8 research outputs found

    PTEN mediates Notch-dependent stalk cell arrest in angiogenesis

    Get PDF
    Coordinated activity of VEGF and Notch signals guides the endothelial cell (EC) specification into tip and stalk cells during angiogenesis. Notch activation in stalk cells leads to proliferation arrest via an unknown mechanism. By using gain- and loss-of-function gene-targeting approaches, here we show that PTEN is crucial for blocking stalk cell proliferation downstream of Notch, and this is critical for mouse vessel development. Endothelial deletion of PTEN results in vascular hyperplasia due to a failure to mediate Notch-induced proliferation arrest. Conversely, overexpression of PTEN reduces vascular density and abrogates the increase in EC proliferation induced by Notch blockade. PTEN is a lipid/protein phosphatase that also has nuclear phosphatase-independent functions. We show that both the catalytic and non-catalytic APC/C-Fzr1/Cdh1-mediated activities of PTEN are required for stalk cells' proliferative arrest. These findings define a Notch-PTEN signalling axis as an orchestrator of vessel density and implicate the PTEN-APC/C-Fzr1/Cdh1 hub in angiogenesis

    HEY1 functions are regulated by its phosphorylation at Ser-68

    Get PDF
    HEY1 (hairy/enhancer-of-split related with YRPW motif 1) is a member of the basic helix-loop-helix-orange (bHLH-O) family of transcription repressors that mediate Notch signalling. HEY1 acts as a positive regulator of the tumour suppressor p53 via still unknown mechanisms. A MALDI-TOF/TOF MS analysis has uncovered a novel HEY1 regulatory phosphorylation event at Ser-68. Strikingly, this single phosphorylation event controls HEY1 stability and function: simulation of HEY1 Ser-68 phosphorylation increases HEY1 protein stability but inhibits its ability to enhance p53 transcriptional activity. Unlike wild-type HEY1, expression of the phosphomimetic mutant HEY1-S68D failed to induce p53-dependent cell cycle arrest and it did not sensitize U2OS cells to p53-activating chemotherapeutic drugs. We have identified two related kinases, STK38 (serine/threonine kinase 38) and STK38L (serine/threonine kinase 38 like), which interact with and phosphorylate HEY1 at Ser-68. HEY1 is phosphorylated at Ser-68 during mitosis and it accumulates in the centrosomes of mitotic cells, suggesting a possible integration of HEY1-dependent signalling in centrosome function. Moreover, HEY1 interacts with a subset of p53-activating ribosomal proteins. Ribosomal stress causes HEY1 relocalization from the nucleoplasm to perinucleolar structures termed nucleolar caps. HEY1 interacts physically with at least one of the ribosomal proteins, RPL11, and both proteins cooperate in the inhibition of MDM2-mediated p53 degradation resulting in a synergistic positive effect on p53 transcriptional activity. HEY1 itself also interacts directly with MDM2 and it is subjected to MDM2-mediated degradation. Simulation of HEY1 Ser-68 phosphorylation prevents its interaction with p53, RPL11 and MDM2 and abolishes HEY1 migration to nucleolar caps upon ribosomal stress. Our findings uncover a novel mechanism for cross-talk between Notch signalling and nucleolar stress.This work was supported by the Spanish Ministerio de Ciencia e Innovación [grant number SAF2010-21013]; the Fondo Europeo de Desarrollo Regional (FEDER); the program JAE-PREDOC from the CSIC [grant number JAEPre_2011_00874]; the Spanish Ministerio de Economía y Competitividad; and the Pro-CNIC Foundation.Peer Reviewe

    HEY1 functions are regulated by its phosphorylation at Serine 68

    No full text
    Resumen del póster presentado al 2nd Symposium on Biomedical Research: "Advances and perspectives in cancer", celebrado en Madrid el 17 de abril de 2015.HEY1 is a member of the bHLH-O family of transcription repressors. HEY1 is a downstream effector of Notch signalling pathway, although other cancer-related pathways also regulate its expression. HEY1 acts as a positive regulator of the tumour suppressor p53 via still unknown mechanisms. A MALDI-TOF/TOF mass spectrometry analysis has uncovered a novel HEY1 regulatory phosphorylation event at the serine 68. Strikingly, this single phosphorylation event controls HEY1 stability and function: simulation of HEY1 serine 68 phosphorylation increases HEY1 protein stability but inhibits its ability to enhance p53 transcriptional activity. Unlike wild-type HEY1, expression of the phosphomimetic mutant HEY1-S68D failed to induce p53-dependent cell cycle arrest and it did not sensitize U2OS cells to p53-activating chemotherapeutic drugs. We have identified Serine/threonine kinase 38 (STK38) as one of the protein kinases responsible for HEY1 serine 68 phosphorylation. A subpopulation of STK38 localizes to centrosomes in a cell-cycle-dependent manner and contributes to the regulation of centrosome duplication. In accordance with this we observe that HEY1 is phosphorylated at serine 68 during mitosis and it also accumulates in the centrosomes of mitotic cells. Our results indicate that HEY1 phosphorylation at residue Ser-68 could play a crucial role in the regulation of HEY1 functions in vivo and suggest a novel function for HEY1 in the regulation of centrosome cycle.Peer reviewe

    Targeting PML in triple negative breast cancer elicits growth suppression and senescence

    No full text
    Oncogene addiction postulates that the survival and growth of certain tumor cells is dependent upon the activity of one oncogene, despite their multiple genetic and epigenetic abnormalities. This phenomenon provides a foundation for molecular targeted therapy and a rationale for oncogene-based stratification. We have previously reported that the Promyelocytic Leukemia protein (PML) is upregulated in triple negative breast cancer (TNBC) and it regulates cancer-initiating cell function, thus suggesting that this protein can be therapeutically targeted in combination with PML-based stratification. However, the effects of PML perturbation on the bulk of tumor cells remained poorly understood. Here we demonstrate that TNBC cells are addicted to the expression of this nuclear protein. PML inhibition led to a remarkable growth arrest combined with features of senescence in vitro and in vivo. Mechanistically, the growth arrest and senescence were associated to a decrease in MYC and PIM1 kinase levels, with the subsequent accumulation of CDKN1B (p27), a trigger of senescence. In line with this notion, we found that PML is associated to the promoter regions of MYC and PIM1, consistent with their direct correlation in breast cancer specimens. Altogether, our results provide a feasible explanation for the functional similarities of MYC, PIM1, and PML in TNBC and encourage further study of PML targeting strategies for the treatment of this breast cancer subtype

    Genetic manipulation of LKB1 elicits lethal metastatic prostate cancer.

    No full text
    Gene dosage is a key defining factor to understand cancer pathogenesis and progression, which requires the development of experimental models that aid better deconstruction of the disease. Here, we model an aggressive form of prostate cancer and show the unconventional association of LKB1 dosage to prostate tumorigenesis. Whereas loss of Lkb1 alone in the murine prostate epithelium was inconsequential for tumorigenesis, its combination with an oncogenic insult, illustrated by Pten heterozygosity, elicited lethal metastatic prostate cancer. Despite the low frequency of LKB1 deletion in patients, this event was significantly enriched in lung metastasis. Modeling the role of LKB1 in cellular systems revealed that the residual activity retained in a reported kinase-dead form, LKB1K78I, was sufficient to hamper tumor aggressiveness and metastatic dissemination. Our data suggest that prostate cells can function normally with low activity of LKB1, whereas its complete absence influences prostate cancer pathogenesis and dissemination

    mTORC1-dependent AMD1 regulation sustains polyamine metabolism in prostate cancer

    Get PDF
    Activation of the PTEN-PI3K-mTORC1 pathway consolidates metabolic programs that sustain cancer cell growth and proliferation. Here we show that mechanistic target of rapamycin complex 1 (mTORC1) regulates polyamine dynamics, a metabolic route that is essential for oncogenicity. By using integrative metabolomics in a mouse model and human biopsies of prostate cancer, we identify alterations in tumours affecting the production of decarboxylated S-adenosylmethionine (dcSAM) and polyamine synthesis. Mechanistically, this metabolic rewiring stems from mTORC1-dependent regulation of S-adenosylmethionine decarboxylase 1 (AMD1) stability. This novel molecular regulation is validated in mouse and human cancer specimens. AMD1 is upregulated in human prostate cancer with activated mTORC1. Conversely, samples from a clinical trial with the mTORC1 inhibitor everolimus exhibit a predominant decrease in AMD1 immunoreactivity that is associated with a decrease in proliferation, in line with the requirement of dcSAM production for oncogenicity. These findings provide fundamental information about the complex regulatory landscape controlled by mTORC1 to integrate and translate growth signals into an oncogenic metabolic program
    corecore