

1S36 1S37 1S40 1S43 1S44

1S45 1S52 1S53 1S55 1S56

1S57 1S58 1S59 1S60 1S64

1S65 1S66 1S67 1S68 1S69

Fig. 4. Continuation of Fig. 3
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1S71 1S72 1S74 2S1 2S2

2S3 2S4 2S5 2S6 2S10

2S11 2S12 2S13 2S16 2S17

2S18 2S19 2S21 2S23 2S24

2S30 2S31 2S41 2S45 2S48

2S49 2S51 2S52 2S53 2S54

2S56 2S59 2S61 2S62 4S1

Fig. 5. Continuation of Fig. 4
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4S3 4S6 4S8 4S9 4S13

4S15 4S16 4S20 4S25 4S26

4S29 4S31 4S32 4S33 4S36

4S42 4S44 4S51 5S1 5S2

5S3 5S5 5S9 5S12 5S13

5S22 5S23 5S26 5S28
5S33

5S36 7S1 7S2 7S3 7S4

Fig. 6. Continuation of Fig. 5
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7S6 7S7 7S8 7S9 7S10

7S15 7S16 7S17 7S22 7S23

7S26 7S27 7S28 7S29 7S31

7S32 7S33 7S37 7S38 7S41

7S42 7S44 7S45 7S52 7S53

7S55 7S56 7S57 7S58 7S60

7S61 7S62 7S63 7S64 7S65

Fig. 7. Continuation of Fig. 6
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7S67
7S68 7S69 7S70 7S71

7S72 7S74 7S75 7S76 7S77

7S78 7S79 7S81 7S82 7S83

7S85 10S1 1.1L1 1.1L2 1.1L3

1.1L4 1.1L6 1.1L7 1.2L5 1.2L7

1.2L8 1.3L2 1.4L1 1.4L3 1.4L4

1.4L5 1.4L7 1.4L8 1.4L12 1.4L13

Fig. 8. Continuation of Fig. 7
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1.4L14 1.5L1 1.5L2 1.5L3 1.5L4

1.5L5 1.5L6 1.5L7 1.7L1 1.7L2

1.7L3 1.7L4 1.7L5 1.7L6 1.7L7

1.7L9 1.7L18 1.7L20 1.7L21 1.7L27

1.7L28 1.7L29 1.7L30 1.7L31 1.7L32

1.7L33 2.3L1 2.3L2 2.3L3 2.3L4

2.3L6 2.3L7 2.4L1 2.4L3 2.4L5

Fig. 9. Continuation of Fig. 8
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2.4L6 2.4L7 2.4L9 2.5L1 2.5L3

2.5L4 2.5L10 2.5L11 2.5L13 2.7L1

2.7L2 2.7L3 2.7L4 2.7L5 2.7L7

2.7L9 2.7L11 2.7L16 2.7L17 2.7L18

2.7L19 2.7L20 2.8L1 2.8L2 2.8L3

4.4L1 4.4L3 4.7L1 5.7L1 5.7L2

5.7L9 5.7L11 5.7L14 7.7L1 7.7L4

Fig. 10. Continuation of Fig. 9
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7.7L6
7.7L5

7.7L7 P1 P4

P22 P23 P26 P30 P31

P39 P41 P43 P50 P52

P57 P58 P60 P64 P65

P68

Fig. 11. Continuation of Fig. 10
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Table 2. Comparison between the set QsnSN(C) and its border

QsnSN(C) border of QsnSN(C)

Distinct phase portraits 259 112

Phase portraits with exactly one limit cycle 39 10

Phase portraits with two/double limit cycles 2/1 0

Phase portraits with a finite
72 14

number of nondegenerate graphics

Phase portraits with an infinite
0 35

number of nondegenerate graphics

Phase portraits with degenerate graphics 0 7
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(a) (b)

Fig. 12. (a) This phase portrait is topologically equiva-
lent to 5S2 from QsnSN(A) and 5S3 from QsnSN(B).
(b) This phase portrait is topologically equivalent to P1

from QsnSN(A) and 5S3 from QsnSN(B)

Remark 1.5. Phase portrait P65 belongs to two dif-
ferent categories in Theorem 1.1 since some of its
graphics are nondegenerate.

Remark 1.6 (Corrigendum). (1) In
[Artés et al., 2014] the phase portraits 5S2

from QsnSN(A) and 5S3 from QsnSN(B)
are wrong. The correct picture is given in
Fig. 12(a). Moreover, they are equivalent
which was not noticed then.

(2) In [Artés et al., 2014] the phase portraits P1

from QsnSN(A) and P1 from QsnSN(B)
are wrong. The correct picture is given in
Fig. 12(b).

For the class QsnSN(C), from its 259 topolog-
ically different phase portraits, 94 occur in three–
dimensional parts, 119 in two–dimensional parts,
42 in one–dimensional parts and 4 occur in a single
zero–dimensional part.

In Figs. 1 to 11 we have denoted all the singular
points with a small disk. We have plotted with wide
curves the separatrices and we have added some
orbits drawn on the picture with thinner lines to
avoid confusion in some required cases.

Remark 1.7. We label the phase portraits accord-
ing to the parts of the bifurcation diagram where
they occur. These labels could be different for two
topologically equivalent phase portraits occurring
in distinct parts. Some of the phase portraits in 3–
dimensional parts also occur in some lower dimen-
sional parts bordering these 3–dimensional parts.

An example occurs when a node turns into a focus.
An analogous situation happens for phase portraits
in 2–dimensional or 1–dimensional parts, coinciding
with a phase portrait situated on their border.

The work is organized as follows. In Sec. 2
we describe the normal form for the subfamily of
systems having a finite saddle–node and an infinite

saddle–node of type
(0
2

)
SN in the bisector of the

first and the third quadrant.

For the study of real planar polynomial vector
fields two compactifications are used. In Sec. 3 we
describe very briefly the Poincaré compactification
on the 2–dimensional sphere.

In Sec. 4 we list some very basic properties of
general quadratic systems needed in this study.

In Sec. 5 we mention some algebraic
and geometric concepts that were introduced in
[Schlomiuk et al., 2001, Llibre et al., 2004] involv-
ing intersection numbers, zero–cycles, divisors, and
T–comitants and invariants for quadratic systems
as used by the Sibirskii school. We refer the reader
directly to [Artés et al., 2006] where these concepts
are widely explained.

In Sec. 6, using algebraic invariants and T–
comitants, we construct the bifurcation surfaces for
the class QsnSN(C) and in Sec. 7 we comment
about the possible existence of “islands” in the bi-
furcation diagram.

In Sec. 8 we introduce a global invariant de-
noted by I, which classifies completely, up to topo-
logical equivalence, the phase portraits we have
obtained for the systems in the class QsnSN(C).
Theorem 8.21 shows clearly that they are uniquely
determined (up to topological equivalence) by the
values of the invariant I.

2. Quadratic vector fields with a finite
saddle–node sn(2) and an infinite saddle–

node of type
(0
2

)
SN

In [Artés et al., 2014] we have constructed the nor-
mal forms for the subfamilies QsnSN(A) and
QsnSN(B) from the normal form for semi–
elemental singularity using [Andronov et al., 1973].
It remains to construct the normal form for sub-
family QsnSN(C). Its construction will follow the
same steps of the previous two subfamilies and it is
given in the next result.
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Proposition 2.1. Every system with a finite
semi–elemental double saddle–node sn(2) with its
eigenvectors in the direction of the axes, with the
eigenvector associated with the zero eigenvalue on
the horizontal axis, and an infinite saddle–node of

type
(
0
2

)
SN located in the endpoints of the bisec-

tor of the first and third quadrants can be brought
via affine transformations and time rescaling to the
following normal form

ẋ = gx2 + 2hxy + (n− g − 2h)y2,

ẏ = y + ℓx2 + (2g + 2h− 2ℓ− n)xy

+ (2h+ ℓ+ 2(n − g − 2h))y2,

(5)

where g, h, ℓ and n are real parameters and g 6= 0.

Proof. By Andronov et al. [Andronov et al., 1973],
if a quadratic system has a semi–elemental singular
point at the origin, it can always be written into
the form

ẋ = gx2 + 2hxy + ky2,

ẏ = y + ℓx2 + 2mxy + ny2.
(6)

Moreover, if g 6= 0, then we have a double saddle–
node sn(2) with its eigenvectors in the direction of

the axes. The next step is to place the point
(
0
2

)
SN

at [1 : 1 : 0] of the local chart U1 with coordinates
(w, z). For that, we must guarantee that the point
[1 : 1 : 0] is a singularity of the flow in U1,

ẇ = ℓ+ (−g + 2m)w + (−2h+ n)w2 − kw3 + wz,

ż = (−g − 2hw − kw2)z.

Then, we set n = g + 2h + k − ℓ − 2m and, by
analyzing the Jacobian of the former system after
the substitution in n, we set m = (g − k − 2ℓ)/2
in order to have the eigenvalue associated to the
eigenvector on z = 0 being null. Finally, we apply
the rotation k = n− g− 2h in the parameter space
and obtain the normal form (5). We note that this
rotation is just to simplify the bifurcation diagram.

To study the closure of the family QsnSN(C)
within the set of representatives of QsnSN(C) in
the parameter space of the normal form (5) it is
necessary to consider the case g = 0.

The next result assures the existence of invari-
ant straight lines under certain conditions for sys-
tems (5).

Lemma 2.2. For all g ∈ R, systems (5) possess
the following invariant straight lines under the spe-
cific condition:
(i) {x = 0}, if h = (n− g)/2;

(ii) {y = 0}, if ℓ = 0;

(iii) {y = x− 1/n}, if ℓ = g and n 6= 0.

Proof. We consider the algebraic curves

f1(x, y) ≡ x = 0,

f2(x, y) ≡ y = 0,

f3(x, y) ≡ ny − nx+ 1 = 0,

and we show that the polynomials

K1(x, y) = gx+ (n − g)y,

K2(x, y) = 1 + (2g + 2h− n)x− 2(g + h− n)y,

K3(x, y) = ny,

are the cofactors of f1 = 0, f2 = 0 and f3 = 0,
respectively, after restricting systems (5) to the re-
spective conditions.

Systems (5) depend on the parameter λ =
(g, h, ℓ, n) ∈ R4. We consider systems (5) which
are nonlinear, i.e. λ = (g, h, ℓ, n) 6= 0. Applying
the affine transformation X = αx, Y = αy, with
α 6= 0, we obtain

Ẋ = α′gX2 + 2α′hXY + α′(n− g − 2h)Y 2,

Ẏ = y + α′ℓx2 + α′(2g + 2h− 2ℓ− n)XY

+ α′(2h+ ℓ+ 2(n − g − 2h))Y 2,

for α′ = 1/α, α 6= 0.
Then, this transformation takes the system

with parameters (g, h, ℓ, n) to a system with param-
eters (α′g, α′h, α′ℓ, α′n). Hence, instead of consid-
ering as parameter space R4, we may consider RP3.

But, since for α′ = −1 all the signs change,
we may consider g ≥ 0 in [g : h : k : n]. Since
g2+h2+k2+n2 = 1, then g =

√
1− (h2 + k2 + n2),

where 0 ≤ h2 + k2 + n2 ≤ 1.
We can therefore view the parameter space as

a ball B = {(h, ℓ, n) ∈ R3; h2 + ℓ2 + n2 ≤ 1}, where
on the equator two opposite points are identified.
When n = 0, we identify the point [g : h : ℓ :
0] ∈ RP3 with [g : h : ℓ] ∈ RP2. So, this subset
{n = 0} ⊂ B can be identified with RP2, which can
be viewed as a disk with two opposite points on the
circumference (the equator) identified (see Fig. 13).
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n

n = 0

g = 0

Fig. 13. The parameter space

For g 6= 0, we get the affine chart:

RP3 \ {g = 0} ↔ R3

[g : h : ℓ : n] 7→
(
h

g
,
ℓ

g
,
n

g

)
= (h, ℓ, n)

[1 : h : ℓ : n] 7→ (h, ℓ, n).

The plane g = 0 in RP3 corresponds to the
equation h2+ℓ2+n2 = 1 (the full sphere S2) and the
line g = n = 0 in RP3 corresponds to the equation
h2 + ℓ2 = 1 (the equator n = 0 of S2).

We now consider planes in R3 of the form
n = n0, where n0 is a constant. The projective
completion of such a plane in RP3 has the equation
n− n0g = 0. So, we see how the slices n = n0 need
to be completed in the ball (see Fig. 14). We note
that when g = 0 necessarily we must have n = 0 on
such a slice, and thus the completion of the image
of the plane n = n0, when visualized in S3, must
include the equator.

The specific equations of the correspondence of
the points in the plane n = n0 of R3 (n0 a constant)
onto points in the interior of S2 (B = {(h, ℓ, n) ∈
R3; h2 + ℓ2 + n2 < 1}) follows from the bijection:

R3 ↔ B

(h, ℓ, n) ↔
(
h

c
,
ℓ

c
,
n

c

)

with c =

√
h
2
+ ℓ

2
+ n2 + 1. That is, for each plane

n = constant in R3 , there corresponds a half ellip-

Fig. 14. Correspondence between planes and ellipsoides

soid h2 + ℓ2 + n2(1 + n2
0)/n

2
0 = 1, n ≥ 0 (see Fig.

14).

3. The Poincaré compactification and the
complex (real) foliation with singulari-
ties on CP2 (RP2)

A real planar polynomial vector field ξ can be com-
pactified on the sphere as follows. We identify the
xy−plane with the plane Z = 1 in the space R3

with coordinates X, Y , Z. The central projec-
tion of the vector field ξ on the sphere of radius
one yields a diffeomorphic vector field on the up-
per hemisphere and also another vector field on
the lower hemisphere. There exists (for a proof
see [Gonzales, 1969]) an analytic extension cp(ξ) of
the vector field ξ on the whole sphere having the
same phase curves as the one constructed above
from the polynomial vector field. The projection of
the closed northern hemisphere H+ of S2 on Z = 0
under (X,Y,Z) → (X,Y ) is called the Poincaré
disc. A singular point r of cp(ξ) is called an infinite
(respectively, finite) singular point if r ∈ S1, the
equator (respectively, r ∈ S2 \S1). The vector field
cp(ξ) restricted to the upper hemisphere completed
with the equator is called the Poincaré compactifi-
cation of a polynomial vector field ξ.

For every vector field

p
∂

∂x
+ q

∂

∂y
, (7)

where p(x, y) and q(x, y) are polynomials with real
coefficients, or equivalently for every differential
system

ẋ = p(x, y), ẏ = q(x, y), (8)

we consider the associated differential 1−form ω1 =
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q(x, y)dx− p(x, y)dy, and the differential equation

ω1 = 0, (9)

which defines a foliation with singularities on C2.
The affine plane C2 is compactified on the com-
plex projective space CP2 = (C3 \ {0})/ ∼, where
(X,Y,Z) ∼ (X ′, Y ′, Z ′) if, and only if, (X,Y,Z) =
λ(X ′, Y ′, Z ′) for some complex λ 6= 0. The equiva-
lence class of (X,Y,Z) will be denoted by [X : Y :
Z].

The foliation with singularities defined by equa-
tion (9) on C2 can be extended to a foliation with
singularities on CP2 and the 1−form ω1 can be ex-
tended to a meromorphic 1−form ω on CP2 which
yields an equation ω = 0, i.e.

A(X,Y,Z)dX +B(X,Y,Z)dY

+ C(X,Y,Z)dZ = 0,
(10)

whose coefficients A, B, C are homogeneous poly-
nomials of the same degree and satisfy the relation:

A(X,Y,Z)X +B(X,Y,Z)Y

+ C(X,Y,Z)Z = 0,
(11)

Indeed, consider the map i : C3 \ {Z = 0} → C2,
given by i(X,Y,Z) = (X/Z, Y/Z) = (x, y) and sup-
pose that max{deg(p),deg(q)} = m > 0. Since
x = X/Z and y = Y/Z we have:

dx =
ZdX −XdZ

Z2
, dy =

ZdY − Y dZ

Z2
,

the pull–back form i∗(ω1) has poles at Z = 0 and
yields the equation

i∗(ω1) = q

(
X

Z
,
Y

Z

)
ZdX −XdZ

Z2

− p

(
X

Z
,
Y

Z

)
ZdY − Y dZ

Z2
= 0.

Then, the 1−form ω = Zm+2i∗(ω1) in C3 \{Z 6= 0}
has homogeneous polynomial coefficients of degree
m + 1, and for Z = 0 the equations ω = 0 and
i∗(ω1) = 0 have the same solutions. Therefore, the
differential equation ω = 0 can be written as (10),

where

A(X,Y,Z) = ZQ(X,Y,Z)

= Zm+1q

(
X

Z
,
Y

Z

)
,

B(X,Y,Z) = −ZP (X,Y,Z)

= −Zm+1p

(
X

Z
,
Y

Z

)
,

C(X,Y,Z) = Y P (X,Y,Z)

−XQ(X,Y,Z).

(12)

Clearly A, B and C are homogeneous polyno-
mials of degree m+ 1 satisfying (11).

In particular, for our quadratic systems (5), A,
B and C take the following forms:

A(X,Y,Z) =(ℓX2 + (2g + 2h− 2ℓ− n)XY

+ (2n − 2g − 2h+ ℓ)Y 2 + Y Z)Z

B(X,Y,Z) =− (gX2 + 2hXY + (n− g − 2h)Y 2)Z,

C(X,Y,Z) =− ℓX3 + (n− g − 2h+ 2ℓ)X2Y

+ (2g + 4h− ℓ− 2n)XY 2

− (g + 2h− n)Y 3 −XY Z.
(13)

We note that the straight line Z = 0 is always
an algebraic invariant curve of this foliation and
that its singular points are the solutions of the sys-
tem: A(X,Y,Z) = B(X,Y,Z) = C(X,Y,Z) = 0.
We note also that C(X,Y,Z) does not depend on
b.

To study the foliation with singularities defined
by the differential equation (10) subject to (11)
with A, B, C satisfying the above conditions in the
neighborhood of the line Z = 0, we consider the
two charts of CP2: (u, z) = (Y/X,Z/X), X 6= 0,
and (v,w) = (X/Y,Z/Y ), Y 6= 0, covering this
line. We note that in the intersection of the charts
(x, y) = (X/Z, Y/Z) and (u, z) (respectively, (v,w))
we have the change of coordinates x = 1/z, y = u/z
(respectively, x = v/w, y = 1/w). Except for the
point [0 : 1 : 0] or the point [1 : 0 : 0], the foliation
defined by equations (10),(11) with A, B, C as in
(12) yields in the neighborhood of the line Z = 0
the foliations associated with the systems

u̇ =uP (1, u, z) −Q(1, u, z) = C(1, u, z),

ż =zP (1, u, z),
(14)

or

v̇ =vQ(v, 1, w) − P (v, 1, w) = −C(v, 1, w),

ẇ =wP (v, 1, w).
(15)
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In a similar way we can associate a real foliation
with singularities on RP2 to a real planar polyno-
mial vector field.

4. A few basic properties of quadratic sys-
tems relevant for this study

The following results hold for any quadratic system:

(i) A straight line either has at most two (finite)
contact points with a quadratic system (which
include the singular points), or it is formed by
trajectories of the system; see Lemma 11.1 of
[Ye et al., 1986]. We recall that by definition
a contact point of a straight line L is a point of
L where the vector field has the same direction
as L, or it is zero.

(ii) If a straight line passing through two real fi-
nite singular points r1 and r2 of a quadratic
system is not formed by trajectories, then it is
divided by these two singular points in three
segments ∞r1, r1r2 and r2∞ such that the
trajectories cross ∞r1 and r2∞ in one direc-
tion, and they cross r1r2 in the opposite di-
rection; see Lemma 11.4 of [Ye et al., 1986].

(iii) If a quadratic system has a limit cycle, then
it surrounds a unique singular point, and this
point is a focus; see [Coppel, 1966].

(iv) A quadratic system with an invariant straight
line has at most one limit cycle; see
[Coll & Llibre, 1988].

(v) A quadratic system with more than one in-
variant straight line has no limit cycle; see
[Bautin, 1954].

The proof of the next result can be found in
[Artés et al., 1998].

Proposition 4.1. Any graphic or degenerate
graphic in a real planar polynomial differential
system must either

1) surround a singular point of index greater than
or equal to +1, or

2) contain a singular point having an elliptic sector
situated in the region delimited by the graphic, or

3) contain an infinite number of singular points.

5. Some algebraic and geometric concepts

In this article we use the concept of intersection
number for curves (see [Fulton, 1969]). For a quick
summary see Sec. 5 of [Artés et al., 2006].

We shall also use the concepts of zero–
cycle and divisor (see [Hartshorne, 1977])
as specified for quadratic vector fields in
[Schlomiuk et al., 2001]. For a quick summary see
Sec. 6 of [Artés et al., 2006].

We shall also use the concepts of algebraic in-
variant and T–comitant as used by the Sibirskii
school for differential equations. For a quick sum-
mary see Sec. 7 of [Artés et al., 2006].

In the next section we describe the algebraic
invariants and T–comitants which are relevant in
the study of family (5), see Sec. 6.

6. The bifurcation diagram of the systems
in QsnSN(C)

6.1. Bifurcation surfaces due to the
changes in the nature of singularities

From Sec. 7 of [Artés et al., 2008] and
[Vulpe, 2011] we get the formulas which give
the bifurcation surfaces of singularities in R12, pro-
duced by changes that may occur in the local nature
of finite singularities. From [Schlomiuk et al., 2005]
we get equivalent formulas for the infinite singular
points. These bifurcation surfaces are all algebraic
and they are the following:

Bifurcation surfaces in RP3 due to multiplic-
ities of singularities

(S1) This is the bifurcation surface due to multi-
plicity of infinite singularities involved with finite
singular points. This occurs when at least one fi-
nite singular point collides with at least one infinite
singular point. This is a quartic whose equation is

µ = n2(−g2 − 2gh+ 2hℓ+ ℓ2 + gn) = 0.

(S2) Since this family already has a saddle–node at
the origin, the invariant D is always zero. The next
T−comitant related to finite singularities is T. If
this T−comitant vanishes, it may mean either the
existence of another finite semi–elemental singular
point, or the origin being a singular point of higher
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multiplicity, or the system being degenerate. The
equation of this surface is

T = −12g2 (g2 + 2gh + h2 − gn) = 0.

(S5) Since this family already has a saddle–node at
infinity formed by the collision of two infinite sin-
gularities, the invariant η is always zero. In this
sense, we have to consider a bifurcation related to
the existence of either the double infinite singular-

ity
(0
2

)
SN plus a simple one, or a triple one. This

phenomenon is ruled by the T−comitant M̃ . The
equation of this surface is

M̃ = (g + 2h+ ℓ− n)2 = 0.

The surface of C∞ bifurcation points due to
a strong saddle or a strong focus changing
the sign of their traces (weak saddle or weak
focus)

(S3) This is the bifurcation surface due to weak
finite singularities, which occurs when the trace of
a finite singular point is zero. The equation of this
surface is given by

T4 = n(−4g3 − 8g2h− 4g2ℓ− 4ghℓ − 8h2ℓ

− 4hℓ2 + 4g2n+ 4gℓn+ ℓ2n) = 0.

We note that this bifurcation surface can either pro-
duce a topological change, if the weak point is a
focus, or just a C∞ change, if it is a saddle. How-
ever, in the case this bifurcation coincides with a
loop bifurcation associated with the same saddle,
the change is also topological, as we can see later
in the analysis of systems (5) (see page 55).

The surface of C∞ bifurcation due to a node
becoming a focus

(S6) This surface will contain the points of the pa-
rameter space where a finite node of the system
turns into a focus. This surface is a C∞ but not
a topological bifurcation surface. In fact, when we
only cross the surface (S6) in the bifurcation dia-
gram, the phase portraits do not change topologi-
cally. However, this surface is relevant for isolating
the parts where a limit cycle surrounding an anti-
saddle cannot exist. The equation of this surface is

given by W4 = 0, where

W4 = n2(16g6 + 64g5h+ 64g4h2 − 32g5ℓ

− 160g4hℓ− 192g3h2ℓ− 16g4ℓ2 + 32g3hℓ2

+ 112g2h2ℓ2 − 32gh3ℓ2 + 32g3ℓ3 + 64g2hℓ3

+ 32h3ℓ3 + 16h2ℓ4 − 32g5n− 64g4hn

+ 64g4ℓn+ 160g3hℓn+ 8g3ℓ2n− 80g2hℓ2n

+ 16gh2ℓ2n− 40g2ℓ3n− 8ghℓ3n− 16h2ℓ3n

− 8hℓ4n+ 16g4n2 − 32g3ℓn2 + 8g2ℓ2n2

+ 8gℓ3n2 + ℓ4n2).

Bifurcation surface in RP3 due to the pres-
ence of invariant straight lines

(S4) This surface will contain the points of the pa-
rameter space where an invariant straight line ap-
pears (see Lemma 2.2). This surface is split in some
parts. Depending on these parts, the straight line
may contain connections of separatrices from differ-
ent points or not. So, in some cases, it may imply
a topological bifurcation and, in others, just a C∞

bifurcation. The equation of this surface is given
by

Inv = ℓ(ℓ− g) (g + 2h− n) = 0.

These bifurcation surfaces are all algebraic and
they, except (S4), are the bifurcation surfaces of
singularities of systems (5) in the parameter space.
We shall discover other two bifurcation surfaces not
necessarily algebraic. On one of them the systems
have global connection of separatrices different from
that given by (S4) and on the other the systems
possess double limit cycle. The equations of these
bifurcation surfaces can only be determined approx-
imately by means of numerical tools. Using argu-
ments of continuity in the phase portraits we can
prove the existence of these components not nec-
essarily algebraic in the part where they appear,
and we can check them numerically. We shall name
them surfaces (S7) (connection of separatrices) and
(S10) (double limit cycles).

Remark 6.1. On surface (S10), the respective sys-
tems have at least one double limit cycle. Although
this surface is obtained numerically, we can predict
in which portion of the bifurcation diagram it can
be placed. It must be in the neighborhood of the
points of the bifurcation diagram corresponding to
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a weak focus f (2) or a weak saddle s(1) which forms
a loop. So, according to [Vulpe, 2011; Main The-
orem, item (b2)], the necessary condition for the
existence of weak points of order two or higher is
governed by T4 = F1 = 0. The expression of F1 is
given by F1 = −2g2 − 4gh+4gℓ+6hℓ+2gn− 3ℓn.

We shall foliate the 3−dimensional bifurcation
diagram in RP3 by the planes n = n0, n0 con-
stant, plus the open half sphere g = 0 and we shall
give pictures of the resulting bifurcation diagram
on these planar sections on a disk or in an affine
chart of R2.

In what follows we work in the chart of RP3

corresponding to g 6= 0, and we take g = 1. To do
the study, we shall use pictures which are drawn on
planes n = n0 of RP3, having coordinates [1 : h :
ℓ : n0]. In these planes the coordinates are (h, ℓ)
where the horizontal line is the h−axis.

As the final bifurcation diagram is quite com-
plex, it is useful to introduce colors for each one of
the bifurcation surfaces. They are:

(a) the curve obtained from the surface (S1) is
drawn in blue (a finite singular point collides
with an infinite one);

(b) the curve obtained from the surface (S2) is
drawn in green (two finite singular points dif-
ferent from the saddle–node collide);

(c) the curve obtained from the surface (S3) is
drawn in yellow (when the trace of a singular
point becomes zero);

(d) the curve obtained from the surface (S4) is
drawn in purple (the presence of invariant
straight lines);

(e) the curve obtained from the surface (S5) is
drawn in red (three infinite singular points col-
lide);

(f) the curve obtained from the surface (S6) is
drawn in black (an antisaddle is on the edge of
turning from a node to a focus or vice versa);

(g) the curve obtained from the surface (S7) is
drawn in purple (the connection of separatri-
ces); and

(h) the curve obtained from the surface (S10) is
drawn in gray (presence of a double limit cy-
cle).

The following lemmas of this section study the
geometrical behavior of the surfaces for g 6= 0 (the
case g = 0 will be considered separately), that
is, their singularities, their intersection points and
their extrema (maxima and minima) with respect
to the coordinate n. We will not provide the com-
plete proof of all the following lemmas since many
of them are similar one of the other. Their complete
proofs can be found in [Rezende, 2014].

Lemma 6.2. For gn 6= 0, surface (S1) has no sin-
gularities and, for g 6= 0 and n = 0, it has two
straight lines of singularities given by [1 : h : 1 : 0]
and [1 : h : −1− 2h : 0].

Proof. As surface (S1) is the union of a double plane
and a conic with no singularities, its singularities
will be the intersection between these two compo-
nents. In this sense, we set n = 0 and, solving the
expression of the conic with respect to ℓ, we find the
straight lines [1 : h : 1 : 0] and [1 : h : −1−2h, 0].

Lemma 6.3. For g 6= 0, surface (S2) has no sin-
gularities. Moreover, this surface assumes its min-
imum (with respect to the coordinate n) at h = −1.

Proof. Setting g 6= 0, it follows straightforwardly
from the expression of T = −12(1 + 2h + h2 − n)
and parameterizing this surface, we obtain [1 : h :
ℓ : (1+h)2] which clearly has a minimum at h = −1,
which corresponds to n = 0.

Lemma 6.4. For gn 6= 0, surface (S3) has a
straight line of singularities given by [1 : 1/2 :
−2 : n]. Moreover, in this surface there exist
two distinguished points: [1 : 1/2 : −2 : 2] and
[1 : 1/2 : −2 : 9/4]. For g 6= 0 and n = 0,
surface (S3) has two curves of singularities: the
straight line [1 : h : −1 − 2h : 0] and the hyper-
bola [1 : h : −1/h : 0], and they intersect at the
points [1 : −1 : 1 : 0] and [1 : 1/2 : −2 : 0].

Proof. For gn 6= 0, surface (S3) is the union of the
plane {n = 0} and the cubic C = 4n−8h−4+(4n−
4h − 8h2 − 4)ℓ + (n − 4h)ℓ2 = 0. Computing the
derivatives of C and solving them (for g 6= 0) we get
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the straight line [1 : 1/2 : −2 : n] of singularities.
We verify that the determinant of the Hessian of
C restricted to this straight line is identically zero.
In addition, calculating the discriminant of C with
respect to h and ℓ, we obtain, respectively,

Discrimh(C) =16(2 + ℓ)2(1− 2ℓ+ ℓ2 + 2ℓn),

Discrimℓ(C) =16(2h − 1)2(1 + 2h+ h2 − n).

So, the resultant of both discriminants with re-
spect to h vanishes if, and only if, ℓ = −2 or
n = (−1 + 2ℓ − ℓ2)/(2ℓ), implying that n = 9/4
(which is obtained by evaluating the resultant on
the line of singularities) is a distinguished point.

Now, we want to investigate the existence of a
value of the parameter n = n0 at which the cubic C
factorizes, i.e. we want to rewrite C as one of the
following forms:

C(h, ℓ, n0) =(h− h0)D2(h, ℓ) or

C(h, ℓ, n0) =(ℓ− ℓ0)D2(h, ℓ),

where D2(h, ℓ) is a polynomial of degree 2 in the
variables h and ℓ. For this, we rewrite the cubic C
in the forms:

C1(h, ℓ, n0) =(n0 − 4h)ℓ2 − 4(1 + h+ 2h2 − n0)ℓ

− 4(1 + 2h− n0),

C2(h, ℓ, n0) =− 8ℓh2 − 4(2 + ℓ+ ℓ2)h

− 4− 4ℓ+ 4n0 + 4ℓn0 + ℓ2n0.

As we are interested in the set of zeroes of C, we
equalize to zero the coefficients of C1 and C2 in the
variables ℓ and h, respectively, and we conclude that
only possible solution comes from the zeroes of C1

which is h = 1/2, n0 = 2. Thus, we can factorize the
cubic C as C(h, ℓ, 2) = −2(2h−1)(2+2ℓ+2hℓ+ℓ2),
implying that n = 2 is also a distinguished value of
the parameter n.

In the case g 6= 0 and n = 0, we have T4 ≡ 0.
Denoting by F the derivative of T4 with respect to
n, we obtain F = −4(1 + 2h+ ℓ)(1 + hℓ), implying
that 1 + 2h+ ℓ = 0 and 1+ hℓ = 0 are the singular
curves of (S3) with n = 0, which correspond to the
projective curves [1 : h : −1 − 2h : 0] and [1 : h :
−1/h : 0]. In addition, it is easy to see that both
curves intersect at the points [1 : −1 : 1 : 0] and
[1 : 1/2 : −2 : 0].

Lemma 6.5. For g 6= 0, surface (S4) has two
straight lines of singularities given by [1 : (n−1)/2 :
0 : n] and [1 : (n− 1)/2 : 1 : n].

Lemma 6.6. For g 6= 0, surface (S5) has no sin-
gularities.

Lemma 6.7. For gn 6= 0, surface (S6) has two
curves of singularities: [1 : (n − 1)/2 : 0 : n]
(a straight line) and [1 : (ℓ − 2)/ℓ : ℓ : 4(4 −
7ℓ + 2ℓ2 + ℓ3)/(ℓ(−4 + 4ℓ + ℓ2))]. Moreover, the
curve [1 : (ℓ − 2)/ℓ : ℓ : 4(4 − 7ℓ + 2ℓ2 +
ℓ3)/(ℓ(−4+4ℓ+ ℓ2))] assumes its extrema (with re-
lation to the coordinate n) in the values ℓ = −4,
ℓ = 1, ℓ = (−3 ±

√
41)/4 and ℓ = f−1(n0), where

f = 4(4 − 7ℓ + 2ℓ2 + ℓ3)/(ℓ(−4 + 4ℓ + ℓ2)) and
n0 = (3− (1548 − 83

√
249)1/3/32/3 − 61/(3(1548 −

83
√
249))1/3)/2. For g 6= 0 and n = 0, its singu-

larities lie on the two straight lines [1 : h : 1 : 0]
and [1 : h : −1 − 2h : 0] and on the two curves
[1 : (1− 2ℓ±

√
1− 4ℓ+ 5ℓ2 − 2ℓ3)/ℓ2 : ℓ : 0].

Proof. For the computation of the singular curves
of (S6) we refer to [Rezende, 2014]. To compute
the extrema of the curve [1 : (ℓ − 2)/ℓ : ℓ : 4(4 −
7ℓ + 2ℓ2 + ℓ3)/(ℓ(−4 + 4ℓ + ℓ2))], we equalize the
last coordinate to n and obtain the polynomial p =
−4(ℓ−1)2(4+ ℓ)+ ℓ(−4+4ℓ+ ℓ2)n. Computing its
discriminant with respect to ℓ, we have:

Discrimℓ(p) = 256n(125 − 17n − 9n2 + 2n3),

whose solutions are n = 0 and n = (3 − (1548 −
83
√
249)1/3/32/3 − 61/(3(1548 − 83

√
249))1/3)/2 ≈

−3.40133804 . . .. Besides, we consider the lead-
ing coefficient of p in ℓ and solve it with respect
to n, obtaining n = 4. This proves that p has
degree 3 for every n, except when n = 4. Fi-
nally, solving the equation p = 0 by substituting
n by the singular values of n, we obtain ℓ = −4,
ℓ = 1, ℓ = (−3 ±

√
41)/4 and ℓ = f−1(n0), where

f = 4(4 − 7ℓ + 2ℓ2 + ℓ3)/(ℓ(−4 + 4ℓ + ℓ2)) and
n0 = (3− (1548 − 83

√
249)1/3/32/3 − 61/(3(1548 −

83
√
249))1/3)/2, which are the critical values of the

curve with respect to n.

Lemma 6.8. For g 6= 0, the invariant F1 defined
in Remark 6.1 has a straight line of singularities
given by [1 : (3n− 4)/6 : 2/3 : n].

Lemma 6.9. For g 6= 0, surfaces (S1) and (S2)
intersect along the straight line [1 : −1 : ℓ : 0] and
the parabola [1 : h : −h : (1 + h)2]. Moreover, the
curve [1 : h : −h : (1 + h)2] assumes its extremum
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(with relation to the coordinate n) in the value h =
−1 and, in addition, the contact along this curve is
even.

Proof. Solving the system of equations

(S1) : n
2(−1− 2h+ 2hℓ+ ℓ2 + n) = 0,

(S2) :− 12(1 + 2h+ h2 − n) = 0,

we obtain the two solutions h = −1, n = 0 and
ℓ = −h, n = (1 + h)2, which correspond to the
curves [1 : −1 : ℓ : 0] and [1 : h : −h : (1 + h)2],
respectively.

It is easy to see that the extremum of the co-
ordinate n of the curve [1 : h : −h : (1 + h)2] is
reached at h = −1 and its minimum value is n = 0.

To prove the contact between both surfaces
along the curve γ = [1 : h : −h : (1 + h)2],
we apply the affine change of coordinates given by
n = 1 + 2h + h2 − v, v ∈ R. Under this trans-
formation, the gradient vector of (S2) along the
curve γ is ∇T(γ) = [1 : 0 : 0 : −12], whereas
the gradient vector of (S1) along the curve γ is
∇µ(γ) = [1 : 0 : 0 : −1], whose last coordinate
is always negative. As ∇µ(γ) does not change its
sign, this vector will always point to the same di-
rection in relation to (S2) restricted to the previous
change of coordinates. Then, the surface (S1) re-
mains only on one of the two topological subspaces
delimited by the surface (S2).

Lemma 6.10. For g 6= 0, surfaces (S1) and (S3)
has the plane {n = 0} as a common component.
Besides, the surfaces intersect along the straight
lines [1 : h : 1 : 0], [1 : h : −1 − 2h : 0] and
[1 : h : 0 : 1 + 2h], the hyperbola [1 : h : −1/h : 0]
and the curve [1 : −ℓ(ℓ+ 3)/4 : ℓ : (2− 3ℓ+ ℓ3)/2].
Moreover, this last curve assumes its extrema (with
relation to the coordinate n) in the values ℓ = ±1
and ℓ = ±2.

Lemma 6.11. For g 6= 0, surfaces (S1) and (S4)
intersect along the straight lines [1 : −1/2 : ℓ : 0],
[1 : h : 0 : 0], [1 : h : 1 : 0], [1 : h : 0 : 1 + 2h] and
[1 : −ℓ/2 : ℓ : 1− ℓ].

Lemma 6.12. For g 6= 0, surfaces (S1) and (S5)
intersect along the straight lines [1 : h : −1− 2h : 0]
and [1 : (n− 1)/2 : 0 : n].

Lemma 6.13. For g 6= 0, surfaces (S1) and (S6)
has the plane {n = 0} as a common component.
Besides, the surfaces intersect along the straight
lines [1 : h : 1 : 0], [1 : h : −1 − 2h : 0]
and [1 : −(ℓ + 1)/2 : ℓ : 0] and the curves
[1 : h : −(1 + 2h ± (1 + h)

√
(1 + 2h))/h2 : 0] and

[1 : −ℓ(ℓ + 7)/8 : ℓ : (ℓ − 1)2(ℓ + 4)/4]. Moreover,
this last curve assumes its extrema (with relation to
the coordinate n) in the values ℓ = −4, ℓ = −7/3,
ℓ = 1 and ℓ = 8/3.

Lemma 6.14. For g 6= 0, surfaces (S2) and (S3)
intersect along the straight line [1 : −1 : ℓ : 0] and
the curve [1 : h : 2h/(h − 1) : (1 + h)2]. Moreover,
they have a contact of order two along the curve
[1 : h : 2h/(h− 1) : (1+h)2], and this curve has the
straight line {h = 1} as an asymptote.

Lemma 6.15. For g 6= 0, surfaces (S2) and (S4)
intersect along the parabolas [1 : h : 0 : (1 + h)2]
and [1 : h : 1 : (1 + h)2] and the straight line [1 : 0 :
ℓ : 1]. Moreover, the curves [1 : h : 0 : (1 + h)2] and
[1 : h : 1 : (1 + h)2] assume their extremum (with
relation to the coordinate n) in the value h = −1.

Lemma 6.16. For g 6= 0, surfaces (S2) and (S5)
intersect along the curve [1 : h : h2 : (1 + h)2].
Moreover, the curve [1 : h : h2 : (1 + h)2] assumes
its extrema (with relation to the coordinate n) in
the value h = −1.

Lemma 6.17. For g 6= 0, surfaces (S2) and (S6)
intersect along the straight line [1 : −1 : ℓ : 0] and
the curve [1 : h : 2h/(h − 1) : (1 + h)2]. Moreover,
they have a contact of order two along the curve
[1 : h : 2h/(h− 1) : (1 + h)2] and this curve has the
straight line {h = 1} as an asymptote.

Lemma 6.18. For g 6= 0, surfaces (S3) and (S4)
intersect along the straight lines [1 : −1/2 : ℓ : 0],
[1 : h : 0 : 0], [1 : h : 1 : 0], [1 : 1/2 : ℓ : 2],
[1 : h : 0 : 1 + 2h] and [1 : −ℓ/4 : ℓ : (2 − ℓ)/2] and
the parabola [1 : h : 1 : 8(1 + h)2/9]. Moreover, this
parabola assumes its extremum (with relation to the
coordinate n) in the value h = −1.

Lemma 6.19. For g 6= 0, surfaces (S3) and (S5)
intersect along the straight lines [1 : h : −1−2h : 0],
[1 : (n−1)/2 : 0 : n] and [1 : (3+n)/6 : 2(n−3)/3 :
n].
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Lemma 6.20. For g 6= 0, surfaces (S3) and (S6)
has the plane {n = 0} as a common component.
Besides, the surfaces intersect along the curves [1 :
h : −1 − 2h : 0], [1 : −1/ℓ : ℓ : 0], [1 : h : 1 : 0],
[1 : h : −(1 + 2h ± (1 + h)

√
1 + 2h)/h2 : 0], [1 : h :

0 : 1 + 2h], [1 : ℓ/(ℓ − 2) : ℓ : 4(ℓ − 1)2/(ℓ − 2)2]
and [1 : (−2 + 2ℓ + ℓ2)/(−4 + 2ℓ + ℓ2) : ℓ : 4(ℓ −
1)2(2+ℓ)(4+ℓ)/(−4+2ℓ+ℓ2)2]. Moreover, the curve
[1 : ℓ/(ℓ− 2) : ℓ : 4(ℓ− 1)2/(ℓ− 2)2] has the straight
line {ℓ = 2} as an asymptote and corresponds to
a even contact between the surfaces, and the curve
[1 : (−2 + 2ℓ+ ℓ2)/(−4 + 2ℓ+ ℓ2) : ℓ : 4(ℓ− 1)2(2 +
ℓ)(4+ ℓ)/(−4+2ℓ+ ℓ2)2] assumes its extrema (with
relation to the coordinate n) in the values ℓ = −4,
ℓ = −2, ℓ = 1, ℓ = −3 ±

√
17, ℓ = −5 ±

√
21 and

ℓ = 3−
√
21± 4

√
2(13 − 2

√
21)/17.

Lemma 6.21. For g 6= 0, surface (S3) and surface
(SF1) given by {F1 = 0} intersect along the curves
[1 : (1 − 2ℓ)/(3ℓ − 2) : ℓ : 0], [1 : h : 0 : 1 + 2h] and
[1 : (4−8ℓ+3ℓ2±

√
3
√

(2 + ℓ)3(3ℓ− 2))/(16−24ℓ) :
ℓ : (12−24ℓ+3ℓ2±

√
3
√

(2 + ℓ)3(3ℓ− 2))/(8−12ℓ)].
Moreover, this last curves assume their extrema
(with relation to the coordinate n) in the values
ℓ = −2, ℓ = 7/10, ℓ = 1 and ℓ = (−7± 5

√
5)/6.

Lemma 6.22. For g 6= 0, surfaces (S4) and (S5)
intersect along the curves [1 : (n − 1)/2 : 0 : n] and
[1 : n/2− 1 : 1 : n].

Lemma 6.23. For g 6= 0, surfaces (S4) and (S6)
intersect along the curves [1 : −1/2 : ℓ : 0], [1 :
h : 1 : 0], [1 : (n − 1)/2 : 0 : n] and [1 : (n −
1)/2 : −4(n− 1)/(n− 2)2 : n]. Moreover, the curve
[1 : (n − 1)/2 : −4(n − 1)/(n − 2)2 : n] assumes its
extrema (with relation to the coordinate n) in the
value ℓ = 1.

Lemma 6.24. For g 6= 0, surfaces (S5) and (S6)
intersect along the curves [1 : h : −1 − 2h : 0],
[1 : −(ℓ + 1)/2 : ℓ : 0] and [1 : −(16 − 24ℓ + 9ℓ2 +
ℓ3)/(8ℓ−6ℓ2) : ℓ : 4(ℓ−1)2(4+ℓ)/(ℓ(3ℓ−4))]. More-
over, the curve [1 : −(16−24ℓ+9ℓ2+ℓ3)/(8ℓ−6ℓ2) :
ℓ : 4(ℓ − 1)2(4 + ℓ)/(ℓ(3ℓ − 4))] assumes its ex-
trema (with relation to the coordinate n) in the
values ℓ = −4, ℓ = 1 and ℓ = f−1(n0), where
f(ℓ) = 4(ℓ − 1)2(4 + ℓ)/(ℓ(3ℓ − 4)) and n0 =
(130− 4511/(208855 + 16956

√
471)1/3 + (208855 +

16956
√
471)1/3)/27.

The purpose now is to find the slices in which
the intersection among at least three surfaces
or other equivalent phenomena happen. Since
there exist 25 distinct curves of intersections
or contacts between two any surfaces, we need
to study 325 different possible intersections of
these surfaces. As the relation is very long, we
will reproduce only a few of them deploying the
different algebraic techniques used to solve them.
The full set of proves can be found on the web page
http://mat.uab.es/∼artes/articles/qvfsn2SN02/
qvfsn2SN02.html.

Remark 6.25. In the next four lemmas we use the
following notation. A curve of intersection or
contact between two surfaces will be denoted by
solAByC, where A < B are the numbers of the
surfaces involved in the intersection or contact and
C is a cardinal. Moreover, these four lemmas illus-
trate the different techniques we use to solve the
intersection among at least three surfaces or other
equivalent phenomena.

Lemma 6.26. Surfaces (S1), (S2) and (S3) inter-
sect in slices when n = 0 and n = 1.

Proof. By Lemmas 6.9 and 6.10, we have the curves
sol12y1 =

[
1 : h : −h : (1 + h)2

]
and sol13y2 =[

1 : −ℓ(3 + ℓ)/4 : ℓ : (2− 3ℓ+ ℓ3/2
]
. By equalizing

each corresponding coordinate and solving the ob-
tained system, we have the solutions h = −1, ℓ = 1
and h = ℓ = 0. Since the curves are parametrized
by h and ℓ, we must substitute the solutions of the
system in the expressions of the curves and consider
the value of the coordinate n. Then, the values of
n where the three surfaces intersect are n = 0 and
n = 1.

Lemma 6.27. Surfaces (S3), (S5) and (S6) inter-
sect in slices when n = 6 and n = 9.

Proof. By Lemmas 6.19 and 6.24, we have the
curves sol35y2 = [1 : (3 + n)/6 : 2(n − 3)/3 : n] and

sol56y1 =
[
1 : (16 − 24ℓ+ 9ℓ2 + ℓ3)/2ℓ(3ℓ − 4) : ℓ :

4(ℓ− 1)2(4 + ℓ)/ℓ(3ℓ − 4)
]
.

By equalizing each corresponding coordinate and
solving the obtained system, we get the solutions
ℓ = 2, n = 6 and ℓ = 4, n = 9. Then, the values of
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n where the three surfaces intersect are n = 6 and
n = 9.

Lemma 6.28. Surfaces (S1), (S3) and (S5) inter-
sect in slice when n = 3.

Proof. By Lemmas 6.10 and 6.19, we have the
curves sol13y1 = [1 : h : 0 : 1 + 2h] and sol35y2 =
[1 : (3 + n)/6 : 2(n− 3)/3 : n]. By equalizing each
corresponding coordinate and solving the obtained
system, we have the solution h = 1, n = 3. Then,
the value of n where the three surfaces intersect is
n = 3.

Lemma 6.29. Surfaces (S1), (S4), (S5) and (S6)
intersect in slice when n = 1.

Proof. By Lemmas 6.12 and 6.23, we have
the curves sol15y1 = [1 : (n− 1)/2 : 0 : n] and
sol46y2 =

[
1 : (n− 1)/2 : −4(n − 1)/(n − 2)2 : n

]
.

By equalizing each corresponding coordinate and
solving the obtained system, we get the solution
n = 1, which is the value of n where the four sur-
faces intersect is n = 1.

The next result presents all the algebraic values
of n corresponding to singular slices in the bifurca-
tion diagram. Its proof follows from Lemmas 6.26
to 6.29 and by computing all the remaining 321
different possible intersections or contacts among
three or more surfaces.

Lemma 6.30. The full set of needed algebraic sin-
gular slices in the bifurcation diagram of family
QsnSN(C) is formed by 20 elements which corre-
spond to the values of n in (16).

The numeration in (16) is not consecutive since
we reserve numbers for other slices not algebraically
determined and for generic slices.

Now we sum up the content of the previous
lemmas. In (16) we list all the algebraic values of
n where significant phenomena occur for the bifur-
cation diagram generated by singularities. We first
have the two extreme values for n, i.e. n = −∞
(corresponding to g = 0) and n = 9. We remark
that to perform the bifurcation diagram of all sin-
gularities for n = −∞ we set g = 0 and, in the re-
maining three variables (h, ℓ, n), yielding the point
[h : ℓ : n] in RP2, we take the chart n 6= 0 in which

we may assume n = −1.

n1 = 9, n15 = 6,

n17 =
1

27

(
130− 4511

3
√
α

+ 3
√
α

)
, α = 208855 + 16956

√
471,

n25 = 4, n19 = 125/27, n21 = 9/2, n23 =
3

100
(102 + 7

√
21),

n27 = (β−8)(β−2)(β+7)2(
3√

2δ2+98 3
√

4
δ2

+β+6

)2 , β=14 3
√

2
δ
+

3√
4δ, δ=61−9

√
29,

n29 = 2 +
√
2, n31 = 3, n33 = 8/3, n37 = 9/4,

n41 =
3

100
(102− 7

√
21), n45 = 2, n55 = 1,

n57 = 2−
√
2, n59 = 1/2, n83 = 0,

n85 =
1

2

(
3− 3

√
ρ

32/3
− 61

3
√
3ρ

)
, ρ = 1548 − 83

√
249

n87 = −∞.
(16)

In order to determine all the parts generated by
the bifurcation surfaces from (S1) to (S10), we first
draw the horizontal slices of the three–dimensional
parameter space which correspond to the explicit
values of n obtained in Lemma 6.30. However, as it
will be discussed later, the presence of nonalgebraic
bifurcation surfaces will be detected and the singu-
lar slices corresponding to their singular behavior
as we move from slice to slice will be approximately
determined. We add to each interval of singular
values of n an intermediate value for which we rep-
resent the bifurcation diagram of singularities. The
diagram will remain essentially unchanged in these
open intervals except the parts affected by the bi-
furcation. All the sufficient values of n are shown
in (17).

The values indexed by positive odd indices in
(17) correspond to explicit values of n for which
there exists a bifurcation in the behavior of the sys-
tems on the slices. Those indexed by even values
are just intermediate points which are necessary to
the coherence of the bifurcation diagram.

Due to the presence of many branches of non-
algebraic bifurcation surfaces, we cannot point out
exactly neither predict the concrete value of n
where the changes in the parameter space happen.
Thus, with the purpose to set an order for these
changes in the parameter space, we introduce the
following notation. If the bifurcation happens be-
tween two concrete values of n, then we add or
subtract a sufficiently small positive value εi or ε∗j
to/from a concrete value of n; this concrete value
of n (which is a reference value) can be any of the
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two values that define the range where the non–
concrete values of n are inserted. The representa-
tion εi means that the ni refers to a generic slice,
whereas ε∗j means that the nj refers to a singular
slice. Moreover, considering the values εi, ε

∗
i , εi+1

and ε∗i+1, it means that εi < ε∗i < εi+1 < ε∗i+1 mean-
while they belong to the same interval determined
by algebraic bifurcations.

We now begin the analysis of the bifurcation
diagram by studying completely one generic slice
and after by moving from slice to slice and explain-
ing all the changes that occur. As an exact drawing
of the curves produced by intersecting the surfaces
with the slices gives us very small parts which are
difficult to distinguish, and points of tangency are
almost impossible to recognize, we have produced
topologically equivalent figures where parts are en-
larged and tangencies are easy to observe.

The reader may find the exact pictures as well
as most of the proves of this chapter in the web page
http://mat.uab.es/∼artes/articles/qvfsn2SN02/
qvfsn2SN02.html.

Notation. We now describe the labels used for each
part of the bifurcation space. The subsets of dimen-
sions 3, 2, 1 and 0, of the partition of the parameter
space will be denoted respectively by V , S, L and P
for Volume, Surface, Line and Point, respectively.
The surfaces are named using a number which cor-
responds to each bifurcation surface which is placed
on the left side of the letter S. To describe the por-
tion of the surface we place an index. The curves
that are intersection of surfaces are named by us-
ing their corresponding numbers on the left side of
the letter L, separated by a point. To describe the
segment of the curve we place an index. Volumes
and Points are simply indexed (since three or more
surfaces may be involved in such an intersection).

We consider an example: the surface (S1) splits
into 5 different two–dimensional parts labeled from
1S1 to 1S5, plus some one–dimensional arcs labeled
as 1.iLj (where i denotes the other surface inter-
sected by (S1) and j is a number), and some zero–
dimensional parts. In order to simplify the labels in
all figures we see V1 which stands for the TEX no-
tation V1. Analogously, 1S1 (respectively, 1.2L1)
stands for 1S1 (respectively, 1.2L1). And the same
happens with many other pictures.

n0 = 10 n44 = 2+ ε12
n1 = 9 n45 = 2
n2 = 9− ε1 n46 = 19/10
n3 = 9− ε∗1 n47 = 19/10− ε∗13
n4 = 9− ε2 n48 = 17/10
n5 = 9− ε∗2 n49 = 17/10− ε∗14
n6 = 9− ε3 n50 = 17/10− ε14
n7 = 9− ε∗3 n51 = 41/25 + ε∗15
n8 = 9− ε4 n52 = 41/25
n9 = 9− ε∗4 n53 = 8/5 + ε∗16
n10 = 9− ε5 n54 = 8/5
n11 = 9− ε∗5 n55 = 1
n12 = 9− ε6 n56 = 81/100

n13 = 9− ε∗6 n57 = 2−
√
2

n14 = 9− ε7 n58 = 9/16
n15 = 6 n59 = 1/2
n16 = 119/20 n60 = 9/25
n17 ≈ 5.89088 . . . n61 = 9/25− ε17∗
n18 = 21/4 n62 = 81/40
n19 = 125/27 n63 = 81/40− ε∗18
n20 = 114/25 n64 = 81/40− ε18
n21 = 9/2 n65 = 81/40− ε∗19
n22 = 108/25 n66 = 81/40− ε19
n23 = 3

100 (102 + 7
√
21) n67 = 81/40− ε∗20

n24 = 401/100 n68 = 81/40− ε20
n25 = 4 n69 = 81/40− ε∗21
n26 = 2304/625 n70 = 4/25
n27 ≈ 3.63495 . . . n71 = 4/25− ε∗22
n28 = 7/2 n72 = 4/25− ε22
n29 = 2 +

√
2 n73 = 4/25− ε∗23

n30 = 16/5 n74 = 4/25− ε23
n31 = 3 n75 = 4/25− ε∗24
n32 = 14/5 n76 = 4/25− ε24
n33 = 8/3 n77 = 4/25− ε∗25
n34 = 8/3− ε8 n78 = 9/100
n35 = 8/3− ε∗8 n79 = 9/100− ε∗26
n36 = 8/3− ε9 n80 = 9/100− ε26
n37 = 9/4 n81 = 9/100− ε∗27
n38 = 11/5 n82 = 1/25
n39 = 11/5− ε∗9 n83 = 0
n40 = 11/5− ε10 n84 = −1

n41 = 3
100 (102− 7

√
21) n85 ≈ −3.40133 . . .

n42 = 3
100 (102− 7

√
21)− ε11 n86 = −4

n43 = 2 + ε∗12 n87 = −∞
(17)

In Fig. 15 we represent the generic slice of the
parameter space when n = n0 = 10, showing only
the algebraic surfaces. We note that there are some
dashed branches of surface (S3) (in yellow) and (S4)
(in purple). This means the existence of a weak sad-
dle, in the case of surface (S3), and the existence of
an invariant straight line without connecting sep-
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aratrices, in the case of surface (S4); they do not
mean a topological change in the phase portraits
but a C∞ change. In the next figures we will use
the same representation for these characteristics of
these two surfaces.

With the purpose to explain all the changes in
the bifurcation diagram, we would have to present
two versions of the picture of each slice: one of them
without labels and the other with labels in each new
part (as we have done in [Artés et al., 2013b] and
[Artés et al., 2014]).

However, as the number of slices is considerably
large (see equation (17) – 88 slices to be more pre-
cise) we would have to present about 176 pictures,
which would occupy a large number of pages. Then,
we will present only the labeled drawings (just the
“important part” in each slice) containing the alge-
braic and nonalgebraic bifurcation surfaces. In the
next section, we prove the existence of such nonalge-
braic surfaces and their necessity for the coherence
of the bifurcation diagram.

Remark 6.31. Wherever two parts of equal dimen-
sion d are separated only by a part of dimension
d − 1 of the black bifurcation surface (S6), their
respective phase portraits are topologically equiva-
lent since the only difference between them is that
a finite antisaddle has turned into a focus without
change of stability and without appearance of limit
cycles. We denote such parts with different labels,
but we do not give specific phase portraits in pic-
tures attached to Theorem 1.1 for the parts with
the focus. We only give portraits for the parts with
nodes, except in the case of existence of a limit cycle
or a graphic where the singular point inside them is
portrayed as a focus. Neither do we give specific in-
variant description in Sec. 8 distinguishing between
these nodes and foci.

6.2. Bifurcation surfaces due to connec-
tions

We start this section explaining the generic slice
when n = 10. In this slice we will make a complete
study of all its parts, whereas in the next slices
we will only describe the changes. Some singular
slices will produce only few changes which are easy
to describe, but others can produce simultaneously
many changes, even a complete change of all parts
and these will need a more detailed description.

As said in last section, in Fig. 15 we present
the slice when n = 10 with only the algebraic
surfaces. We now place for each set of the par-
tition on this slice the local behavior of the flow
around all the singular points. For a specific value
of the parameters of each one of the sets in this
partition we compute the global phase portrait
with the numerical program P4 [Artés et al., 2005,
Dumortier et al., 2006]. In fact, all the phase por-
traits in this study can be obtained not only nu-
merically but also by means of perturbations of the
systems of codimension one.

In this slice we have a partition in
2−dimensional parts bordered by curved polygons,
some of them bounded, others bordered by infinity.
From now on, we use lower–case letters provision-
ally to describe the sets found algebraically so not
to interfere with the final partition described with
capital letters.

For each 2−dimensional part we obtain a phase
portrait which is coherent with those of all their
borders. Except eight parts, which are shown in
Fig. 15 and named as follows:

• v5: the curved triangle bordered by yellow
and blue curves and infinity;

• v8: the curved quadrilateral bordered by blue,
yellow and black curves and infinity;

• v10: the curved triangle bordered by purple
and yellow curves and infinity;

• v12: the pentagon bordered by yellow, purple,
green and purple curves and infinity;

• v22: the quadrilateral bordered by two paral-
lel purple and two parallel green curves;

• v27: the curved quadrilateral bordered by yel-
low, red and black curves and infinity;

• v33: the curved triangle bordered by yellow,
red and black curves;

• v54: the curved triangle bordered by purple
and yellow curves and infinity;
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h

ℓ

v4

v5

v8

v16 v21

3s1

3s2

2.3ℓ1

2.3ℓ2

v10
v12 v22

v26

v27

v32

v33

3s8

3s9

v52

v55

v54
3s16

4s13

4s3

2s13

2.4ℓ3

1.3ℓ2

1s5

6s4

3s3

6s11

5s5
3s10

6s7

2s10

4s1 4s2

4s4 4s5

v9

3s6

3s5
3.10ℓ1 2s5

2s14

2.4ℓ4

Fig. 15. Slice of parameter space when n = 10 (only algebraic surfaces)
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We consider the segment 3s1 in Fig. 15, which
is one of the borders of part v5. On this segment,
the corresponding phase portrait possesses a weak
focus (of order one) and, consequently, this branch
of surface (S3) corresponds to a Hopf bifurcation.
This means that either in v4 or in v5 we must have
a limit cycle; in fact it is in v5. The same happens
on 3s2, one of the borders of part v8, implying the
existence of a limit cycle either in v8 or in v16; and
in fact it is in v8.

However, in case of part v5, when approaching
1s5 and with the help of the program P4, the limit
cycle has already been lost; and in case of part v8,
when approaching 3s3 and/or 6s4, the limit cycle
has also disappeared. After these remarks, each
one of the parts v5 and v8 must be split into two
parts separated by a new surface (S7) having at
least two elements (curves 7S1 and 7S3 in Fig. 23)
such that one part has limit cycle and the other
does not, and the borders 7S1 and 7S3 correspond
to a connection between separatrices. In spite of the
necessity of these two branches of surface (S7), there
must exist at least one more element of this surface
to make this part of the diagram space coherent.
We talk about the element 7S2 (see Fig. 23) which
also corresponds to connection of separatrices but
different from that happening on 7S1 and 7S3.

Numerically, it can be checked that part v5
splits into V5 with one limit cycle and V6 without
limit cycles, and part v8 splits into V7 and V8 with-
out limit cycles and V17 with one limit cycle. Even
though parts V7 and V8 have no limit cycles, they
provide topologically distinct phase portraits since
the connection of separatrices on 7S3 (respectively,

on 7S1) is due to the saddle–node
(0
2

)
SN and the fi-

nite saddle (respectively, is due to the saddle–node(
0
2

)
SN and an infinite saddle), i.e. connection of

separatrices from different points, whereas the con-
nection on 7S2 is due to a saddle itself (i.e. a loop–
type connection). We plot the complete bifurcation
diagram for these two parts in Fig. 23. We also
show the sequence of phase portraits along these
subsets in Fig. 16.

Now, we carry out the analysis of parts v10,
v12 and v22. We consider part v9. The respec-
tive phase portrait is topologically equivalent to
the one in V8 with the focus turned into a node.
On 4s1, the separatrix of the infinite saddle–node
connects with a separatrix of the finite saddle pro-

ducing an invariant straight line linking the pair of
infinite saddle–nodes. When entering part v10, this
connection is broken and the position of the sep-
aratrices of the infinite saddle–node and the finite
saddle is changed in relation to the position repre-
sented in V9. However, when we approach 4s4, the
phase portrait in a neighborhood of this segment
is topologically different from the one we described
just after entering part v10. Indeed, the phase por-
trait in v10 near 4s1 possesses a “basin” passing
through the saddle–node, i.e. two separatrices of
the saddle–node end at the same infinite singular
point, whereas the phase portrait in v10 near 4s4
does not possess the “basin” and each one of the
same two separatrices of the saddle–node ends in
different infinite singular points.

As a result, there must exist at least one ele-
ment 7S4 of surface (S7) dividing part v10 in two
“new” parts, V10 and V11, which represents a bifur-
cation due to the connection between a separatrix of
a finite saddle–node with a separatrix of a finite sad-
dle. It is worth mentioning that the segments 3s5
and 3s6 and the point 3.10ℓ1 refer to the presence
of weak saddle (of order one and two, respectively)
which implies that part v12 is topologically equiv-
alent to v10. Then, part v12 must also be divided
in V12 and V13 by an element 7S5 of surface (S7)
with the same bifurcation as 7S4. Coupled with
this idea, we have parametrized the yellow surface,
“walked” on it and found that there exist a topo-
logical change in the phase portraits obtained.

In addition, we have done the same with the
green surface (i.e. we have parametrized it) and
found that segment 2s5 also presents two distinct
phase portraits and they are topologically equiv-
alent to the ones described above. This suggests
that an element 7S6 of surface (S7) divides part v22
in two “new” ones, V22 and V23, where 7S6 corre-
sponds to a bifurcation due to the connection be-
tween two separatrices from a finite and an infinite
saddle–nodes. Therefore, we know that 7S6 has one
of its endpoints on 2s5 (dividing it in 2S5 and 2S6)
and Lemma 6.32 assures that the other endpoint is
2.4ℓ3.
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V4V5

V8 V17

V6

V7

3S17S1

1.7L1

7S2

7S3

1S4 1S31.3L1

3S2 V16

1S5

Fig. 16. Sequence of phase portraits in parts v5 and v8 of slice n = 10. We start from v4. We recall that the phase
portrait 3S1 is equivalent to the phase portrait V4 up to a weak focus (represented by a little black square) instead
of the focus. When crossing 3s1, we shall obtain the phase portrait V5 in subset v5. From this point we may choose
three different ways to reach the subset v8 by crossing the blue curve: (1) from the phase portrait 1.3L1 to the V17;
(2) from the phase portrait 1S4 to the V17; and (3) from the phase portrait 1.7L1 to the V7, V8, V17, 1S4, 7S2 and
7S3
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Lemma 6.32. The endpoint of 7S6 (rather than
the one which is on 2s5) is 2.4ℓ3.

Proof. Numerical tools evidence that the endpoint
of 7S6, rather than the one which is on 2s5, is 2.4ℓ3.
In what follows, we prove that this endpoint cannot
be on segments 4s3 and 2s13.

If this endpoint were located on 4s3, there must
exist an invariant straight line linking the pair of
infinite saddle–nodes producing a connection be-
tween their separatrices. On the other hand, we
would have two options. The first one would be
that this endpoint of 7S6 should correspond to a
phase portrait in which the separatrices of the finite
saddle–node connects with the invariant straight
line, which is itself a connection of two separatrices
(see Fig. 17(a) to visualize the probable movement
of the separatrices in 4S3), producing a triple con-
nection of separatrices; in addition, the invariant
straight line should remain, what would be a con-
tradiction since we would have three non–collinear
infinite singular points involved in the “final” con-
nection. And the second option would be the birth
of another finite singular point on this straight line
which would make the “new” connection possible,
but in v22 there exists only one finite singular point.

4S3 2S13

(a) (b)

Fig. 17. (a) The probable movement of the separatrices
to form another connection in phase portrait 4S3. The
straight line in red is produced by the connection of the
separatrices of the infinite saddle–nodes (the character-
istic of 4S3) and the separatrices in blue of the finite
saddle–node would tend to the straight line and provoke
a triple connection of separatrices having the invariant
straight line remained; (b) The probable movement of
the separatrices to form a connection in phase portrait
2S13. In order to have a phase portrait with character-
istics of curve 7S6, it would be necessary that the sep-
aratrix in red of a finite saddle–node connects with the
separatrix of the infinite saddle–node in blue, but before
it is necessary that either the red or the blue separatrix
connects with the green one

Now, if the endpoint of 7S6 were located on
2s13, then another saddle–node should appear in
the finite part and it would send its separatrix as-
sociated to the null eigenvalue to an infinite node
and one of the other two separatrices would be re-
ceived by the nodal sector of the other finite saddle–
node and the other separatrix would be received by
the nodal part of an infinite saddle–node. If there
would exist an intersection between 7S6 and 2s13,
then a separatrix of a finite saddle–node would have
to connect with the separatrix of an infinite saddle–
node as sketched in Fig. 17(b). However, there ex-
ists a separatrix in the middle of these two that
prevents this connection before the connection be-
tween some of these two with the one from the mid-
dle. Then, it is impossible to have an intersection
between 7S6 and 2s13.

As shown above, the endpoint of 7S6 is not
on 4s3 nor in 2s13 and this confirms the evidence
pointed out by the numerical calculations that 7S6

ends at 2.4ℓ3.

We plot the complete bifurcation diagram for
these two parts in Fig. 23. We also show the se-
quence of phase portraits along these subsets in
Fig. 18.

We now perform the study of parts v27 and v33.
We consider the segment 3s8 in Fig. 15, which is one
of the borders of part v27. Analogously, on this seg-
ment, the corresponding phase portrait possesses a
weak focus (of order one) and, consequently, this
branch of surface (S3) corresponds to a Hopf bifur-
cation. This means that either in v26 or in v27 we
must have a limit cycle; in fact it is in v27. The
same happens on 3s9, one of the borders of part
v33, implying the existence of a limit cycle either in
v32 or in v33; and in fact it is in v33.
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V10 V12 V22

V11 V13 V23

3S6 2S5

4S3

7S4 7S5 7S6

3S7 2S6

2S13

3.7L1 2.7L1 2.4L3

Fig. 18. Sequence of phase portraits in parts v10, v12 and v22 of slice n = 10. We start from v10. We recall that
the phase portraits V10, 3S6 and V12 are topologically equivalent due to a weak saddle. The same happens to 7S4,
3.7L1 and 7S5, and to V11, 3S7 and V13. From V12, 7S5 and V13, we cross the segment 2s5, where the finite saddle
and finte node collide giving birth to a saddle–node, and we have three possibilites: 2S5, 2.7L1 and 2S16. Entering
part v22, this just–born saddle–node disappears; this part was divided in three and the respective phase portraits
V22, 7S6 and V23 are topologically distinct among them, and they tend to the phase portrait 2.4L3 either directly or
passing through 4S3 and 2S13
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However, approaching 6s11, the limit cycle has
been lost, which implies the existence of at least one
more element of surface (S7) (curve 7S7 in Fig. 24);
furthermore, the phase portrait in a small neigh-
borhood of 6s11 is not coherent to that obtained
just after making disappear the limit cycle. If we
fix a value of the parameter ℓ in order to be in this
part and we make the parameter h increase from
3s8 towards 6s11, then we obtain four topologically
distinct phase portraits with no separatrix connec-
tion inside part v27, which implies the existence of
not only one but at least three elements of surface
(S7), the curves 7S7, 7S8 and 7S9 in Fig. 24; such
new phase portraits are V27, with limit cycle, and
V28, V29 and V30, without limit cycles (see Fig. 19
for a sequence of phase portraits in these parts).
As the segment 5s5 corresponds to changes in the
infinite singular points, the finite part of the phase
portraits remain unchanged and these elements of
surface (S7) intersect 5s5. Consequently, v33 is also
split into four parts having the same behavior in
the finite part with relation to the corresponding
“new” parts in v27; such new phase portraits are
V33, with limit cycle, and V34, V35 and V36, without
limit cycles, and the branches of surface (S7) which
are the continuation of the segments 7S7, 7S8 and
7S9 are, respectively, 7S10, 7S11 and 7S12.

Remark 6.33. One of the separatrices in the con-
nection on the curves 7S7, 7S8, 7S9, 7S10, 7S11 and
7S12 is always from a finite saddle.

Lemma 6.34. The curve 7S7 has one of its ends
at the point 2.3ℓ2.

Proof. Numerical analysis suggests that the curve
7S7, which corresponds to a loop–type bifurcation,
has one of its ends at the point 2.3ℓ2. Indeed, if the
starting point of 7S7 were any point of segments 3s9
or 3s10, we would have the following incoherences.
Firstly, if this starting point were on 3s9, then a
portion of this subset must not refer to a Hopf bi-
furcation, which contradicts the fact that on 3s9
we have a weak focus of order one. Secondly, if the
starting point were on 3s10, then a portion of this
segment must also refer to a Hopf bifurcation since
we a limit cycle in V33, which is also a contradic-
tion.

V26 V27

V28

V29 V30

3S8

7S77S8

7S9

Fig. 19. Sequence of phase portraits in part v27 of slice
n = 10. We start from v26. We recall that the phase
portrait 3S8 is equivalent to the phase portrait V26 up
to a weak focus (represented by a little black square)
in place of the focus. When crossing 3s8, we shall ob-
tain the phase portrait V27 in subset v27 possessing a
limit cycle. Then, on 7S7 two separatrices of the finite
saddle connect themselves producing a loop; this loop is
broken and one of the separatrices of the saddle goes to-
wards the focus and the other comes from the nodal part
of the saddle–node in V28; thus, that separatrix of the
saddle coming from the nodal sector of the saddle–node
connects with one of the separatrices of the saddle–node
producing another separatrices connection on 7S8; after
this connection is broken, the separatrix of the saddle–
node goes towards the focus and the separatrix of the
saddle comes from the infinite saddle–node, characteriz-
ing part V29; then, on 7S9 one more connection of sepa-
ratrices is produced between the same separatrix of the
saddle and the separatrix of the infinite saddle–node;
and, finally, on V30 this separatrices connection is bro-
ken and the separatrix of the infinite saddle–node goes
towards the focus and the separatrix of the saddle comes
from the infinite node

Since the subsets 3s10 and 6s7 correspond re-
spectively to the presence of a weak saddle and the
node–focus bifurcation, they do not imply a topo-
logical change in the phase portrait. Under these
circumstances, the segments 7S11 and 7S12 intersect
both subsets 3s10 and 6s7 causing only C∞ changes
in the phase portraits and they will end on segment
2s10 dividing it in three new parts: 2S10, 2S11 and
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2S12. The reason why they do not cross 2s10 is
that, if they did so, the connection of the separa-
trices would have to remain. However, in part v21
there exists only one finite singular point (namely,
sn(2)), i.e. the finite saddle and node that existed
on the right side of 2s10 have collapsed on this seg-
ment and become a complex point after crossing it.
Following this idea, Remark 6.33 has no sense in
part v21. In Fig. 20 we show the sequence of phase
portraits from part 2.3L2 to 2S12.

2S10

2S112S12

2.3L2 2.7L2

2.7L3

Fig. 20. Sequence of phase portraits in part 2s10 of slice
n = 10. We start from 2.3ℓ2. This part produces only
one phase portrait 2.3L2 which possesses finite saddle–
node and a cusp (we remark that this point is the in-
tersection of many surfaces, inducing a degeneracy —
the cusp point). On 2S10 the cusp turns into a saddle–
node having two of its separatrices sent from the nodal
part of the remaining saddle–node. At 2.7L2, one sepa-
ratrix of one saddle–node connects with one separatrix
of the other saddle–node and, on 2S11, this connection is
broken and we have the creation of two “basins” which
intersect at the two saddle–nodes. Then, on 2.7L3 a
connection of separatrices is produced between the sep-
aratrix of the infinite saddle–node and one separatrix of
one of the finite saddle–nodes and, finally, on 2S12 this
connection is broken and we obtain the portrait above

Finally, we analyze part v54. We start in part
v52. In this portion of the parameter space, the
corresponding phase portrait possesses the saddle–
node and two foci in the finite part and saddle–
nodes and saddles at infinity. When we cross the
curve 4s13, its phase portrait possesses {(x, 0); x ∈
R} as an invariant straight line linking the infinite
saddles. The presence of this invariant straight line
produces a connection of separatrices between one
from a saddle and the other from the finite saddle–
node (the one associated to the null eigenvalue).

Entering part v54, this invariant line disappears and
the separatrices in question change position, which
forces the separatrix of the saddle–node start from
its own nodal sector, forming a graphic.

On the other hand, we start from part v55.
There, the corresponding phase portrait also pos-
sesses the saddle–node and two foci in the finite
part and saddle–nodes and saddles at infinity. On
3s16, which is a common border of parts v54 and v55,
the corresponding phase portrait possesses a weak
focus (of order one) and, consequently, this branch
of surface (S3) corresponds to a Hopf bifurcation.
This means that either in v54 or in v55 we must have
a limit cycle; in fact it is in v54.

After these remarks, we conclude that part v54
must be split into two parts separated by a new
surface (S7) having at least one element 7S17 (see
Fig. 24) such that one part has limit cycle and the
other does not, and the border 7S17 corresponds to
a connection of two separatrices of the same saddle–
node in a loop, because the limit cycle disappears
and one of the phase portraits in v54 possesses a
graphic attached to the saddle–node.

Lemma 6.35 assures that the segment 7S17

starts from (or ends at) 1.3ℓ2 and is not bounded.

Lemma 6.35. The segment 7S17 starts from (or
ends at) 1.3ℓ2 and is not bounded.

Proof. If 7S17 started on 3s16, there would exist a
portion of this segment without limit cycles, which
is a contradiction since it corresponds to a Hopf bi-
furcation. On the other hand, if 7S17 started on
4s13, two types of connection of separatrices should
happen: the connection between the separatrix of
the infinite saddle with the separatrix of the finite
saddle–node associated to the null eigenvalue (cre-
ating an invariant straight line) and the loop–type
connection in the finite saddle–node. If both con-
nections happen, there must exist a degenerate por-
tion of 4s13 in which this segment would start. Us-
ing numerical tools, we verify that 7S17 starts from
1.3ℓ2. Moreover, using the same arguments, the
segment 7S17 can end neither on 3s16 nor on 4s13,
implying that it is unbounded.

We can check numerically that part v54 splits
into V53, without limit cycles, and V54, with limit
cycle. We plot the complete bifurcation diagram
for these two parts in Fig. 24. We also show the
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sequence of phase portraits along these subsets in
Fig. 22.

Having analyzed all the parts pointed out on
page 29 and explained the existence of all possible
nonalgebraic surfaces in there (modulo islands), we
have finished the study of the generic slice n = 10
for the family QsnSN(C). However, we cannot
be sure that these are all the additional bifurca-
tion curves in this slice. There could exist others
which are closed curves small enough to escape our
numerical research. For all other two–dimensional
parts of the partition of this slice, whenever we join
two points which are close to different borders of
the part, the two phase portraits are topologically
equivalent. So, we do not encounter more situa-
tions than the ones mentioned above. In short, it
is expected that the complete bifurcation diagram
for n = 10 is the one shown in Figs. 23 and 24. In
these and the next figures, we have colored in light
yellow the parts with one limit cycle, in light green
the parts with two limit cycles, in black the labels
referring to new parts which are created in a slice
and in red the labels corresponding to parts which
has already appeared in previous slices.

The next step is to decrease the values of n,
according to equation (17), and make an analogous
study for each one of the slices that we need to
consider and also look for changes when going from
one slice to the next one.

For all values of n greater than zero, the sec-
ond and third quadrants of the bifurcation diagram
remain unchanged (i.e., for all n > 0, there exist
no topological bifurcations in the second and third
quadrants in the parameter space). So, as we move
from n > 9 towards infinity, all the slices are topo-
logically equivalent to slice n = 10 and, at the limit
to infinity, the bifurcation diagram tends to be the
one shown in Fig. 25.

We now start decreasing the values of n in order
to explain as much as we can the bifurcations in the
parameter space.

We consider the curved triangles in the first
quadrant of slice n = 10: V31, V32 and V33, all hav-
ing 2.3ℓ2 as a common vertex. As we move down
from n = 10 to n = 9 (a singular slice), these three
triangles collapse in a single point (2.5L2) and, for
values of n < 9, but very close to it, two triangles
V68 and V69 appear in the upper part limited by the
red curve. In addition, as we have already proved,

P1

V34

V38

V25

V26 V27

V28

V29

Fig. 21. Slice of parameter space when n = 9 (see
Fig. 24)

there exist some elements of surface (S7) near these
triangles and we either have the purple bifurcations
persisting next to the triangles, or not. The first
possibility is true, because after numerical analysis
for values of n less than 9, but very close to it, we
still verify the same changes in the phase portraits
as shown in the sequence in Fig. 19. As the end-
point of the curve 7S7 is 2.3ℓ2 (see Lemma 6.34)
and this point collapses and reappears in the part
over the red curve, it is natural that 7S7 follows
the same movement. However, the other elements
of surface (S7) in this part remain starting from the
segment 2s10. These facts are illustrated in Figs. 21
to 38. For the transition of the slices drawn in these
figures, it is clear that we need at least 13 values
of n (apart from n = 9) to have coherence in the
bifurcation diagram. Those values of n cannot be
concretely determined, but we know they lie on the
open interval between n = 6 and n = 9.



38 J.C. Artés, A.C. Rezende and R.D.S. Oliveira

V55 3S16 V54 7S17

V534S13V52

Fig. 22. Sequence of phase portraits in part v54 of slice n = 10. We start in v55, whose corresponding phase portrait
is V55. On 3s16, one of the foci becomes weak (represented as a small square in 3S16) and it gives birth to a limit cycle
when we enter part v54; see phase portrait V54. Then, on 7S17, two separatrices of the saddle–node connect forming
a loop, which “kills” the limit cycle. After that, we obtain the portrait V53 in which there exists no connection of
separatrices but only a graphic. A graphic remains when we lie on 4s13, but the corresponding phase portrait 4S13

possesses an invariant straight line and connection of separatrices. Finally, in v52 the graphic disappears and we
obtain the phase portrait V52
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V1
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V3

V4

V5

V6
V15

V16

V17
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V10

V11
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6S1

3S1
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3S7

7S4

3S5

3S4

4S2

3S3
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7S31S4
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1S3
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6S2
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5S2

2S5

2S6

2S7

4S5

3S20

7S6

4S3

2.5L1

1.2L1

1.6L1

1.3L1

1.7L1

2.3L1

3.6L1

3.4L1

3.10L1

3.7L1

2.4L2

2.7L1

2.4L1

2.4L3

h

ℓ

Fig. 23. Complete bifurcation diagram for slice n = 10 (second and third quadrants)
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Fig. 24. Complete bifurcation diagram for slice n = 10 (first and fourth quadrants)
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n → ∞
h

ℓ

Fig. 25. The transition from n > 9 to infinity. The orange arrows show the movement the curves must do as n → ∞
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3.5L2

3S21
6S20

2S16

5S13

5S14

5.6L4
2.5L3

2.3L3

V27

V28

V29
V34

V38V41

Fig. 26. Slice of parameter space when n = 9− ε1 (see
Fig. 21)

Figs. 29 to 38 illustrate needed slices for the
coherence of the bifurcation diagram. The inter-
section points between the purple curves with the
green curve will “go up” in the sense of increasing
ℓ and cross the intersection point between the red
and green curves (this intersection is renamed as
different slices succeed). Consequently, the same
will happen to the entire purple segments. How-
ever, there exist other bifurcation curves intersect-
ing these purple curves. Then, the slices within
these figures show step by step the movement of
these purple curves until they are all in the upper
part limited by the red curve. Each one of Ta-
bles 3 to 9 presents the “dead” and the “born” parts
(of higher dimension in that slice) in the transition
from one generic slice to another passing through a
singular slice in the middle of them from n = 10 to
n = 9− ε7.

Table 3. Transition from slice n = 10 to n = 9− ε1

Dead parts Parts in sing. slice Born parts

V31, V32, V33 P1 V68, V69

In Figs. 39 to 42 we still remain in the first

P2

V35

V29

V28

V68

V38

V39

Fig. 27. Slice of parameter space when n = 9 − ε∗1 (see
Fig. 26)

3S22

3.5L3

V70

5S15

7S18

5.7L4

3.7L4

V35

V29

V28

V68

V38

V39

Fig. 28. Slice of parameter space when n = 9− ε2 (see
Fig. 27)
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P3

V35

V29

V28

V68

V41

V39V42

V69

V70

Fig. 29. Slice of parameter space when n = 9− ε∗2 (see
Fig. 28)
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V35
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V68

V41

V39
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V69

V70

Fig. 30. Slice of parameter space when n = 9− ε3 (see
Fig. 29)

P4

V42

V69

V71

Fig. 31. Slice of parameter space when n = 9 − ε∗3 (see
Fig. 30)

2S17

2.7L4

2.5L4

V42

V69

V71

Fig. 32. Slice of parameter space when n = 9− ε4 (see
Fig. 31)
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V36V40
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Fig. 33. Slice of parameter space when n = 9− ε∗4 (see
Fig. 32)
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Fig. 34. Slice of parameter space when n = 9− ε5 (see
Fig. 33)
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V40

V42
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V72

V71

Fig. 35. Slice of parameter space when n = 9 − ε∗5 (see
Fig. 34)
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Fig. 36. Slice of parameter space when n = 9− ε6 (see
Fig. 35)
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P7

V70 V30

V43

V72

V71

V73

Fig. 37. Slice of parameter space when n = 9− ε∗6 (see
Fig. 36)
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V30

V73
V72

V71

V43

V40

Fig. 38. Slice of parameter space when n = 9− ε7 (see
Fig. 37)
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V37
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V30V72
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5.6L2

6S11

5S9

Fig. 39. Slice of parameter space when n = 6 (see
Fig. 38)

6S11

5.6L2

3S24

5S9
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3.5L5

V43

V37

V36

V30
V72

V73

V44

5.6L2

6S11

V44

5S9

Fig. 40. Slice of parameter space when n = 119/20 (see
Fig. 39)
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5.6L2

V30

V44
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V37

6S11

3S24

5S9

3.6L3

3.5L5

V43

V72

V73

6S11

5S9

Fig. 41. Slice of parameter space when n = n17 ≈
5.8908 . . . (see Fig. 40)

V30

V44

V37

6S113S24

5S9

3.6L3

3.5L5

V43

V72

V73

V46 V47
3.10L2

3.4L2

3S14

3S15

Fig. 42. Slice of parameter space when n = 21/4 (see
Fig. 41)

Table 4. Transition from slice n = 9− ε1 to n = 9− ε2

Dead parts Parts in sing. slice Born parts

V34 P2 V70

Table 5. Transition from slice n = 9− ε2 to n = 9− ε3

Dead parts Parts in sing. slice Born parts

V38 P3 V71

Table 6. Transition from slice n = 9− ε3 to n = 9− ε4

Dead parts Parts in sing. slice Born parts

V41 P4 2S17

Table 7. Transition from slice n = 9− ε4 to n = 9− ε5

Dead parts Parts in sing. slice Born parts

V35 P5 V72

Table 8. Transition from slice n = 9− ε5 to n = 9− ε6

Dead parts Parts in sing. slice Born parts

V39 P6 V73

Table 9. Transition from slice n = 9− ε6 to n = 9− ε7

Dead parts Parts in sing. slice Born parts

V42 P7 2S18

quadrant and they show the interaction among the
algebraic surfaces (S3), (S5) and (S6), and it is not
necessary to consider nonalgebraic bifurcation sur-
faces to keep the coherence. Neither their existence
is needed in the fourth quadrant shown in Figs. 43
and 44. We observe that, even if n = 125/27 is a
critical value corresponding to a singular slice, the
intersection produced here is not labeled as a point
but a line due to the fact that it is a contact point
and, when we pass to the next (generic) slice, this
contact point becomes two transversal ones but its
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characteristic remains; so, there exists no sense in
changing its label. There will exist more situations
like this in what follows. Tables 10 to 12 show the
death and birth of parts from slice n = 9 − ε7 to
n = 114/25.

Table 10. Transition from slice n = 9 − ε7 to n =
119/20. The “born” part V ∗

44 is not new since it will join
later with V44 (see Fig. 42)

Dead parts Parts in sing. slice Born parts

V40 P8 V ∗
44

Table 11. Transition from slice n = 119/20 to n = 21/4.
The symbol ‘∅’ means that no new part was “born”

Dead parts Parts in sing. slice Born parts

V36 5.6L2 ∅

Table 12. Transition from slice n = 21/4 to n = 114/25.
The symbol ‘∅’ means that no part was “dead”

Dead parts Parts in sing. slice Born parts

∅ 1.6L2 V36

Returning back to the first quadrant, the point
in gray corresponds to a weak saddle of second order
(see the point 3.10L2 in Fig. 24). When n = 9/2,
the curved triangle bordered by yellow (plus the
gray point), purple and red curves bordering V37

(3S13, 4S7, 5S9 and 3.10L2) collapses and reappears
creating new parts, as seen in Figs. 45 and 46. Ta-
ble 13 shows the “dead” and “born” parts after this
bifurcation.

Moving back to the forth quadrant to the con-
tinuation of the movement shown in Figs. 43 and
44, the black curve produces the same movement
as before but now contacting the yellow curve, ac-
cording to Figs. 47 and 48, and Table 14 presents
the new parts.

In Fig. 49 we represent fourth quadrant of the
slice of the parameter space when n = 4. When
n > 4, there exists a point of intersection among
surfaces (S2), (S3) and (S6); more precisely, the
point 2.3L3 in Fig. 26. According to Lemmas 6.14,

V62
V60

V62

1.6L2

V64

Fig. 43. Slice of parameter space when n = 125/27 (see
Fig. 24)

V74

6S23

1S10

1.6L2

V62
V60

V62

V64

1.6L2

1S8

1S8

Fig. 44. Slice of parameter space when n = 114/25 (see
Fig. 43)
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P9

V73

3S24

V44

V48

V47

V46

V43

3S15

Fig. 45. Slice of parameter space when n = 9/2 (see
Fig. 42)
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4.5L2

4S18

V75

3S24

V44

V73

V43

V48

V47
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3S25

Fig. 46. Slice of parameter space when n = 108/25 (see
Fig. 45)

3.6L4

V62

V60 V62

V64

V74

V64

V65

Fig. 47. Slice of parameter space when n = 3(102 +
7
√
21)/100 (see Fig. 44)

3S27

V76

6S24

V62

V60
V62

V64

V74
V64

3.6L4

3.6L4

Fig. 48. Slice of parameter space when n = 401/100
(see Fig. 47)
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Table 13. Transition from slice n = 21/4 to n = 108/25

Dead parts Parts in sing. slice Born parts

V37 P9 V75

Table 14. Transition from slice n = 114/25 to n =
401/100. The symbol ‘∅’ means that no part was “dead”

Dead parts Parts in sing. slice Born parts

∅ 3.6L4 V76

6.17 and 6.20, the expression of this point (or,
seen in the projective space, this curve) is [1 :
h : 2h/(h − 1) : (1 + h)2]. As h → 1+, we have
n → 4+ and 2.3L3 goes to +∞ (since the coor-
dinate ℓ goes to +∞). An analogous argument is
applied to the point 3.6L4 in Fig. 48 (the one in
the left side) and we conclude it also goes to −∞.
Thus, we conclude that the segment 6S24 in Fig. 48
breaks apart, obtaining the configuration shown in
Fig. 49. Moreover, there exist two portions of col-
lapsing of curves, forming the points P10 and P11.
Considering the next slice when n = 2304/625, the
collapsed curves separate and form three curved tri-
angles: V77, V84 and V85. Furthermore, the expres-
sions for the points 2.3L3 and 3.6L4 now make sense
and the points coincide at infinity and appear as
2.3L4 in the lower part of the slice. Together with
them, four more elements of surface (S7) must ex-
ist in order to keep the coherence of the bifurca-
tion diagram. We plot a portion of the slice when
n = 2304/625 in Fig. 50. See in Table 15 the parts
which disappeared and were created when we pass
through slice n = 4.

P11
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3S20

V73
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V21

V22

V23

V24

V44 V45

V48

V49

V50
V75
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V63
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V74
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V76
V64

V65
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V66

V61

V59

V58

V57

V55

V54

V53

V52

V51

h

Fig. 49. Slice of parameter space when n = 4 (see
Figs. 24, 45 and 48)

Table 15. Transition from slice n > 4 to n = 2304/645.
The notation V ∗

62 means that only one of the two ap-
parently disconnected parts of V62 in Fig. 48 has died.
Moreover, the point 2.7L5 in Fig. 38 tends to P64 as
n → ∞ “killing” all the above volumes (and respective
borders) and 2.7L6 comes from P64 (when n = −∞)
“bringing” a new set of volumes and borders

Dead parts Parts in sing. slice Born parts

V ∗
62 P10 V77

V26, V27, V28,

P64
V29, V30, V68, V78, V79, V80,
V69, V70, V71, V81, V82, V83

V72

2.7L5 P64 2.7L6

V43 P11 V84, V85
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Fig. 50. Slice of parameter space when n = 2304/625 (see Fig. 49)
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V65

V74

V76

3S27

4.6L2

4S16

6S23

3S18

V64

V77

V67

3.4L3

Fig. 51. Slice of parameter space when n = n27 ≈
3.6349 . . . (see Fig. 50)

In Figs. 51 to 54 we show the movement of the
gray point 3.10L3 and the purple straight line con-
taining segment 4S16, when n moves down from
n = n27 ≈ 3.6349 . . . to n = n31 = 3. Tables 16
and 17 presents the death and birth of parts in this
transition.

Table 16. Transition from slice n = 2304/625 to n =
7/2

Dead parts Parts in sing. slice Born parts

3S12 P12 3S30

Table 17. Transition from slice n = 7/2 to n = 16/5.
The notation V ∗

64 means that only one of the two appar-
ently disconnected parts of V64 in Fig. 52 has died

Dead parts Parts in sing. slice Born parts

V ∗
64 P13 V86

When n = 3, surfaces (S3) and (S5) do not in-
tersect transversally, possessing a point of contact,
as we can see in Fig. 55 and in Table 18. We note
that in the next slice when n = 14/5 there exists an-

3S30

3.6L5

3.10L5

V64

V74

V66

4.6L2

4S16

V65

3S18

V76

3S27

6S23

V67
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Fig. 52. Slice of parameter space when n = 7/2 (see
Fig. 51)
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V74 V77

V66

V67
V65

V76

3.10L5

3S27

3S30

Fig. 53. Slice of parameter space when n = 2+
√
2 (see

Fig. 52)
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4.6L3
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4S21
3.6L6

3.4L5

V74

V77

V66

V67

V65

V76

3S27

3S30

3.10L5

Fig. 54. Slice of parameter space when n = 16/5 (see
Fig. 53)

other part with limit cycles (V87) as represented in
Fig. 56. In the sequence, we claim that at n = 8/3
the point 3.10L4 goes to infinity (more precisely, to
the point P64). Indeed, according to Lemma 6.21,
the last coordinate of the expression of this point is

n =
12− 24ℓ+ 3ℓ2 −

√
3(2 + ℓ)3(3ℓ− 2)

8− 12ℓ
,

and solving it with respect to n, we obtain three
solutions. Now, if we substitute the value n = 8/3
in these solutions, they are not defined, since 3n−8
is a factor in the three denominators, proving our
claim. The parameter space at this level is shown
in Fig. 57.

Table 18. Transition from slice n > 3 to n = 14/5

Dead parts Parts in sing. slice Born parts

V47 1.3L2 V87

However, when we move down the value of n,
the expression above makes sense again and the
point reappears as 3.6L6 in the parameter space,
but in the lower part (in the fourth quadrant), ac-
cording to Fig. 58 (this figure is an ampliation of
a portion of Fig. 50). When this point reappears,
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V46

V63

V62

V60

V59

V58

V50

V51

V53
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1.3L2

V52 h

Fig. 55. Slice of parameter space when n = 3 (see
Fig. 50)
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Fig. 56. Slice of parameter space when n = 14/5 (see
Fig. 55)
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Fig. 57. Slice of parameter space when n = 8/3 (see
Fig. 56)
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Fig. 58. Slice of parameter space when n = 8/3 − ε8
(see Fig. 50)

it “brings” the curves 7S22 (loop–type connection)
and 7S25 (heteroclinic connection between the finite
saddle–node and the finite saddle), making them
intersect 3S28. This phenomenon can be verified
by fixing n < 8/3, but sufficiently close to this
value, and parameterizing the segment 3S28 in the
coordinate ℓ, for example, and for each value of h,
we construct the phase portrait with the program
P4 and verify that the connections of separatrices
which correspond to the curves 7S22 and 7S25 oc-
cur on this segment. In addition, we must have an
element of surface (S10) which corresponds to a bi-
furcation of double limit cycle in order to keep the
coherence in the bifurcation diagram. Lemma 6.36
assures the existence of such surface.

Lemma 6.36. Segment 10S1 corresponds to a bi-
furcation of double limit cycle and its borders are
3.10L6 and P64 (this last one from slice n = −∞).

Proof. We consider Fig. 58. Part V80 first appeared
in slice when n = 2304/625 and its corresponding
phase portrait possesses a limit cycle. We note that
on the segments 3S28, 3S33, 3S34, 3S35 and on their
linking points the phase portraits possess a weak
focus of order at least one and, consequently, they
refer to a Hopf bifurcation. If we are in part V80

and cross the segment 3S28, we enter part V79 and
the limit cycle is lost. Following this idea, the same
should happen if we cross the segment 3S33, but
that is not what happens. After crossing this seg-
ment, the limit cycle persisted when entering part
V88. In fact the Hopf bifurcation creates a second
limit cycle.

We can confirm this by moving along a different
path. There exist no limit cycles in the phase por-
traits of parts V81 and V76 and, after crossing the
segments 3S34 and 3S35, respectively, we enter in
parts V89 and V90, whose corresponding phase por-
traits have a limit cycle. As the segment 7S28 is the
continuation of 7S25, it refers to a heteroclinic con-
nection of separatrices between the finite saddle–
node and the finite saddle, and it also possesses a
limit cycle, since the separatrix which enrolls in the
limit cycle is not involved in the connection. Now,
considering the segment 7S27, we know it is the
continuation of 7S22 and, hence, a loop–type bifur-
cation happens on it. So, we have two possibilities
after crossing it and entering in part V88: either
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the limit cycle dies, or another one is created. In
fact the second possibility is which happens, since
there already exist at least one limit cycle in V88,
confirming that there exist two limit cycles in the
representatives of part V88.

We note that these two limit cycles are around
the same focus, because there exists only one focus
in this portion of the parameter space. Then, as
in part V79 we do not have limit cycles and in V88

we have two of them (around the same focus), there
must exist at least one element 10S1 of surface (S10)
dividing these two parts and corresponding to the
presence of a double limit cycle.

Now, it remains to prove where 10S1 starts
from. As we have already discussed, the point
3.10L4 (corresponding to the presence of a weak
saddle of order two) went to infinity and returned
back in the lower part of the forth quadrant, being
labeled as 3.10L6 and corresponding to the presence
of a weak focus of order two. With this in mind, it
is more comprehensible that leaving part V80 and
crossing the yellow curves, we enter in two topolog-
ically distinct parts, one with limit cycles and the
other without them. The linking point 3.10L6 of
the segments 3S28 and 3S33 is responsible for this,
i.e. if we “walk” along the segment 3S28, which does
not possess limit cycle, and cross 3.10L6, the focus
becomes weaker and a Hopf bifurcation happens,
implying the birth of a limit cycle in the represen-
tatives of 3S33. Then, by this argument and by
numerical evidences, the segment 10S1 starts from
3.10L6. Since surface (S10) has been born at P64 in
slice n = 8/3, this point is still a border of 10S1.

We show in Fig. 59 an ampliation of the neigh-
borhood in the parameter space of the point 3.10L6

with the corresponding phase portraits. Table 19
presents the “dead” and “born” parts when we go
from slice n = 14/5 to n = 8/3 − ε8.

Table 19. Transition from slice n = 14/5 to n = 8/3−ε8

Dead parts Parts in sing. slice Born parts

3.10L4 P64 V88, V89, V90

We now continue moving down the values of
n and the next important value to be considered
is n = n35 = 8/3 − ε∗8. At this level, the point
3.10L5 (see Fig. 58) moves towards the intersection

10S1

3S34

3.7L7

3.10L6

3S33

3S28

V81

V89

V80

V88

V79

f (1)

f (2)

loop

7S22

7S27

Fig. 59. Neighborhood in the parameter space of the
point 3.10L6 with the corresponding phase portraits: the
existence of double limit cycle through a f (2)

between yellow and purple curves (3.7L6), which
cannot be precisely determined, and crosses it. This
movement does not imply topological changes in the
phase portraits since 3.10L5 corresponds to a weak
saddle of order two. We show the movement just
described in Figs. 60 and 61, and in Table 20.

Table 20. Transition from slice n = 8/3 − ε8 to n =
8/3− ε9

Dead parts Parts in sing. slice Born parts

3S27 P14 3S36

Considering the next singular slice, we analyze
the case when n = 9/4. According to Lemma 6.4,
in this value of n, surface (S3) has a line of singular-
ities of degree of degeneration at least three; in fact,
when n = 9/4, a branch of this surface becomes a
cusp after the collision of the point 2.3L4 (which
is also a common point of surfaces (S2), (S6) and
(S7); see Fig. 61) with 3S20 (a projective line or a
single point in each slice) which corresponds to two
complex singular points with null trace. In addition
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Fig. 60. Slice of parameter space when n = 8/3 − ε∗8
(see Fig. 58)
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Fig. 61. Slice of parameter space when n = 8/3 − ε9
(see Fig. 60)
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Fig. 62. Slice of parameter space when n = 9/4 (see
Fig. 61)

to this collision, the points 3.10L6 and 3.10L7 also
collapse and make part of this cusp point of surface
(S3), as we can see in Fig. 62. It is worth mention-
ing that the corresponding phase portrait of this
cusp point, P15, possesses a singularity (a nilpotent
cusp) that grasps simultaneously the properties of
a weak saddle of order two and a weak focus of or-
der two; besides, this focus is in the edge of turning
into a node. We also note that the part with two
limit cycles has remained at this level and it will
“survive a bit longer”.

The next phenomenon is that the same branch
of yellow curve produces itself a loop for values of
n < 9/4, but close to it, and we arrive at the Fig. 63.
We have verified that the purple curves behaves as
represented in Fig. 63 and that the part of two limit
cycles still persists. However, the elements charac-
terized by possessing a weak point of order two do
not persist, since their expression has no image for
values of n ∈ (−2, 9/4).

So, there may arise a question. If there exists
no element implying the presence of a weak focus
of order two, where does the bifurcation surface of
double limit cycle start from? This starts from a
weak saddle of order one which produces a loop it-
self (as suggested in the description of surface (S3)
on page 22). In the case of planar differential sys-
tems, we know that the stability of a homoclinic
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Fig. 63. Slice of parameter space when n = 11/5 (see
Fig. 62)

loop through a saddle is determined in first approx-
imation by the trace of the saddle. If the trace is
nonzero, a loop bifurcation leads to the birth (or
death) of a unique limit cycle when the two separa-
trices of the saddle cross each other, and we strongly
use this fact in the results of this thesis. How-
ever, according to Joyal and Rousseau [?], when
the trace of the saddle point vanishes, we can have
several limit cycles rising in a loop bifurcation (the
authors prove this phenomenon using the Poincar
return map in the neighborhood of the loop).

In simple words, when an elementary saddle
forms a loop, the interior stability of the loop is
ruled by the trace of the saddle. It is unstable, if
the trace is positive, and it is stable, if the trace is
negative. Thus, if along a set of parameters while
the loop persists the trace changes its sign, a limit
cycle must bifurcate.

The most interesting phenomenon that hap-
pens in the family QsnSN(C) is the fact that we
can pass from a (generalized) Hopf bifurcation to
a (generalized) loop bifurcation continuously as we
can see in Figs. 61 to 63.

Remark 6.37. The terms “generalized” used twice
above refer respectively to a Hopf bifurcation asso-
ciated with a weak focus of order two and a loop
bifurcation associated with a weak saddle of order

3S37

3S38

3.7L10

10S1

V91
V89

V92

V88

V79

s(1)

loop

7S29

7S27

Fig. 64. Neighborhood in the parameter space of the
point 3.10L6 with the corresponding phase portraits: the
existence of double limit cycle through a s(1)

one.

We show in Fig. 64 an ampliation of the neigh-
borhood in the parameter space of the point 3.7L10

with the corresponding phase portraits. Table 21
shows the “dead” and “born” parts when we go
from slice n = 8/3 − ε9 to n = 11/5.

Table 21. Transition from slice n = 8/3−ε9 to n = 11/5

Dead parts Parts in sing. slice Born parts

V80 P15 V91, V92

In what follows, the point 3.7L9 moves towards
the point 3.3L1, they intersect and new parts are
created as can be visualized in Figs. 65 and 66. Ta-
ble 22 shows the “dead” and “born” parts when we
go from slice n = 11/5 to n = 11/5 − ε10.

In Figs. 67 to 70, we show the movement of
the curves in yellow and purple when we decrease
n from n41 = 3(102 − 7

√
21)/100 (including this

value) to n45 = 2, creating contact points with
other curves and after intersecting them transver-
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Fig. 65. Slice of parameter space when n = 11/5− ε∗9
(see Fig. 63)
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Fig. 66. Slice of parameter space when n = 11/5− ε10
(see Fig. 65)

Table 22. Transition from slice n = 11/5 to n = 11/5−
ε10

Dead parts Parts in sing. slice Born parts

V81 P16 V93

sally in two points. Tables 23 and 24 indicate the
“dead” and “born” parts during this transition.

Table 23. Transition from slice n = 11/5− ε10 to n =
3(102− 7

√
21)/100− ε11. The symbol ‘∅’ means that no

part was “dead”

Dead parts Parts in sing. slice Born parts

∅ 3.6L8 V94

Table 24. Transition from slice n = 3(102 −
7
√
21)/100− ε11 to n = 2 + ε12. The symbol ‘∅’ means

that no part was “dead”

Dead parts Parts in sing. slice Born parts

∅ 5.7L5 V95

We recall that surface (S3) is the union of a
plane and a cubic, and the proof of Lemma 6.4 as-
sures that, if n = 2, this cubic can be factorized in
a line plus a conic: −4(2h − 1)(2 + 2ℓ + 2hℓ + ℓ2).
It is to say that this surface changes its behavior
when we move to n = 2 and some parts in the bi-
furcation diagram die and others are created. See
Fig. 71 which illustrates the slice when n = 2 (we
only show the first and fourth quadrants) and Ta-
ble 25 which indicates the “dead” and “born” parts
when we cross slice n = 2.

If we consider the next slice when n = 19/10,
the factorization is not possible and we obtain the
slice shown in Fig. 72. We note that in the lower
part of this slice the elements of surfaces (S7) and
(S10) intersect with an element of surface (S4). This
fact was verified by “walking” along two segments
parallel to an element of surface (S4) containing
4S27 in this slice both left and right sides. On the
right side (upper part), starting from part V101, the
phase portrait possesses a limit cycle and the sep-
aratrix which enrolls around it comes from the fi-
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Fig. 67. Slice of parameter space when n = 3(102 −
7
√
21)/100 (see Fig. 57)
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Fig. 68. Slice of parameter space when n = 3(102 −
7
√
21)/100− ε11 (see Fig. 67)
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Fig. 69. Slice of parameter space when n = 2+ ε∗12 (see
Fig. 68)
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Fig. 70. Slice of parameter space when n = 2+ ε12 (see
Fig. 69)
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Table 25. Transition from slice n = 2 + ε12 to n =
19/10. The notation V ∗

56 means that only one of the two
apparently disconnected parts of V56 in Fig. 70 has died

Dead parts Parts in sing. slice Born parts

V44 3.4L6 V96

V48 3.4L7 V97, V98

V ∗
56 3.4L8 V99

V65 P64
V101, V102,
V103, V104

V76 3.4L9 V100

nite saddle–node. However, after “walking down”
a little more, we observed that the limit cycle died
and the separatrix which goes towards the focus
comes from the finite saddle, implying that we have
crossed a loop bifurcation. A little below, a hete-
roclinic bifurcation between finite singularities also
happens.

On the other hand, on the left side, starting
from part V90 and going down, we first cross the
heteroclinic connection and, after, the loop connec-
tion, but in this case, instead of meaning the death
of the limit cycle, it means the birth of a second
one. A little below, these two limit cycles die in a
double–limit–cycle bifurcation. A bit further down,
we cross surface (S6), so the focus becomes a node
and no limit cycles are possible anymore. Also,
surface (S4) crosses surface (S6) forcing part V88

to be bounded now. Then, the only point where
surface (S10) may end is 4.7L1, in which we have
two heteroclinic connections between the finite sad-
dle and the finite saddle–node. As it is shown in
the paper of Dumortier, Roussarie and Rousseau
[Dumortier et al., 1994], the graphic in 4.7L1 has
cyclicity two which is compatible with the fact that
this part borders a part with two limit cycles around
the same focus and a part with double limit cycle.
Fig. 73 shows an ampliation of the neighborhood
in the parameter space of the point 4.7L1 with the
corresponding phase portraits.

In what follows, this point 4.7L1 “goes up” in
the sense of increasing ℓ along the segment of sur-
face (S4). The next singular slice to be considered
is when it crosses the intersection 3.4L12 between
yellow and purple curves (see Fig. 74). In addition,
the point 3.7L10 tends towards 4.7L1 and, after the
bifurcation, all the parts of surface (S3) close to

the new part 4.7L2 will be below it. So, there is
no more intersection between the weak–saddle phe-
nomenon and the loop phenomenon on the left side
of vertical purple. This avoids the existence of part
V88. Then, part V88 must have shrunk as n tends to
19/10 − ε∗13 and disappeared in P21. On the right
side of the vertical purple it still exists an inter-
section between weak–saddle and loop bifurcations
(3.7L13), but the loop takes place with the separa-
trices of the finite saddle–node and, thus, the weak
saddle is not related to any limit cycle (see Fig. 75).
Table 26 indicates the “dead” and “born” parts in
this transition.

Table 26. Transition from slice n = 19/10 to n = 17/10

Dead parts Parts in sing. slice Born parts

V88, V89, V90 P21 V105, V106

Now, it is the turn of the purple curve 7S31

(see Fig. 72) to “go down” in the parameter space,
as shown in Figs. 76 to 81. Firstly, part of it be-
comes tangent to the red curve 5S22 at the point
1.3L5 making disappear a portion of part V54; then,
the tangency is lost and it continues to move down
contacting and intersecting the black and the blue
curves yielding the curves 6.7L6 and 1.7L2, respec-
tively. The first crossing produces new part V107,
but the second crossing (see Fig. 81) does no pro-
duce a new part as we will see in the next step. Ta-
bles 27, 28 and 29 indicate the “dead” and “born”
parts in the transition from slice n = 17/10 to
n = 8/5.

Table 27. Transition from slice n = 17/10 to n =
17/10 − ε14. The notation V ∗

54 means that only one of
the two apparently disconnected parts of V54 in Fig. 70
has died. The symbol ‘∅’ means that no part was created

Dead parts Parts in sing. slice Born parts

V ∗
54 1.3L5 ∅
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Fig. 71. Slice of parameter space when n = 2 (see Figs. 50, 66 and 70)

V964S22

V97

V98

3S43

4S23

4S24

3S44

6S30

3S45

3.4L114.4L2

V99

V100

V101

V102

V103

V104

1.3L5

3S46

1S12

4S25

1.4L3

1.3L3

4S26

1S13

3S48

3S47

1.3L4

3.4L12

3.3L34S27

7S32

3S49

4.7L1

7S33
4S28

4.6L4

6S31

4S29

V20

V22

V85

V84

V24

V23

V21
V73

V75

V46

V63

V62

V60

V64

V74

V93

V92

V82V83

V91

V90V89

V79

V88

V78

V66

V61

V57

V58

V53

V54

V55

V56

V52

V51

V50

V49

V45

V67
V86

V77

V59

V87

V94

V95

V54

3S37

7S29

7S30

10S1

7S28

3S40
3S38

7S29

3.7L10

3.7L12

5S23

4S31

5S22

5S22

3.6L8

h

Fig. 72. Slice of parameter space when n = 19/10 (see Fig. 71)
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Fig. 73. Neighborhood in the parameter space of the
point 4.7L1 with the corresponding phase portraits: the
existence of double limit cycle through a finite–to–finite
heteroclinic and a loop bifurcations

Table 28. Transition from slice n = 17/10 − ε14 to
n = 41/25. The symbol ‘∅’ means that no part was
“dead”

Dead parts Parts in sing. slice Born parts

∅ 6.7L6 V107

Table 29. Transition from slice n = 41/25 to n = 8/5.
The symbol ‘∅’ means that no part was “dead”. The
“born” part V ∗

105 is not new since it will join later with
V105 (see Fig. 83)

Dead parts Parts in sing. slice Born parts

∅ 1.7L2 V ∗
105

When we reach the value n = 1, some consider-
able changes happen to the behavior of the curves.
The purple vertical line and one component of the
green lines collide (since their expressions have the
common factor h) and all the elements which were
in between of them have collapsed in some parts
of this vertical line. See Fig. 82. However, they
separate again for n < 1 and many new parts ap-

P21

V91

V92
V93

V100

V79 V101

V102
V103

3S37

7S29

7S30

4S26

3S47
7S32

7S33

4S28

Fig. 74. Slice of parameter space when n = 19/10− ε∗13
(see Fig. 72)
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Fig. 75. Slice of parameter space when n = 17/10 (see
Fig. 74)
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Fig. 76. Slice of parameter space when n = 17/10− ε∗14
(see Fig. 72)
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Fig. 77. Slice of parameter space when n = 17/10− ε14
(see Fig. 76)
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Fig. 78. Slice of parameter space when n = 41/25+ ε∗15
(see Fig. 77)
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Fig. 79. Slice of parameter space when n = 41/25 (see
Fig. 78)
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Fig. 80. Slice of parameter space when n = 8/5 + ε∗16
(see Fig. 79)
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Fig. 81. Slice of parameter space when n = 8/5 (see
Fig. 80)

pear between them, as shown in Fig. 83. All these
“dead” and “born” parts are indicated in Table 30.

Table 30. Transition from slice n = 8/5 to n = 81/100.
Compare Figs. 72 and 83: all parts between the two ver-
tical lines collapse. The lines split again and generate
new parts. Parts V88, V89 and V90 had already disap-
peared some slices above

Dead parts Parts in sing. slice Born parts

V46, V60, V62,
V63, V64, V73, 2.4L6, 2.4L7, from V108

V74, V75, V78, 2.4L8 to V125

V82, V83, V91,
V92, V93, V99

We note that most of the new parts in slice n =
81/100 are concentred in the rectangle bounded by
green, vertical purple and two horizontal purple
curves (we call it Region 1 ), including elements of
nonalgebraic surfaces whose existence are necessary
for the coherence of that part of the bifurcation di-
agram. Moreover, we remark that the rest of the
changes will occur in the portion of the parameter
space in the right side of the vertical purple line (we
call it Region 2 ).

In Region 1, the three intersection points
among green, black and yellow curves (2.3L6), green
and blue curves (1.2L3), and green and red curves
(2.5L7) are the continuation of the intersections
2.3L5, 1.2L2 and 2.5L6, respectively, but with a
different ordering they were before. Moreover, the
purple segment 7S26 which separated parts V84 and
V85 (see Fig. 82) and which started from an inter-
section of green and horizontal purple curves (P22),
now it is called 7S38 and starts from an intersec-
tion of horizontal purple and vertical purple curves
(4.4L3, in the right top of Region 1 ), splitting parts
V109 and V110. In addition, more elements of surface
(S7) were necessary for the coherence and their ex-
istence and shape was verified numerically; four of
them refer to heteroclinic bifurcations (7S39, 7S40,
7S41 and 7S43) and one of them corresponds to loop
bifurcation (7S42).
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Fig. 82. Slice of parameter space when n = 1 (see Figs. 72, 75 and 81)
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Fig. 83. Slice of parameter space when n = 81/100 (see Fig. 82)
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Fig. 84. Slice of parameter space when n = 2−
√
2 (see

Fig. 83)

In Region 2, at the level n = 81/100 all the al-
gebraic curves remain and intersect at a single point
1.3L7 together with an element of a heteroclinic bi-
furcation. But the two disjoint elements of loop
bifurcation 7S34 in Figs. 75 and 81 which border
two temporary disjoint parts of part V105 will have
a common point at P23 in Fig. 82 and will remain
joined and unlinked from any other bifurcation sur-
face. Segment 7S34 was purposely drawn in Fig. 83
with a beak to show its movement of separation
from 1.3L7.

In Figs. 84 to 87 we sketch the movement of
the intersection between yellow and purple 3.4L14

along the vertical purple curve (S4) as it crosses sur-
face (S6) and another component of (S4). We note
that the intersection shown in Fig. 86 shows it hav-
ing a tangency between 3S56 and 7S38. However,
this could not be the case and we could have this
transition needing some more steps as a different
crossing between 3S56 and 7S38 can happen. This
intersection cannot be detected algebraically. Any-
way, since surface (S3) in this surroundings only
means the presence of a weak saddle and there is
no possible loop, this has no effects in the number
of topologically different phase portraits. Tables 31
and 32 indicate the “dead” and “born” parts in the
transition from slice n = 81/100 to n = 9/25.

For the next slices, the intersection between
purple and green 2.7L7, which is located in the left
top of Region 1, will “sweep” the segments from
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Fig. 85. Slice of parameter space when n = 9/16 (see
Fig. 84)
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Fig. 86. Slice of parameter space when n = 1/2 (see
Fig. 85)
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Fig. 87. Slice of parameter space when n = 9/25 (see
Fig. 86)

Table 31. Transition from slice n = 81/100 to n = 9/16

Dead parts Parts in sing. slice Born parts

V98 P24 V126

Table 32. Transition from slice n = 9/16 to n = 9/25

Dead parts Parts in sing. slice Born parts

V97 P25 V127, V128

2S24 up to 2S28. Consequently, surface 7S38 will
also “sweep” most of the parts in Region 1, pro-
ducing new phase portraits. Due to its nature
of being nonalgebraic, we cannot precise the or-
der of the intersection and contact points with the
other curves, but any other order different from the
one we present in Figs. 88 to 109 will not bring
about new phase portraits rather than the ones
which have been created. Moreover, Tables 33 to
43 present the “dead” and “born” parts in the tran-
sition from slice n = 9/25 to n = 1/25.

We now consider the slice when n = 0. At
this level almost all the invariant polynomials we
use to describe the bifurcation diagram vanish and,
hence, we need to consider other ones which will
play a similar role. For this value of n, systems (5)
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V1107S38

7S39

h

Fig. 88. Slice of parameter space when n = 9/25− ε∗17
(see Fig. 87)
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Fig. 89. Slice of parameter space when n = 81/40 (see
Fig. 88)
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Fig. 90. Slice of parameter space when n = 81/40− ε∗18
(see Fig. 89)
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Fig. 91. Slice of parameter space when n = 81/40− ε18
(see Fig. 90)
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Fig. 92. Slice of parameter space when n = 81/40− ε∗19
(see Fig. 91)
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Fig. 93. Slice of parameter space when n = 81/40− ε19
(see Fig. 92)
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Fig. 94. Slice of parameter space when n = 81/40− ε∗20
(see Fig. 93)
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Fig. 95. Slice of parameter space when n = 81/40− ε20
(see Fig. 94)
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Fig. 96. Slice of parameter space when n = 81/40− ε∗21
(see Fig. 95)
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Fig. 97. Slice of parameter space when n = 4/25 (see
Fig. 96)
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Fig. 98. Slice of parameter space when n = 4/25− ε∗22
(see Fig. 97)
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Fig. 99. Slice of parameter space when n = 4/25− ε22
(see Fig. 98)
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Fig. 100. Slice of parameter space when n = 4/25− ε∗23
(see Fig. 99)
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Fig. 101. Slice of parameter space when n = 4/25− ε23
(see Fig. 100)
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Fig. 102. Slice of parameter space when n = 4/25− ε∗24
(see Fig. 101)
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Fig. 103. Slice of parameter space when n = 4/25− ε24
(see Fig. 102)
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Fig. 104. Slice of parameter space when n = 4/25− ε∗25
(see Fig. 103)
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Fig. 105. Slice of parameter space when n = 9/100 (see
Fig. 104)
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Fig. 106. Slice of parameter space when n = 9/100−ε∗26
(see Fig. 105)
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Fig. 107. Slice of parameter space when n = 9/100−ε26
(see Fig. 106)
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Fig. 108. Slice of parameter space when n = 9/100−ε∗27
(see Fig. 107)
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Fig. 109. Slice of parameter space when n = 1/25 (see
Fig. 108)
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Table 33. Transition from slice n = 9/25 to n = 81/40

Dead parts Parts in sing. slice Born parts

2S24 P26 V129

Table 34. Transition from slice n = 81/40 to n =
81/40− ε18

Dead parts Parts in sing. slice Born parts

7S39 P27 V130, V131

Table 35. Transition from slice n = 81/40 − ε18 to
n = 81/40− ε19

Dead parts Parts in sing. slice Born parts

V110 P28 V132

Table 36. Transition from slice n = 81/40 − ε19 to
n = 81/40− ε20

Dead parts Parts in sing. slice Born parts

V111 P29 V133

Table 37. Transition from slice n = 81/40 − ε20 to
n = 4/25

Dead parts Parts in sing. slice Born parts

V114, V115 P30 V134, V135, V136

Table 38. Transition from slice n = 4/25 to n = 4/25−
ε22

Dead parts Parts in sing. slice Born parts

V116 P31 V137, V138

get the form:

ẋ = gx2 + 2hxy − (g + 2h)y2,

ẏ = y + ℓx2 + (2g + 2h− 2ℓ)xy

+ (2h+ ℓ− 2(g + 2h))y2,

(18)

Table 39. Transition from slice n = 4/25− ε22 to n =
4/25− ε23

Dead parts Parts in sing. slice Born parts

V117 P32 V139

Table 40. Transition from slice n = 4/25− ε23 to n =
4/25− ε24

Dead parts Parts in sing. slice Born parts

V119 P33 V140

Table 41. Transition from slice n = 4/25− ε24 to n =
9/100

Dead parts Parts in sing. slice Born parts

V121 P34 V141, V142

Table 42. Transition from slice n = 9/100 to n =
9/100− ε26

Dead parts Parts in sing. slice Born parts

2S27 P35 V143

Table 43. Transition from slice n = 9/100 − ε26 to
n = 1/25

Dead parts Parts in sing. slice Born parts

2S33 P36 V144

and for systems (18), we calculate

µ = T4 = W4 ≡ 0, T = −48(h+ 1)4(ℓ− 1)2,

Inv = ℓ(1 + 2h)(1 − ℓ), M̃ = (1 + 2h+ ℓ)2.
(19)

Then, we need new comitants which indicate:
(i) when a second finite singular point collides with
an infinite singular point, (ii) when a second finite
singular point becomes weak and (iii) when a sec-
ond node turns into a focus. The next invariant
polynomials we need are, respectively:

(i) µ1 = −4(g + h)2(g − ℓ) (drawn in blue);

(ii) B1 = 2g2 + 2hℓ (drawn in yellow);
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(iii) W7 = −12(g+h)4(g4 +2g3h− 2g3ℓ− 4g2hℓ−
h2ℓ2) (drawn in black).

Moreover, by the time we were analyzing this
slice, we verified that there exist some parts in the
bifurcation diagram corresponding to the presence
of invariant parabolas passing through the origin in
the phase portraits. Lemma 6.38 assures the ex-
istence of two straight lines in the bifurcation dia-
gram with such a characteristic.

Lemma 6.38. For g 6= 0 and n = 0, phase por-
traits possess invariant parabolas passing through
the origin if either h = 0 or ℓ = 1/2.

Proof. We fix g = 1 and n = 0. First, we suppose
h = 0. Then, systems (18) become

ẋ = x2 − y2,

ẏ = y + ℓx2 + (2− 2ℓ)xy + (ℓ− 2)y2.
(20)

We look for invariant parabolas of the form

P = Ax2 +By2 + Cxy +Dx+ Ey + F = 0,

but as it passes through the origin we set F = 0.
If C = Ux+ V y +W is a cofactor of P, then

∂P
∂x

ẋ+
∂P
∂y

ẏ = C P,

which is equivalent to a system of nine equations in
the variables A, B, C, D, E, U , V and W , whose
solution is

A =− C/2, B = −C/2, D = 0, E = −C/(2ℓ),

U = 2(ℓ− 1), V = 2(ℓ− 1), W = 1,

and, hence,

P = −C(ℓ(x− y)2 + y)

2ℓ
= 0,

C = 1− 2(ℓ− 1)x+ 2(ℓ− 1)y.

Applying the change of coordinates x = X +
Y, y = Y , renamingX,Y by x, y and setting C = 2,
we see that P can be brought to the parabola

P = −ℓx2 + y

ℓ
= 0.

An analogous construction can be applied for
the case ℓ = 1/2 and we obtain the invariant
parabola

P = −2x+ (1 + 2h)x2 + 2y

1 + 2h
= 0.

Remark 6.39. By Lemma 6.38, the straight lines
{h = 0} ∪ {ℓ = 1/2} in the bifurcation diagram
correspond to the presence of invariant parabolas
passing through the origin in the phase portraits,
and they will be part of surface (S7) and colored in
purple. Sometimes this invariant parabola will not
coincide with connection of separatrices, so these re-
spective parts are drawn in dashed lines in Fig. 110,
otherwise they are drawn in a continuous line.

Remark 6.40. For g 6= 0 and n = 0, the correspond-
ing phase portraits on the line {h+ℓ = 0} in the bi-
furcation diagram possess an infinite singular point

of type
(̂
1
2

)
E−H, which is a bifurcation between the

types
(̂1
2

)
PEP−H and

(̂1
2

)
E−PHP . Such a straight

line is needed for the coherence of the bifurcation
diagram.

We observe that, since µ ≡ 0 for g 6= 0 and
n = 0 (i.e. this slice is entirely contained in surface
(S1)), all the “generic” parts on this slice are labeled
as 1Sj, the lines are labeled as 1.iLj and the points
as points. We could have also used surfaces (S3) or
(S6) for the same reason, but we have used (S1) for
its higher relevance on singularities. In Fig. 110,
we present the slice when n = 0 with each part
properly labeled.

In Table 44 we indicate the death of all volu-
metric parts from slice n = 1/25 to n = 0 and in
Table 45, the birth of new parts at n = −1 from
slice n = 0.

Since there exists no symmetry in the parame-
ter n of foliation of the parameter space as this hap-
pened to systems in QTN [Artés et al., 2013b], in
QsnSN(A) and in QsnSN(B) [Artés et al., 2014],
for systems (5) we need to consider negative val-
ues for the parameter n according to (17). So, we
consider the next generic slice when n = −1. In
Fig. 111 we present this slice, but we note that
the portion bordered by 4S51 and 4S52 (the fourth
quadrant) is presented only with the volume parts
labeled. We show a zoom of this part in Fig. 112.
In addition, the dashed vertical line in black repre-
sents the ℓ−axis and we draw it only for reference.
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Fig. 110. Slice of parameter space when n = 0 (see Figs. 83 and 109)
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Table 44. Transition from slice n = 1/25 to n = 0

Dead parts Parts in slice n = 0 Dead parts Parts in slice n = 0 Dead parts Parts in slice n = 0

V1 1S27 V52 1S47, 1S48, 1S49 V109 1.1L3

V2 1.5L1 V53 1S53, 1S56, 1S57 V112 P43

V3 1S26 V54 1S59, 1S60 V113 1.4L7

V4 1.7L10 V55 1S62, 1S63 V118 1S43

V5 1.7L10 V56 1S65, 1S66 V120 1.5L3

V6 1S25 V57 1.5L8 V122 1.5L3

V7 P38 V58 1.5L7 V123 1.5L3

V8 1.1L2 V59 1.5L7 V124 1S42

V9 1.1L2 V61 1.5L8 V125 1S51

V10 1S33 V66 1.5L8 V126 P43

V11 1S40 V67 1S64 V127 1S29

V12 1S34 V77 1.5L7 V128 1.1L3

V13 1S41 V84 P38 V129 P38

V14 1S50 V85 P38 V130 P38

V15 P38 V86 1S61 V131 1.1L3

V16 P38 V87 1.5L6 V132 1.1L3

V17 P38 V94 1.5L6 V133 P38

V18 P38 V95 1.5L5 V134 P38

V19 P38 V96 1S30 V135 P38

V20 1.1L1 V100 1.5L6 V136 P38

V21 P38 V101 1S58 V137 1S36

V22 1.1L6 V102 1S55 V138 1S37

V23 1.1L7 V103 1S54 V139 1.5L2

V24 1.1L8 V104 1S52 V140 1.5L2

V45 1S31, 1S32 V105 1.5L5 V141 1.5L2

V49 1.1L4, 1.1L5 V106 1.5L4 V142 1.5L2

V50 1.1L4, 1.1L5 V107 1.5L5 V143 1.7L20

V51 1S38, 1S39, 1S44, 1S45, 1S46 V108 1S28 V144 1S35
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Table 45. Transition from slice n = −1 to n = 0

Dead parts Parts in slice n = 0 Dead parts Parts in slice n = 0

V145 1S30 V172 1S55

V146 1S29, 1S31, 1S32 V173 1.5L5

V147 1S27, 1S28 V174 1.5L5

V148 1.5L1 V175 1.5L5

V149 1.5L1 V176 1S56

V150 1.1L3, 1.1L4, 1.1L5 V177 1S57

V151 1.5L1 V178 1S58

V152 1S25, 1S26 V179 1.5L6

V153 1.1L2 V180 1.5L6

V154 1S33 V181 1.5L6

V155 1S40 V182 1S59

V156 1S41, 1S42 V183 1S60

V157 1S34, 1S35 V184 1S61

V158 1.5L2 V185 1.5L7

V159 1S36, 1S37, 1S43 V186 1.5L7

V160 1S38, 1S39, 1S44, 1S45, 1S46 V187 1.5L7

V161 1S47, 1S48, 1S49 V188 1S62

V162 1S50, 1S51 V189 1S63

V163 1S52 V190 1S64

V164 1S54 V191 1.5L8

V165 P50 V192 1.5L8

V166 1.5L4 V193 1.5L8

V167 1.5L4 V194 1S65

V168 1S53 V195 1S66

V169 1.4L13 V196 1.1L2

V170 1.7L28 V197 1.1L3

V171 1.7L27 V198 1.1L4, 1.1L5
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Fig. 111. Slice of parameter space when n = −1 (see Fig. 110)
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Fig. 112. Slice of parameter space when n = −1 (zoom) (see Fig. 111)
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V182

V183

V181

V188

V176

7.7L7

Fig. 113. Phase portraits in a neighborhood of V182

We highlight that in part V182 there exist two
limit cycles in the phase portrait, but each one
around different foci. Each one of the limit cycles
can be created (or lost) either by Hopf bifurcation
on 3S70 or 3S75, or by loop bifurcation on 7S81 or
7S83. There also exists the possibility of both limit
cycles being created (or lost) at the same time ei-
ther by Hopf bifurcation on 3.3L4, or by loop bifur-
cation on 7.7L7. We present in Fig. 113 the phase
portraits in a neighborhood of V182.

In Figs. 114 and 115 we present the movement
of a branch of surface (S6) which contacts another
branch of the same surface and, then, they intersect
transversally in two points. Table 46 indicates the
“dead” and “born” parts in this transition.

Table 46. Transition from slice n = −1 to n = −4.
The symbol ‘∅’ means that no part was “dead”

Dead parts Parts in sing. slice Born parts

∅ 6.6L2 V199

Following the values of n in (17), the last slice
we need to described is when n = −∞. However,
on page 41 we have already discussed about the
behavior of the surfaces as n → ∞. Due to the

6.6L2

V161

V160 V160

V198

ℓ

h

Fig. 114. Slice of parameter space when n ≈ −3′4013 . . .
(see Fig. 111)

6.6L2

V199

6S62

6S61

V160

V161

V198

V160

6.6L2

ℓ

h

Fig. 115. Slice of parameter space when n = −4 (see
Fig. 114)
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symmetry in g (see page 18), the slices n = −∞ and
n = ∞ are symmetrical. These slices correspond to
g = 0 and n 6= 0. Setting g = 0 and n = −1,
systems (5) become

ẋ = 2hxy − (1 + 2h)y2,

ẏ = y + ℓx2 + (1 + 2h− 2ℓ)xy

+ (2h+ ℓ− 2(1 + 2h))y2,

(21)

for which we calculate

µ = ℓ(2h + ℓ), T ≡ 0, T4 = ℓ(8h2 + ℓ+ 4hℓ),

Inv =− ℓ2(1 + 2h), M̃ = (2h + ℓ+ 1)2,

W4 = ℓ3(16h2 + 32h3 + ℓ+ 8hℓ+ 16h2ℓ).
(22)

As T vanishes as n → −∞, we need to consider
the next comitant which is responsible for the mul-
tiplicity of finite singular points. This next comi-
tant is R = h2ℓ2, whose set of zeroes will be called
surface (S11) and colored in green. In Fig. 116 we
present the slice when n = −∞ properly labeled.

In Table 47 we indicate the death of all volu-
metric parts from slice n = −4 to n = −∞ and in
Table 48, the birth of new parts at n = 10 from slice
n = ∞ (see Fig. 25 where nonalgebraic bifurcations
and labels must be considered from Fig. 116 with
proper symmetry).

Since there is coherence between the generic
slices bordering the most singular slices n = 1,
n = 0 and n = −∞ with their respective generic
side slices, no more slices are needed for the com-
plete coherence of the bifurcation diagram. So, all
the values of n in (17) are sufficient for the coher-
ence of the bifurcation diagram. Thus, we can af-
firm that we have described a complete bifurcation
diagram for family QsnSN(C) modulo islands, as
discussed in Sec. 7.

7. Other relevant facts about the bifurca-
tion diagrams

The bifurcation diagram we have obtained for the
family QsnSN(C) is completely coherent, i.e. in
each family, by taking any two points in the param-
eter space and joining them by a continuous curve,
along this curve the changes in phase portraits that
occur when crossing the different bifurcation sur-
faces we mention can be completely explained.

Nevertheless, we cannot be sure that these bi-
furcation diagrams are the complete bifurcation di-
agrams for QsnSN(C) due to the possibility of “is-
lands” inside the parts bordered by unmentioned
bifurcation surfaces. In case they exist, these “is-
lands” would not mean any modification of the na-
ture of the singular points. So, on the border of
these “islands” we could only have bifurcations due
to saddle connections or multiple limit cycles.

In case there were more bifurcation surfaces, we
should still be able to join two representatives of any
two parts of the 1034 parts of QsnSN(C) found
until now with a continuous curve either without
crossing such bifurcation surface or, in case the
curve crosses it, it must do it an even number of
times without tangencies, otherwise one must take
into account the multiplicity of the tangency, so the
total number must be even. This is why we call
these potential bifurcation surfaces “islands”.

However, we have not found a different phase
portrait which could fit in such an island. A po-
tential “island” would be the set of parameters for
which the phase portraits possesses a double limit
cycle and this “island” would be inside the parts
where W4 < 0 since we have the presence of a focus
(recall the item (iii) of Sec. 4).

8. Completion of the proof of the main the-
orem

In the bifurcation diagram we may have topolog-
ically equivalent phase portraits belonging to dis-
tinct parts of the parameter space. As here we
have 1034 distinct parts of the parameter space, to
help us identify or to distinguish phase portraits,
we need to introduce some invariants and we ac-
tually choose integer–valued, character and sym-
bol invariants. Some of them were already used
in [Artés et al., 2013b] and [Artés et al., 2014], but
we recall them and introduce some needed ones.
These invariants yield a classification which is eas-
ier to grasp.

Definition 8.1. We denote by I1(S) the number
of the real finite singular points. We note that this
number can also be infinity, which is represented by
∞.
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Fig. 116. Slice of parameter space when n = −∞
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Table 47. Transition from slice n = −4 to n = −∞

Dead parts Parts in slice n = −∞ Dead parts Parts in slice n = −∞
V145 2S38 V173 2S53

V146 2S36, 2S37 V174 P58

V147 2S39 V175 P58

V148 2S40 V176 P58

V149 2S42 V177 1.2L10

V150 2S41, 1.2L10 V178 2S49

V151 2S43 V179 2S54

V152 2S44 V180 P58

V153 1.2L8 V181 P58

V154 1.2L8 V182 P58

V155 1.2L8 V183 1.2L10

V156 1.2L8 V184 2S50

V157 1.2L8 V185 2S55

V158 P57 V186 P58

V159 P57 V187 P58

V160 1.2L9, 1.2L10 V188 P58

V161 1.2L9, 1.2L10 V189 1.2L10

V162 2S45 V190 2S51, 2S58

V163 2S46 V191 2S56, 2S57

V164 2S47 V192 2S59

V165 2S52 V193 2S60

V166 P58 V194 2S61

V167 P58 V195 2S62

V168 P58 V196 1.2L8

V169 1.2L10 V197 P57

V170 2.7L16 V198 1.2L9, 1.2L10

V171 2.7L17 V199 1.2L9

V172 2S48
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Table 48. Transition from slice n = 10 to n = ∞

Dead parts Parts in slice n = −∞ Dead parts Parts in slice n = −∞
V1 2S58 V35 2S53

V2 2S57 V36 2S52

V3 2S59 V37 P57

V4 2S60 V38 P58

V5 2S61 V39 P58

V6 2S62 V40 1.2L9

V7 P58 V41 P58

V8 1.2L10 V42 P58

V9 1.2L10 V43 1.2L9

V10 1.2L10 V44 2S46

V11 1.2L10 V45 2S45

V12 1.2L10 V46 1.2L9

V13 1.2L10 V47 1.2L9

V14 2S36 V48 P57

V15 P58 V49 1.2L8

V16 P58 V50 1.2L8

V17 P58 V51 1.2L8

V18 P58 V52 1.2L8

V19 P58 V53 1.2L8

V20 2.11L3 V54 1.2L8

V21 2.11L2 V55 1.2L8

V22 P58 V56 2S44

V23 P58 V57 2S43

V24 2.11L1 V58 P57

V25 2S51 V59 P57

V26 2S50 V60 P57

V27 2S49 V61 2S42,

V28 2.7L18 V62 2S41

V29 2S48 V63 1.2L9

V30 2S47 V64 2S37

V31 2S56 V65 2S38

V32 2S55 V66 2S40

V33 2S54 V67 2S39

V34 2.7L19
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Definition 8.2. We denote by I2(S) the sum of
the indices of the isolated real finite singular points.

Definition 8.3. We denote by I3(S) the number
of the real infinite singular points.

Definition 8.4. For a given infinite singularity s of
a system S, let ℓs be the number of global or local
separatrices beginning or ending at s and which do
not lie on the line at infinity. We have 0 ≤ ℓs ≤ 4.
We denote by I4(S) the sequence of all such ℓs when
s moves in the set of infinite singular points of the
system S. We start the sequence at the infinite
singular point which receives (or sends) the greatest
number of separatrices and take the direction which
yields the greatest absolute value, e.g. the values
2110 and 2011 for this invariant are symmetrical
(and, therefore, they are the same), so we consider
2110.

Definition 8.5. We denote by I5(S) the sequence
of digits between parenthesis and separated by com-
mas, if there is more than one digit, denoting the
number of limit cycles around foci.

Definition 8.6. We denote by I6(S) the sequence
of digits (ranging from 0 to 5) between parenthesis
and separated by commas, if there is more than one
digit, meaning the existence or the nonexistence of
separatrices connection, where “0” means no sepa-
ratrices connection, “1” means a loop–type connec-
tion, “2” means a connection of separatrices from
two finite singular points, “3” means a connection
of separatrices from one finite singular point to an
infinite one, “4” means a connection of separatrices
from nonadjacent infinite singular points, and “5”
means a connection of separatrices from adjacent
infinite singular points.

Definition 8.7. We denote by I7(S) the sequence
of digits (ranging from 0 to 4) between parenthesis
and separated by commas which describes the num-
ber of local or global separatrices starting or ending
at the nodal sector of the finite saddle–node and at
each finite antisaddle or each limit cycle.

Definition 8.8. We denote by I8(S) the sequence
of two digits (each one ranging from 0 to 2) be-
tween parenthesis and separated by commas which
describes the total number of local or global sep-

aratrices linking the finite multiple singular points
to the infinite multiple singular points in each local
chart. For example, “(1, 0)” means that there exist
only one separatrix linking the finite multiple sin-
gular point to the infinite multiple singular point in
the local chart U1 whereas there exists no linking
separatrix going to the local chart U2.

Definition 8.9. We denote by I9(S) a character
from the set {f,∞} describing the origin of the or-
bits that arrive to a finite antisaddle, where “f”
means that all the separatrices arrive from finite
singular points and “∞” means that at least one
separatrix arrives from an infinite singular point.
We observe that this invariant makes sense only in
the case of the existence of only one antisaddle.

Definition 8.10. We denote by I10(S) a digit
(ranging from 0 to 2) describing the connection
of separatrices involving the separatrices of finite
saddle–nodes, where “0” means that the connection
is produced by separatrices associated with nonzero
eigenvalues, “1” means that one of the separatrices
in the connection is associated with a zero eigen-
value and “2” means that both of the separatrices
are associated with zero eigenvalues.

Definition 8.11. We denote by I11(S) an element
from the set {a,N, SN} which describes the sin-
gular point which would receive one or two sepa-
ratrices of the finite elemental saddle, if the finite
saddle–node disappears. Here, “a” means an an-
tisaddle, “N” means an infinite node and “SN”

means
(0
2

)
SN .

Definition 8.12. We denote by I12(S) an element
from the set {s, d} describing if the stability of the
focus inside a graphic is the same as or different
from the nodal part of the finite saddle–node.

Definition 8.13. We denote by I13(S) an element
from the set {S, SN} describing the origin of the
middle separatrix (of three) received by the nodal
sector of the finite saddle–node. Here, “S” means

an infinite saddle and “SN” means
(0
2

)
SN .

Definition 8.14. We denote by I14(S) a character
from the set {f,∞} describing the nature of the
singular point which sends or receives a separatrix
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to or from a limit cycle.

Definition 8.15. We denote by I15(S) the sum of
the indices of the isolated infinite multiple singular
points (considered in only one local chart).

Definition 8.16. We denote by I16(S) a character
from the set {H,P}, where H determines that a fi-
nite antisaddle sends (or receives) orbits to (from) a
parabolic sector of a multiple infinite singular point
situated in the local chart where the parabolic sec-
tor is accompanied by other hyperbolic sectors, and
P denotes that the parabolic sector is the only sec-
tor of the infinite singular point in that local chart.
This invariant is needed to distinguish 1.5L3 from
1.5L4.

Definition 8.17. We denote by I17(S) a symbol
to represent the configuration of the curves of sin-
gularities. The symbols are: “−” to represent a
straight line and “∪” to represent a parabola.

Definition 8.18. We denote by I18(S) a charac-
ter from the set {n, y} describing the nonexistence
(“n”) or the existence (“y”) of graphics.

Definition 8.19. We denote by I19(S) a character
from the set {c, s} describing the position of the
separatrix of the finite saddle–node associated with
the eigenvector with zero eigenvalue which arrives

to (or leaves from)
(
0
2

)
SN when this point receives

3 separatrices. We use “c” for the central position
and “s” for the lateral (side) position.

Definition 8.20. We denote by I20(S) a charac-
ter from the set {s, d} describing if each point of
the pair of infinite saddle–nodes sends (or receives)
two separatrices to/from the same or different fi-
nite saddle–nodes. This invariant only makes sense
in case of existence of two finite saddle–nodes.

As we have noted previously in Remark 6.31,
we do not distinguish between phase portraits
whose only difference is that in one we have a fi-
nite node and in the other a focus. Both phase
portraits are topologically equivalent and they can
only be distinguished within the C1 class. In case
we may want to distinguish between them, a new
invariant may easily be introduced.

Theorem 8.21. Consider the family QsnSN(C)
and all the phase portraits that we have obtained
for this family. The values of the affine in-
variant I = (I1, I2, I3, I4, I5, I6, I7, I8, I9, I10, I11,
I12, I13, I14, I15, I16, I17, I18, I19, I20) given in the fol-
lowing diagram yield a partition of these phase por-
traits of the family QsnSN(C).

Furthermore, for each value of I in this dia-
gram there corresponds a single phase portrait; i.e.
S and S′ are such that I(S) = I(S′), if and only if
S and S′ are topologically equivalent.

The bifurcation diagram for QsnSN(C) has
1034 parts which produce 371 topologically differ-
ent phase portraits as described in Tables 50 to 59.
The remaining 663 parts do not produce any new
phase portrait which was not included in the 371
previous ones. The difference is basically the pres-
ence of a strong focus instead of a node and vice
versa and weak points.

The phase portraits having neither limit cy-
cle nor graphic have been denoted surrounded by
parenthesis, for example (5S2); the phase portraits
having one or two limit cycles have been denoted
surrounded by brackets, for example [V80], pos-
sessing one limit cycle, and [[V88]], possessing two
limit cycles; the phase portraits having one or two
graphics have been denoted surrounded by {∗} or
{{∗}}, for example {1S28} and {{1S57}}; the phase
portraits having one limit cycle and one graphic
have been denoted surrounded by [{∗}], for exam-
ple [{1S60}].

Proof of Theorem 8.21. The above result follows
from the results in the previous sections and a care-
ful analysis of the bifurcation diagrams given in
Sec. 6, in Figs. 23 to 116, the definition of the in-
variants Ij and their explicit values for the corre-
sponding phase portraits.

We recall some observations regarding the
equivalence relations used in this study: the affine
and time rescaling, C1 and topological equivalences.

The coarsest one among these three is the topo-
logical equivalence and the finest is the affine equiv-
alence. We can have two systems which are topo-
logically equivalent but not C1−equivalent. For ex-
ample, we could have a system with a finite anti-
saddle which is a structurally stable node and in
another system with a focus, the two systems being
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topologically equivalent but belonging to distinct
C1−equivalence classes, separated by the surface
(S6) on which the node turns into a focus.

In Tables 60 to 73 we listed in the first column
371 parts with all the distinct phase portraits of
Figs. 1 to 11. Corresponding to each part listed in
column 1 we have in its horizontal block, all parts
whose phase portraits are topologically equivalent
to the phase portrait appearing in column 1 of the
same horizontal block.

In the second column we have put all the parts
whose systems yield topologically equivalent phase
portraits to those in the first column, but which
may have some algebro–geometric features related
to the position of the orbits. In the third column we
have presented all the parts which are topologically
equivalent to the ones from the first column having
a focus instead of a node.

In the fourth (respectively, fifth; sixth; seventh;
and eightieth) column we have listed all parts whose
phase portraits have a node which is at a bifurcation
point producing foci close to the node in perturba-
tions, a node–focus to shorten (respectively, a finite
weak singular point; belong to disconnected parts;
possess an invariant curve not yielding a connection
of separatrices; and have symmetry).

The last column refers to other reasons associ-
ated to different geometrical aspects and they are
described as follows:

(1) it possesses a sn(4) as a finite singular point;

(2) it possesses a
(2
1

)
N at infinity;

(3) 3S20 is the singularity of the surface (S3), i.e.
of the invariant polinomial T4, where the two
finite complex singularities are weak;

(4) it possesses a
(̂1
2

)
E −H at infinity;

(5) the antisaddle is triple;

(6) it possesses a
(̂2
3

)
N at infinity;

Whenever phase portraits appear on a horizon-
tal block in a specific column, the listing is done
according to the decreasing dimension of the parts
where they appear, always placing the lower dimen-
sions on lower lines.

8.1. Proof of the main theorem

The bifurcation diagram described in Sec. 6, plus
Tables 50 to 59 of the geometrical invariants distin-
guishing the 371 phase portraits, plus Tables 60 to

79 giving the equivalences with the remaining phase
portraits lead to the proof of the main statement of
Theorem 1.1.

Moreover, the phase portraits P3 from family
QsnSN(A), P2 from family QsnSN(B) and P57

from family QsnSN(C) are topologically equiva-
lent since there exists no geometrical invariant that
distinguishes them. It has been needed to have the
curve at infinity filled up with an infinite number of
singularities to have a common element in the three
families. The same argument is applied to prove the
equivalence of the two other triplets. Also, there
are 10 more cases of coincidences between phase
portraits of family QsnSN(C) and one of either
QsnSN(A) or QsnSN(B) and we have discovered
another equivalence between 5S2 from QsnSN(A)
and 5S3 from QsnSN(B) which have no equiva-
lence in QsnSN(C). This proves Corollary 1.2.

Now, summing all the topologically dis-
tinct phase portraits from families QsnSN(A),
QsnSN(B) and QsnSN(C) and subtracting the
intersections among them, according to Corol-
lary 1.2, we obtain 38 + 25 + 371 − 17 = 417 topo-
logically distinct phase portraits inQsnSN, and we
prove Corollary 1.3.

In the family QsnSN(C), all the phase por-
traits corresponding to parts of volume yield all the
topologically possible phase portraits of codimen-
sion one from group (A) (see page ?? for the de-
scription of this group). Many of them had already
been discovered being realizable, and others which
realization was missing have been found within the
perturbations of familyQsnSN(C). In the next ex-
ample we perturbe one phase portrait from family
QsnSN(C) and obtain one phase portrait of codi-
mension one which was missing. Also three new
phase portraits of group (B) can be found from per-
turbations of family QsnSN(C).

Example 8.22. Phase portrait V177 yields an exam-
ple of the “wanted” case A66 of codimension one.
Indeed, by adding the small perturbation x2/100
in a representative of the part V177 we obtain the
following system:

ẋ = x2 + 12xy/5 − 22y2/5 + x2/100,

ẏ = y − x2/10 + 28xy/5 − 13y2/2,
(23)

and, hence, the infinite saddle–node
(0
2

)
SN splits

into a saddle and a node, and we obtain the
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A66
V177

Fig. 117. The perturbation of phase portrait V177

yielding the structurally unstable phase portrait A66

phase portrait A66 of codimension one, as shown
in Fig. 117.

By applying perturbations to the phase por-
traits of family QsnSN(C) we obtain the “wanted”
new phase portraits of codimension one in Table 49.
Then, Corollary 1.4 is proved.

Table 49. New codimension–one phase portraits ob-
tained after perturbations

Phase portrait from Splitting Splitting

QsnSN(C)
(
0
2

)
SN sn(2)

V29 A49 B33

V35 — B34

V36 — B36

V102 A44 —
V170 A50 —
V172 A37 —
V174 A73 —
V177 A66 —
2S34 A51 —
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Table 50. Geometric classification for the family QsnSN(C)

I1=





1 & I2=





−1 {2.8L1},

0 & I3=





1 (5S2),

2 & I4=





1110 {P43},
2100 (P39),

2101 & I18=

{
y (1.1L4),
n (1.1L7),

2111 (7S6),
2120 (7S26),

2210 & I18=

{
y (1.1L3),
n (4S20),

2211 (V23),
3101 {1.1L2},
3110 (4S3),
3120 (V84),

3200 & I8=

{
(1, 0) (1.1L1),
(0, 2) (1.1L6),

3211 & I8=

{
(1, 0) (V20),
(0, 2) (V22),

3220 (V85),
4120 (V21),
5211 (V1),

∞ {P23},

1 & I3=





1 (P68),

2 & I4=





1110 {2.8L2},
1111 (1.2L5),
2100 (2.8L3),
2120 (1.2L7),

2 & I2=





−1 & I4=





2210 {1.4L5},
3101 {1.7L18},
3201 & I8=

{
(1, 0) {1S40},
(1, 2) {1S30},

3310 {1S28},
4201 {1S33},

0 & I3=A1 (next page)
1 & I3=A2 (next page)
2 & I3=A3 (next page)

3 & I2=A4 (next page)
∞ & I2=A5 (next page)
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Table 51. Geometric classification for the family QsnSN(C) (cont.)

I1=





A1[
I1=2,
I2=0

]
& I3=





1 & I4=





11 {P60},

21 & I5=





(0) & I6=

{
(0) (2.5L11),
(2) (P4),

(1) [2.5L13],
22 (2.5L4),

31 & I7=

{
(0, 2) (2.5L3),
(1) (P1),

41 (2.5L1),

2 & I4=





2111 & I6=





(3) & I7=

{
(1) (2.7L16),
(1, 2) (2.4L5),

(2, 3) (P22),

2120 & I7=

{
(1) (2.7L17),
(1, 2) (2.4L3),

2121 & I6=





(0) & I20=

{
s (2S13),
d (2S21),

(2) (2.4L7),
(3, 3) (P26),

2211 & I6=





(0) (2S45),
(1) {2.7L18},
(3) (2.7L5),

2221 & I6=

{
(0) (2S18),
(2) (2.4L6),

3120 & I6=





(0) (2S52),
(1) {2.7L19},
(3) (2.7L3),

3121 & I7=

{
(1, 0) (2.7L7),
(0) (P30),

3130 (2S12),
3131 (2S24),

3211 & I5=





(0) & I6=





(0) & I7=

{
(1, 0) (2S51),
(2, 0) (2S48),

(2) & I7=

{
(1, 0) (2.7L4),
(3, 0) (2.7L1),

(3) (2.4L9),
(1) [2S49],

A6 (next page)

2 & I2=

{
1 & I3=A2 (next page)
2 & I3=A3 (next page)

3 & I2=A4 (next page)
∞ & I2=A5 (next page)
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Table 52. Geometric classification for the family QsnSN(C) (cont.)

I1=





A6

I1=2,
I2=0,
I3=2


 & I4=





3212 (2.3L4),
3220 (2S53),
3221 (2.7L9),
3231 (2.3L7),
3232 (2S30),

3311 & I8=

{
(2, 0) (2S17),
(3, 0) (2S6),

3321 (2S19),
4111 (2.4L1),

4120 & I5=





(0) & I6=

{
(0) (2S56),
(2) (2.7L2),

(1) [2S54],

4121 & I6=

{
(0) (2.3L6),
(3) (2.7L11),

4131 (2.3L1),
4141 (2S3),

4211 & I7=

{
(0, 2) (2S16),
(1) (2.3L3),

4212 (2S5),
4220 (2S11),
4221 (2S23),
4231 (2S31),

5120 & I7=

{
(1, 2) (2.3L2),
(0, 2) (2S10),

5121 (2S4),
5211 (2S1),
6120 (2S2),

2 & I2=





A2[
I1=2,
I2=1

]
& I3=





1 & I4=





21 & I7=

{
(0, 2) (P41),
(1, 1) {P50},

22 & I6=





(0) & I7=

{
(0, 3) (1.5L2),
(2, 1) {1.5L5},

(1) {P52},
31 & I16=

{
H {1.5L4},
P (1.5L3),

32 & I5=





(0) & I7=

{
(0, 2) (1.5L1),
(1, 1) (1.5L7),

(1) [1.5L6],
A′

2 (next page)

2 & I3=A3 (next page)
3 & I2=A4 (next page)
∞ & I2=A5 (next page)
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Table 53. Geometric classification for the family QsnSN(C) (cont.)

I1=





A′
2[

I1=2,
I2=1

]
& I3=





2 & I4=





1110 & I7=

{
(0, 2) {1.4L7},
(1, 1) {1.4L13},

2100 & I7=

{
(0, 2) (1.7L20),
(1, 1) {1.7L28},

2101 & I7=





(0, 3) {1S37},
(1, 0) {{1.7L31}},
(1, 2) & I8=

{
(1, 0) (1S52),
(2, 0) {1S45},

(2, 1) {{1S57}},

2111 & I5=





(0) & I6=





(0) & I7=





(0, 4) (1S69),
(1, 3) (1S7),
(2, 2) (1S6),
(3, 1) {1S14},

(1) {1.7L2},

(3) & I7=





(0, 2) (1.4L14),

(1, 1) & I9=

{
f (1.4L1),
∞ (1.4L4),

(1, 3) {1.4L8},
(2, 2) {1.4L12},

(3, 5) {{P31}},
(1) [1.4L3],

2120 & I7=

{
(0, 2) (1.7L9),
(1, 1) (1.7L32),

2121 & I5=





(0) & I6=





(0) {1S44},

(3) & I7=





(0, 1) (1.7L7),
(0, 3) {1.7L21},
(1, 2) {{1.7L27}},

(5) {1.7L3},
(1) [1.7L4],

2200 & I6=





(0) & I7=

{
(0, 3) (1S35),
(2, 1) {1S55},

(1) {1.7L29},
A7 (next page)

∞ {1.3L2},
2 & I2=2 & I3=A3 (next page)
3 & I2=A4 (next page)
∞ & I2=A5 (next page)
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Table 54. Geometric classification for the family QsnSN(C) (cont.)

I1=





A7

I1=2,
I2=1,
I3=2


 & I4=





2211 & I5=





(0) & I8=

{
(1, 1) (1S68),
(2, 0) (1S8),

(1) [1S12],

3101 & I5=





(0) & I8=

{
(0, 2) {1S25},
(1, 1) {1S66},

(1) [{1S60}],

3111 & I5=





(0) & I6=





(0) & I7=

{
(0, 3) (1S67),
(2, 1) (1S9),

(3) {1.7L6},
(1) [1S13],

3120 & I6=





(0) & I7=





(0, 3) (1S24),
(1, 2) (1S19),
(2, 1) {1S71},

(1) {1.7L33},

3121 & I5=





(0) & I6=





(0) & I7=





(1, 1) & I18=

{
y {1S15},
n (1S18),

(1, 3) {{1S56}},
(2, 2) {{1S53}},
(3, 1) {1S43},
(4, 0) {1S36},

(1) {{1.7L30}},
(1) [1S16],

3200 & I5=





(0) & I7=

{
(0, 2) (1S27),
(1, 1) (1S64),

(1) [1S58],
3211 {1.7L5},
3221 & I5=

{
(0) (1S23),
(1) [1S20],

4111 {1.7L1},

4120 & I5=





(0) & I7=

{
(0, 2) (1S1),
(1, 1) (1S74),

(1) [1S72],

4121 & I5=





(0) & I7=





(0, 1) (1S2),
(0, 3) {1S26},
(2, 1) {1S65},

(1) & I18=

{
y [{1S59}],
n [1S4],

4211 {1S21},
5111 {1S5},

2 & I2=2 & I3=A3 (next page)
3 & I2=A4 (next page)
∞ & I2=A5 (next page)
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Table 55. Geometric classification for the family QsnSN(C) (cont.)

I1=





A3[
I1=2,
I2=2

]
& I3=





1 (2.5L10),

2 & I4=





1111 (2S41),
2111 {2.7L20},
2121 & I5=

{
(0) (2S59),
(1) [2S61],

3111 {2S62},

A4

[I1=3]
& I2=





0 & I3=





1 & I4=





21 & I7=

{
(0, 2) (5.7L11),
(1, 1) (5.7L2),

22 (5S9),

31 & I6=





(0) & I7=





(0, 3) (5S26),

(2, 1) & I18=

{
y {5S33},
n (5S13),

(1) {5.7L1},
(2) {5.7L14},

41 & I5=





(0) & I7=





(0, 2) (5S1),
(1, 1) (5S3),
(2, 1) (5S36),

(1) [5S5],

2 & I4=





2111 & I6=





(3) (4S8),
(1, 5) {7.7L4},
(2, 3) (4.4L3),

2120 (4S6),

2121 & I6=





(0) & I8=

{
(1, 1) (V49),
(2, 0) (V46),

(2) (4S33),
(3, 3) (7.7L1),

2211 & I6=





(2) & I7=

{
(0, 3) (7S65),
(2, 1) (7S33),

(3) & I10=





0 & I11=

{
N (7S63),
SN (7S9),

1 (7S68),
(2, 2) {4.7L1},
(2, 3) (4.4L1),

2221 & I6=





(0) & I7=





(1, 3) & I11=

{
N (V155),
SN (V44),

(2, 2) (V104),

(2) & I7=

{
(0, 2) (4S32),
(1, 1) (4S29),

3120 & I10=





0 (7S69),

1 & I11=

{
N (7S16),
SN (7S61),

A8 (next page)
2 & I3=A9 (next page)

∞ & I2=A5 (next page)
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Table 56. Geometric classification for the family QsnSN(C) (cont.)

I1=





A8

I1=3,
I2=0,
I3=2


 & I4=





3121 & I5=





(0) & I6=





(0) (V122),

(3) & I7=

{
(0, 2) (7S37),
(1, 1) (7S38),

(1) [V118],

3130 & I7=





(1, 3) & I11=

{
N (V37),
SN (V165),

(2, 2) (V123),
3131 (V110),

3211 & I5=





(0) & I6=





(0) & I7=

{
(0, 4) (V154),
(3, 1) (V102),

(1) {7S32},

(2) & I7=





(0, 2) & I8=





(0, 0) & I11=

{
a (4S42),
N (7S64),

(1, 0) (7S4),

(1, 1) & I8=





(0, 0) (7S70),

(1, 0) & I10=





0 & I11=

{
a (4S16),
SN (7S8),

1 (7S71),
(2, 0) (7S23),

(3) (4S31),

(1) & I10=

{
0 [4S26],
1 [7S28],

3212 & I5=





(0) & I12=

{
s {7S22},
d {7S29},

(1) [{7S27}],

3221 & I7=





(0, 1) & I8=

{
(0, 1) (7S44),
(1, 1) (7S45),

(1, 4) (4S9),
3231 {7S52},
3232 (V129),

3311 & I5=





(0) & I8=





(1, 0) & I9=





f & I11=





N (V143),

SN & I19=

{
c (V170),
s (V71),

∞ & I11=

{
a (V145),
N (V13),

(2, 0) (V64),
(1) [V90],

3321 & I5=





(0) & I7=

{
(0, 2) (V108),
(1, 1) (V78),

(1) & I12=

{
s [V80],
d [10S1],

(2) [[V88]],
A′

8 (next page)
3 & I2=2 & I3=A9 (next page)
∞ & I2=A5 (next page)
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Table 57. Geometric classification for the family QsnSN(C) (cont.)

I1=





A′
8


I1=3,
I2=0,
I3=2


 & I4=





4111 (4S1),
4120 (7S62),

4121 & I5=





(0) & I6=





(0) (V66),
(1) {7S41},
(3) & I8=

{
(1, 1) (7S55),
(2, 0) (7S3),

(1) & I6=

{
(0) [V100],
(3) [7S53],

4131 {7S2},
4141 & I5=

{
(0) (V15),
(1) [V17],

4211 & I6=





(0) & I7=





(0, 3) & I7=

{
f (V144),
∞ (V147),

(2, 1) & I11=

{
a {V172},
SN (V69),

(1) & I11=

{
a {7S77},
SN {7S7},

4212 & I5=





(0) & I7=

{
(0, 2) (V10),
(1, 1) (V83),

(1) [V89],

4220 & I11=

{
N (V42),
SN (V142),

4221 & I7=

{
(0, 2) (V109),
(1, 1) (V114),

4231 & I5=





(0) & I8=

{
(1, 0) (V136),
(2, 0) (V7),

(1) [V134],

5120 & I6=





(0) & I7=





(0, 3) (V141),

(2, 1) & I11=

{
a {V173},
N (V41),

(1) & I11=

{
a {7S78},
N {7S10},

5121 & I5=





(0) & I7=

{
(0, 2) (V9),
(1, 1) (V121),

(1) [V117],

5211 & I5=





(0) & I11=

{
a (V190),
SN (V25),

(1) & I11=

{
a [V178],
SN [V27],

6120 & I5=





(0) & I6=





(0) & I7=





(0, 2) (V2),

(1, 1) & I11=

{
a (V191),
N (V31),

(2) (7S15),

(1) & I11=

{
a [V179],
N [V33],

3 & I2=2 & I3=A9 (next page)
∞ & I2=A5 (next page)
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Table 58. Geometric classification for the family QsnSN(C) (cont.)

I1=





A9[
I1=3,
I2=2

]
& I3=





1 & I5=





(0) & I6=





(0) & I7=





(0, 2, 3) (5S28),
(1, 1, 3) (5S12),
(2, 1, 2) {5S23},

(1) {5.7L9},
(1) [5S22],

2 & I4=





1111 & I5=





(0) & I6=





(0) & I7=





(0, 3, 4) (V149),
(2, 1, 4) (V61),

(3, 1, 3) & I13=

{
S (V107),
SN {V53},

(1) & I13=

{
S {7S31},
SN {7S17},

(3) & I7=





(0, 2, 3) (4S44),
(1, 1, 3) (4S15),
(2, 1, 2) {4S13},

(1) & I6=





(0) & I13=

{
S [V94],
SN [V54],

(3) [4S25],

2111 & I5=





(0) & I6=





(0) & I7=





(1, 2, 3) & I8=

{
(1, 0) (V198),
(2, 0) (V62),

(2, 2, 2) (V51),

(3) & I8=

{
(0, 1) {4S51},
(1, 1) (4S36),

(3, 5) & I7=

{
(0, 0, 2) {{7.7L6}},
(1, 0, 1) {7.7L5},

(1) [V99],

2121 & I5=





(0) & I6=





(3) & I7=

{
(0, 1, 2) (7S72),
(1, 1, 1) (7S60),

(5) & I11=

{
s {{7S67}},
d {7S42},

(1) & I7=

{
(0, 1, 2) [7S56],
(1, 1, 1) [{7S74}],

3111 & I6=





(3) & I7=

{
(0, 1, 2) {7S58},
(1, 1, 1) {{7S75}},

(5) & I7=

{
(0, 0, 3) {7S57},
(2, 0, 1) {{7S76}},

(1, 5) {{7.7L7}},

3121 & I5=





(0) & I6=





(0) & I7=





(0, 1, 3) (V140),

(1, 1, 2) & I8=





(1, 1) & I18=

{
1 {V166},
2 {{V169}},

(2, 1) {V113},
(2, 1, 1) {V174},

(1) {7S79},

(1) & I6=





(0) & I7=





(0, 1, 3) [V137],
(1, 1, 2) [{V168}],
(2, 1, 1) [{V176}],

(1) [{7S81}],
A10 (next page)

∞ & I2=A5 (next page)
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Table 59. Geometric classification for the family QsnSN(C) (cont.)

I1=





A10

I1=3,
I2=2,
I3=2


 & I4=





4111 & I5=





(0) & I6=





(0) & I18=

{
1 {V138},
2 {{V177}},

(1) {{7S82}},
(5) & I7=

{
(0, 2, 0) {7S1},
(1, 1, 0) {7S85},

(1) [{7S83}],

4121 & I5=





(0) & I7=

{
(0, 2, 1) (V3),
(1, 1, 1) (V192),

(1) & I7=





(0, 2, 1) [V5],

(1, 1, 1) & I14=

{
f [V180],
∞ [V194],

(1, 1) [[V182]],

5111 & I5=





(0) & I7=

{
(0, 1, 2) {V6},
(1, 1, 1) {V189},

(1) [{V183}],

A5

[I1=∞]
& I2=





0 & I15=





0 {P58},
1 & I17=

{
− {P65},
∪ {P64},

1 & I3=

{
2 {1.2L8},
∞ {P57}.
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Table 60. Topological equivalences for the family QsnSN(C)

Presented Identical Finite Finite Finite Disconnected Possessing
phase under antisaddle antisaddle weak parts invariant curve Symmetry Other reasons
portrait perturbations focus node–focus point (no separatrix)

V1

V2

V3
V4

6S1 3S1

V5

V6

V7

V9

V19 V8, V18

6S3, 6S4 3S3, 3S4

3.6L1

V10

V12

3S5, 3S6

3.10L1

V13
V11, V14

3S7 4S4

V15
V16

6S2 3S2

V17

V20 2.11L3
(1)

V21 1.2L1
(2), 2.11L2

(1)

V22

V23

V24

4S15 3S20
(3)

1.2L2
(2), 2.11L2

(1)

V25
V26

6S5 3S8

V27



T
h
e
geo

m
etry

o
f
qu
a
d
ra
tic

po
lyn

o
m
ia
l
d
iff
eren

tia
l
system

s
w
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a
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n
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a
n
d
a
n
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fi
n
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d
d
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9
9

Table 61. Topological equivalences for the family QsnSN(C) (cont.)

Presented Identical Finite Finite Finite Disconnected Possessing
phase under antisaddle antisaddle weak parts invariant curve Symmetry Other reasons
portrait perturbations focus node–focus point (no separatrix)

V31
V32

6S6 3S9

V33

V37

V43 V36, V40

6S9, 6S10 3S12, 3S13

3.6L2

V41
V34, V38

6S7 3S10

V42
V35, V39

6S8 3S11

V44

V45, V73, V96 V30, V72

6S11, 6S22 3S23, 3S24, 3S26, 3S43

3.6L3 3.10L4

V46

V47, V63

3S14, 3S15 4S11

3.10L2

V49

V48, V75, V97 V50, V98

6S12, 6S30 3S25, 3S44, 3S45 4S12, 4S24

3.4L7, 3.6L8

V51
V52

6S13

V53

V54

V61

V55, V56, V57

V58, V59

6S15, 6S16, 6S17 3S16, 3S32, 3S426S18, 6S19

3.6L7, 6.6L1



1
0
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Table 62. Topological equivalences for the family QsnSN(C) (cont.)

Presented Identical Finite Finite Finite Disconnected Possessing
phase under antisaddle antisaddle weak parts invariant curve Symmetry Other reasons
portrait perturbations focus node–focus point (no separatrix)

V62
V60

6S14 3S46

V64

V65 V74, V76

6S23, 6S24
3S17, 3S18, 3S27

3S30, 3S35, 3S41

3.6L4, 3.6L5 3.3L2, 3.10L3, 3.10L5

P12

V66

V67 V77, V86

6S25, 6S28 3S19, 3S31, 3S48, 3S49

3.3L3, 3.6L6

V69
V28, V68

6S20 3S21

V71
V29, V70

6S21 3S22

V78

V79, V91

6S26 3S28, 3S37

3.10L6

V80 3S33

V83

V81, V82

6S27 3S29, 3S34, 3S36, 3S39

3.3L1, 3.10L7

V84 1.2L3
(2)

V85 1.2L4
(2)

V88

V89
V92

3S38

V90
V93

3S40
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Table 63. Topological equivalences for the family QsnSN(C) (cont.)

Presented Identical Finite Finite Finite Disconnected Possessing
phase under antisaddle antisaddle weak parts invariant curve Symmetry Other reasons
portrait perturbations focus node–focus point (no separatrix)

V94
V87

6S29

V99

V100
V101

3S47

V102
V105

3S50

V104
V103, V106 V125, V126

6S31 3S51 4S37, 4S38

V107
V95

6S32

V108
V127

3S57

V109

V128 V131, V132

6S39, 6S40 3S58, 3S59

3.6L10

V110

V126 V111, V112

6S33, 6S37 3S52, 3S56

3.6L9

V113

V114
V115, V116

6S34 3S53

V117

V118

V121
V119

6S35 3S54

V122
V120

6S36 3S55

V123
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0
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Table 64. Topological equivalences for the family QsnSN(C) (cont.)

Presented Identical Finite Finite Finite Disconnected Possessing
phase under antisaddle antisaddle weak parts invariant curve Symmetry Other reasons
portrait perturbations focus node–focus point (no separatrix)

V129
V130, V133

6S38 3S60

V134

V136
V135

6S41 3S61

V137

V138

V140
V139

6S42 3S62

V141

V142

V143

V144

V145
V144

3S63

V147

V148

3S64, 3S56

3.10L8

V149

V153, V158 V151, V152

V196, V197 V159

6S43, 6S44 4S45, 4S466S46, 6S47

V154
V157

3S67

V155
V156, V162, V163 V164

6S49 3S66 4S50, 4S52

V165

V166
V167

6S50 3S68
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Table 65. Topological equivalences for the family QsnSN(C) (cont.)

Presented Identical Finite Finite Finite Disconnected Possessing
phase under antisaddle antisaddle weak parts invariant curve Symmetry Other reasons
portrait perturbations focus node–focus point (no separatrix)

V168

V169

V170 V171

V172

V173

V174
V175

6S51 3S69

V176

V177

V178

V179 3S72

V180
V181

6S52 3S70

V182

V183

V189
V195

6S59 3S76

V190
V184

6S54 3S71

V191
V185

6S55

V192

V186, V187, V193

6S53, 6S56 3S73, 3S74

6S57, 6S60 3S77, 3S78

3.6L11, 3.6L12 3.3L46.6L2
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Table 66. Topological equivalences for the family QsnSN(C) (cont.)

Presented Identical Finite Finite Finite Disconnected Possessing
phase under antisaddle antisaddle weak parts invariant curve Symmetry Other reasons
portrait perturbations focus node–focus point (no separatrix)

V194
V188

6S59 3S76

V198

V150 V160, V161, V199

6S45, 6S48 4S476S61, 6S62

6.6L3

1S1

1S2
1S3

1.6L1 1.3L1

1S4

1S5

1S6

1S7

1S8
1S10

1.6L2 1.3L3

1S9
1S11

1.6L3 1.3L4

1S12

1S13

1S14

1S15

1S16

1S18
1S17

1.6L4 1.3L6

1S19 1S70

1S20

1S21

1S23
1S22

1.6L5 1.3L8
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Table 67. Topological equivalences for the family QsnSN(C) (cont.)

Presented Identical Finite Finite Finite Disconnected Possessing
phase under antisaddle antisaddle weak parts invariant curve Symmetry Other reasons
portrait perturbations focus node–focus point (no separatrix)

1S24

1S25 1.7L10
(4)

1S26

1S27

1S28
1S29

1.3L11

1S30
1S31, 1S32

1.3L12 1.7L24

1S33
1S34

1.3L10

1S35

1S36

1S37 1.7L11
(4)

1S40
1S41, 1S50

1.3L9 1.4L10

1S43

1S44
1S47

1.6L7

1S45

1S38, 1S39 1S48, 1S491S46 1.6L8, 1.6L9
1.7L22, 1.7L23 1.7L12

(4), 1.7L13
(4)

1.7L25, 1.7L26

P48 P46
(4)

1S52
1S42, 1S51 1S54

1.6L6 1.4L9, 1.4L11

1S53

1S55

1S56

1S57 1.7L14
(4)
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Table 68. Topological equivalences for the family QsnSN(C) (cont.)

Presented Identical Finite Finite Finite Disconnected Possessing
phase under antisaddle antisaddle weak parts invariant curve Symmetry Other reasons
portrait perturbations focus node–focus point (no separatrix)

1S58

1S59

1S60 1.7L15
(4)

1S64
1S61

1.6L10 1.3L13

1S65
1S62

1.6L11 1.3L14

1S66
1S63

1.6L12 1.3L15 1.7L16
(4), 1.7L17

(4)

P53
(4), P55

(4)

1S67

1S68

1S69

1S71

1S72

1S74
1S73

1.6L13 1.3L17

2S1 2S8

2S2 2S9

2S3

2S4 2S26

2S5 2S20

2S6
2S7 2S15

2.4L2

2S10 2S32

2S11 2S33

2S12 2S27
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Table 69. Topological equivalences for the family QsnSN(C) (cont.)

Presented Identical Finite Finite Finite Disconnected Possessing
phase under antisaddle antisaddle weak parts invariant curve Symmetry Other reasons
portrait perturbations focus node–focus point (no separatrix)

2S13
2S14

2.4L4

2S16 2S35

2S17 2S34

2S18
2S28, 2S29

2.4L10

2S19 2S22

2S21

2S22

2S23 2S25

2S24

2S30

2S31

2S41
2S42, 2S44 2S43

2.6L1 2.4L13

2S45
2S36, 2S46 2S47

2S37
(5), 2S38

(5)

2S39
(5), 2S40

(5)

2.6L2 2.3L8, 2.3L12 2.4L11, 2.2L12, 2.4L14

P67
(5)

2S48

2S49

2S51
2S50 2S58

(5)

2.6L3 2.3L10

2S52

2S53
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Table 70. Topological equivalences for the family QsnSN(C) (cont.)

Presented Identical Finite Finite Finite Disconnected Possessing
phase under antisaddle antisaddle weak parts invariant curve Symmetry Other reasons
portrait perturbations focus node–focus point (no separatrix)

2S54

2S56
2S55 2S57

(5)

2.6L4 2.3L11

2S59
2S60

2.6L5 2.3L12

2S61

2S62

4S1
4S2

3.4L1

4S3

4S6
4S7

3.4L2

4S8
4S10, 4S18, 4S23

3.4L4, 3.4L11

4S9
4S22

3.4L6

4S13

4S15
4S14

4.6L1 3.4L8

4S16

4S17 4S19, 4S21

4.6L2, 4.6L3
3.4L3, 3.4L5

3.4L9, 3.4L10

P13 P20

4S20

4S25

4S26
4S27

3.4L12



T
h
e
geo

m
etry

o
f
qu
a
d
ra
tic

po
lyn

o
m
ia
l
d
iff
eren

tia
l
system

s
w
ith

a
fi
n
ite

a
n
d
a
n
in
fi
n
ite

sa
d
d
le–

n
od
e
(C

)
1
0
9

Table 71. Topological equivalences for the family QsnSN(C) (cont.)

Presented Identical Finite Finite Finite Disconnected Possessing
phase under antisaddle antisaddle weak parts invariant curve Symmetry Other reasons
portrait perturbations focus node–focus point (no separatrix)

4S29
4S30 4S28

4.6L4 3.4L13

4S31
4S41

3.4L17

4S32
4S40

3.4L16

4S33

4S39 4S34, 4S35

4.6L5, 4.6L6 3.4L14, 3.4L15

P24

4S36

4S42
4S43

3.4L18

4S44
4S48 4S49

4.6L7 4.4L5

4S51

5S1

5S2

5S20, 5S21

5.7L4 4.5L3

P38
(6), P63

(1)

5S3
5S4

5.6L1 3.5L1

5S5 5S34

5S9

5S8, 5S10, 5S16 5S7, 5S15 5S24, 5S25

5S18, 5S19 5S17 5S31, 5S32

5.7L10
5.7L3, 5.7L6 5.6L4, 5.6L5

3.5L3, 3.5L4 4.5L1, 4.5L25.7L7, 5.7L12 3.5L5, 3.5L6

P5 P6, P8 P9
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Table 72. Topological equivalences for the family QsnSN(C) (cont.)

Presented Identical Finite Finite Finite Disconnected Possessing
phase under antisaddle antisaddle weak parts invariant curve Symmetry Other reasons
portrait perturbations focus node–focus point (no separatrix)

5S12
5S11

5.6L2 3.5L7

5S13
5S6, 5S14

5.6L3 3.5L2

5S22

5S23

5S26

5S28
5S29 5S27, 5S30

5.6L6, 5.6L7 4.5L4

5S33

5S36
5S35

5.6L8 3.5L8

7S1

7S2

7S3

7S4
7S5

3.7L1

7S6

7S7

7S8
7S18 7S19

6.7L3 3.7L4

7S9
7S20 7S21

6.7L4 3.7L5

7S10

7S15
7S11, 7S13

6.7L1 3.7L2

7S16
7S12, 7S14

6.7L2 3.7L3
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Table 73. Topological equivalences for the family QsnSN(C) (cont.)

Presented Identical Finite Finite Finite Disconnected Possessing
phase under antisaddle antisaddle weak parts invariant curve Symmetry Other reasons
portrait perturbations focus node–focus point (no separatrix)

7S17

7S22 3.7L7

7S23

7S24, 7S25

3.7L6 6.7L5 3.7L8, 3.7L9, 3.7L11

P14, P16

7S26

7S27

7S28
7S30

3.7L12

7S29 3.7L10

7S31
7S36

3.7L12

7S32
7S34

3.7L13

7S33
7S35

3.7L14

7S37

7S43 7S48, 7S49

6.7L10, 6.7L11 3.7L16, 3.7L17

P28

7S38
7S39, 7S40

6.7L7 3.7L15

7S41

7S42

7S44
7S46, 7S50

6.7L9 3.7L18

7S45
7S47, 7S51

6.7L8 3.7L19
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Table 74. Topological equivalences for the family QsnSN(C) (cont.)

Presented Identical Finite Finite Finite Disconnected Possessing
phase under antisaddle antisaddle weak parts invariant curve Symmetry Other reasons
portrait perturbations focus node–focus point (no separatrix)

7S52

7S53

7S55
7S54

6.7L12 3.7L20

7S56

7S57

7S58

7S60
7S59

6.7L13 3.7L21

7S61

7S62

7S63

7S64

7S65
7S66

3.7L22

7S67

7S68

7S69

7S70

7S71

7S72
7S73

6.7L14 3.7L23

7S74

7S75

7S76

7S77
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Table 75. Topological equivalences for the family QsnSN(C) (cont.)

Presented Identical Finite Finite Finite Disconnected Possessing
phase under antisaddle antisaddle weak parts invariant curve Symmetry Other reasons
portrait perturbations focus node–focus point (no separatrix)

7S78

7S79
7S80

6.7L15 3.7L24

7S81

7S82

7S83

7S85
7S84

6.7L16 3.7L25

10S1

1.1L1

1.1L2

1.1L3

1.1L4
1.1L5

P47

1.1L6

1.1L7
1.1L8

P40

1.2L5
1.2L6

P66

1.2L7

1.2L8 1.2L9, 1.2L10

1.3L2
1.3L5, 1.3L7, 1.3L16

P18, P45

1.4L1
1.4L2

P19 P10

1.4L3
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Table 76. Topological equivalences for the family QsnSN(C) (cont.)

Presented Identical Finite Finite Finite Disconnected Possessing
phase under antisaddle antisaddle weak parts invariant curve Symmetry Other reasons
portrait perturbations focus node–focus point (no separatrix)

1.4L4

1.4L5

1.4L7 P44
(4)

1.4L8

1.4L12

1.4L13 P49
(4)

1.4L14

1.5L1

1.5L2

1.5L3

1.5L4

1.5L5

1.5L6

1.5L7
1.5L8

P56 P54

1.7L1

1.7L2

1.7L3

1.7L4

1.7L5

1.7L6

1.7L7
1.7L8

P32 P33

1.7L9

1.7L18
1.7L19

P37

1.7L20
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Table 77. Topological equivalences for the family QsnSN(C) (cont.)

Presented Identical Finite Finite Finite Disconnected Possessing
phase under antisaddle antisaddle weak parts invariant curve Symmetry Other reasons
portrait perturbations focus node–focus point (no separatrix)

1.7L21

1.7L27

1.7L28

1.7L29

1.7L30

1.7L31 P51
(4)

1.7L32

1.7L33

2.3L1

2.3L2

2.3L3

2.3L4
2.3L5

P15

2.3L6

2.3L7

2.4L1

2.4L3

2.4L5

2.4L6 2.4L8

2.4L7

2.4L9

2.5L1 2.5L2

2.5L3 2.5L9

2.5L4

2.5L5, 2.5L6

2.5L7, 2.5L8

P7, P35 P11

2.5L10
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Table 78. Topological equivalences for the family QsnSN(C) (cont.)

Presented Identical Finite Finite Finite Disconnected Possessing
phase under antisaddle antisaddle weak parts invariant curve Symmetry Other reasons
portrait perturbations focus node–focus point (no separatrix)

2.5L11
2.5L12, 2.5L14 2.5L15 2.5L16

(5)

P59 P62 P61

2.5L13

2.7L1 2.7L6

2.7L2 2.7L12

2.7L3 2.7L13

2.7L4 2.7L15

2.7L5 2.7L14

2.7L7 2.7L8

2.7L9 2.7L10

2.7L11

2.7L16

2.7L17

2.7L18

2.7L19

2.7L20

2.8L1

2.8L2

2.8L3

4.4L1
4.4L2

P17

4.4L3
4.4L4

P25

4.7L1
4.7L2

P21

5.7L2
5.7L4 5.7L5 5.7L13

P3 P2

5.7L9
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Table 79. Topological equivalences for the family QsnSN(C) (cont.)

Presented Identical Finite Finite Finite Disconnected Possessing
phase under antisaddle antisaddle weak parts invariant curve Symmetry Other reasons
portrait perturbations focus node–focus point (no separatrix)

5.7L11

5.7L14

7.7L1
7.7L3 7.7L2 5.7L13

P27 P29

7.7L4

7.7L5

7.7L6

7.7L7

P1

P4 P36

P22

P23

P26

P30

P31

P39

P41

P43

P50

P52

P57

P58

P60

P64

P65

P68
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