604 research outputs found

    Abstract basins of attraction

    Full text link
    Abstract basins appear naturally in different areas of several complex variables. In this survey we want to describe three different topics in which they play an important role, leading to interesting open problems

    Deglacial landform assemblage records fast ice-flow and retreat, Inner Hebrides, Scotland

    Get PDF
    High-resolution bathymetric data have been central to recent advances in the understanding of past dynamics of the former British–Irish Ice Sheet (BIIS). As approximately two-thirds of the former BIIS was probably marine-based during the Last Glacial Maximum (LGM) (c. 29–23 ka), geomorphic observations of the seabed are required increasingly to understand the extent, pattern and timing of past glaciation. Until recently, glacial reconstructions for the Inner Hebrides, offshore of western Scotland, have been based primarily on terrestrial observations. Previous workers have proposed generalized reconstructions in which the Inner Hebrides are located within a significant former ice-sheet flow pathway that drained the western Scottish sector of the BIIS, feeding the Barra Fan during the LGM and earlier glaciations (Fig. 1). Results from numerical ice-sheet modelling suggest that former ice-flow velocities within the region were on the order of hundreds to thousands of metres per year, but yield further insight by demonstrating how dynamic binge/purge cycles may have affected ice-sheet mass balance over time (Hubbard et al. 2009). Following the LGM, ice-sheet retreat through the area is estimated to have been in the order of 20 m per year (Clark et al. 2012). Here we present swath-bathymetric data from the Inner Hebrides that provide in situ constraints on ice-sheet flow and subsequent retreat dynamics from within this important sector of the BIIS

    Investigating masking effects of age trends on the correlations among tree ring proxies

    Get PDF
    Age-related trends are present in tree-ring widths (TRW), but their presence in tree rings isotope is debated. It is unclear how cambial age influences the relationships between TRW and isotopes. Tree-ring isotopes of alpine larch and cembran-pine trees showed only trends in the juvenile period (>100 years), which might mask the inter-relations between tree-ring proxies during cambial age. This work tries to unmask the age-trend influences by examining the correlations in TRW-stable isotopes with and without age-trend correction. The non-detrended and linear-detrended values of TRW, of δD and δ18O showed significant correlations for ages up to 100 years, but not afterward. However, the correlation values, after spline or first-difference time-series detrending, were not age-related. Thus, detrending methods affect the correlations in the juvenile phase and may affect climate-related interpretations. The correlations between TRW and δ13C were not age-related, while those among the isotopes were significant throughout the ages. The correlation between δ13C and δD was the exception, as it became significant only after age > 100 years, suggesting a different use of reserves in the juvenile phase. In conclusion, the relationships among the tree-ring parameters are stable in all the different detrend scenarios after the juvenile phase, and they can be used together in multi-proxy paleoclimatic studies. The data of the juvenile phase can be used after spline-detrending or first-difference time-series calculation, depending on the purpose of the analysis to remove age-related trends. The work also provides clues on the possible causes of juvenile age trends

    Particle-Based Monte-Carlo Simulations of Steady-State Mass Transport at Intermediate Péclet Numbers

    Get PDF
    Conventional approaches for simulating steady-state distributions of dilute particles under diffusive and advective transport involve solving the diffusion and advection equations in at least two dimensions. Here, we present an alternative computational strategy by combining a particle-based rather than a field-based approach with the initialisation of particles in proportion to their flux. This method allows accurate prediction of the steady state and is applicable even at intermediate and high Péclet numbers (Pe>1) swhere traditional particle-based Monte-Carlo methods starting from randomly initialised particle distributions fail. We demonstrate that generating a flux of particles according to a predetermined density and velocity distribution at a single fixed time and initial location allows for accurate simulation of mass transport under flow. Specifically, upon initialisation in proportion to their flux, these particles are propagated individually and detected by summing up their Monte-Carlo trajectories in predefined detection regions. We demonstrate quantitative agreement of the predicted concentration profiles with the results of experiments performed with fluorescent particles in microfluidic channels under continuous flow. This approach is computationally advantageous and readily allows non-trivial initial distributions to be considered. In particular, this method is highly suitable for simulating advective and diffusive transport in microfluidic devices, for instance in the context of diffusive sizing.Financial support from the Biotechnology and Biological Sciences Research Council (BBSRC), the European Research Council (ERC), the Frances and Augustus Newman Foundation as well as the Swiss National Science Foundation is gratefully acknowledged

    ENVIRONMENTAL IMPACTS OF USING DESALINATED WATER IN CONCRETE PRODUCTION IN AREAS AFFECTED BY FRESHWATER SCARCITY

    Get PDF
    Up to 500 litres of water may be consumed at the batching plant per cubic meter of ready mix concrete, if water for washing mixing trucks and equipment is included. Demand for concrete is growing almost everywhere, regardless of local availability of freshwater. The use of freshwater for concrete production exacerbates stress on natural water resources. In water-stressed coastal countries such as Israel, desalinated seawater (DSW) is often used in the production of concrete. However, the environmental impacts of this practice have not yet been assessed. In this study the effect of using DSW on the water and carbon footprints of concrete was investigated using life cycle assessment. Water footprint results highlight the benefits of using DSW rather than freshwater to produce concrete in Israel. In contrast, because desalination is an energy intensive process, using DSW increases the greenhouse gas intensity of concrete. Nevertheless, this increase (0.27 kg CO2e/m3 concrete) is small, if compared to the life cycle greenhouse gas emissions of concrete. Our results show that using untreated seawater in the mix (transported by truck from the coast) in place of DSW, would be beneficial in terms of water and carbon footprints if the batching plant were located less than 13 km from the withdrawal point. However, use of untreated seawater increases steel reinforcement corrosion, resulting in loss of structural integrity of the reinforced concrete composite. Sustainability of replacing steel with non-corrosive materials should be explored as a way to reduce both water and carbon footprints of concrete

    Particle-Based Monte-Carlo Simulations of Steady-State Mass Transport at Intermediate Péclet Numbers

    Get PDF
    Conventional approaches for simulating steady-state distributions of dilute particles under diffusive and advective transport numbers involve solving the diffusion and advection equations in at least two dimensions. Here, we present an alternative computational strategy by combining a particle-based rather than a field-based approach with the initialisation of particles in proportion to their flux. This method allows accurate prediction of the steady state and is applicable even at intermediate and high Péclet numbers (Pe>1) where traditional particle-based Monte-Carlo methods starting from randomly initialised particle distributions fail. We demonstrate that generating a flux of particles according to a predetermined density and velocity distribution at a single fixed time and initial location allows for accurate simulation of mass transport under flow. Specifically, upon initialisation in proportion to their flux, these particles are propagated individually and detected by summing up their Monte-Carlo trajectories in predefined detection regions. We demonstrate quantitative agreement of the predicted concentration profiles with the results of experiments performed with fluorescent particles in microfluidic channels under continuous flow. This approach is computationally advantageous and readily allows non-trivial initial distributions to be considered. In particular, this method is highly suitable for simulating advective and diffusive transport in microfluidic devices, for instance in the context of diffusive sizing.Financial support from the Biotechnology and Biological Sciences Research Council (BBSRC), the European Research Council (ERC), the Frances and Augustus Newman Foundation as well as the Swiss National Science Foundation is gratefully acknowledged

    Variable response in alpine tree-ring stable isotopes following volcanic eruptions in the tropics and iceland

    Get PDF
    The importance of the stable isotopes in tree rings for the study of the climate variations caused by volcanic eruptions is still unclear. We studied δ18O, δD, δ13C stable isotopes of larch and cembran pine cellulose around four major eruptions with annual resolution, along with a superposed epoch analysis of 34 eruptions with 5-year resolution. Initial analysis of the tropical Tambora (1815 CE) and Samalas (1257 CE) eruptions showed a post-eruption decrease in δ18O values attributed to post-volcanic cooling and increased summer precipitation in Southern Europe, as documented by observations and climate simulations. The post-volcanic cooling was captured by the δD of speleothem fluid inclusion. The δ18O decrease was also observed in the analysis of 34 major tropical eruptions over the last 2000 years. In contrast, the eruptions of c. 750, 756, and 764 CE attributed to Icelandic volcanoes left no significant responses in the cellulose isotopes. Further analysis of all major Icelandic eruptions in the last 2000 years showed no consistent isotopic fingerprints, with the exception of lower post-volcanic δ13C values in larch. In summary, the δ18O values of cellulose can provide relevant information on climatic and hydroclimatic variations following major tropical volcanic eruptions, even when using the 5-year resolution wood samples of the Alpine Tree-Ring Isotope Record database

    β-Glucuronidase triggers extracellular MMAE release from an integrin-targeted conjugate

    Get PDF
    A non-internalizing \u3b1v\u3b23 integrin ligand was conjugated to the anticancer drug MMAE through a \u3b2-glucuronidase-responsive linker. In the presence of \u3b2-glucuronidase, only the conjugate bearing a PEG4 spacer inhibited the proliferation of integrin-expressing cancer cells at low nanomolar concentrations, indicating important structural requirements for the efficacy of these therapeutics

    Low-temperature anomalies in muon spin relaxation of solid and hollow nanoparticles: a pathway to detect unusual local spin dynamics

    Get PDF
    By means of muon spin relaxation measurements we unraveled the temperature spin dynamics in monodisperse maghemite spherical nanoparticles with different surface to volume ratio, in two samples with a full core (diameter D∼4 and D∼5nm) and one with a hollow core (external diameter D∼7.4nm). The behavior of the muon longitudinal relaxation rates as a function of temperature allowed us to identify two distinct spin dynamics. The first is well witnessed by the presence of a characteristic peak for all the samples around the so-called muon blocking temperature TBμ+_{B}^{μ+}. A Bloembergen-Purcell-Pound (BPP)-like model reproduces the experimental data around the peak and at higher temperatures (20<T<100K) by assuming the Néel reversal time of the magnetization as the dominating correlation time. An additional dynamic emerges in the samples with higher surface to volume ratio, namely, full 4 nm and hollow samples. This is witnessed by a shoulder of the main peak for T<20K at low longitudinal field (μ0_{0}H≈15mT), followed by an abrupt increase of the relaxation rate at T<10K, which is more evident for the hollow sample. These unusual anomalies of the longitudinal relaxation rate for T<TBμ+_{B}^{μ+} are suggested to be due to the surface spins’ dynamical behavior. Furthermore, for weak applied longitudinal magnetic field (μ0_{0}H≈15mT) and T<TBμ+_{B}^{μ+} we observed damped coherent oscillations of the muon asymmetry, which are a signature of a quasistatic local field at the muon site as probed by muons implanted in the inner magnetic core of the nanoparticles. The muon spin relaxation technique turns out to be very successful to study the magnetic behavior of maghemite nanoparticles and to detect their unusual local spin dynamics in low magnetic field conditions

    Calibration and functional analysis of three genetically encoded Cl-/pH sensors

    Get PDF
    Monitoring of the intracellular concentrations of Cl- and H+ requires sensitive probes that allow reliable quantitative measurements without perturbation of cell functioning. For these purposes the most promising are genetically encoded fluorescent biosensors, which have become powerful tools for non-invasive intracellular monitoring of ions, molecules and enzymatic activity. A ratiometric CFP/YFP-based construct with a relatively good sensitivity to Cl- has been developed (Markova et al., 2008; Waseem et al., 2010). Recently, a combined Cl-/pH sensor (ClopHensor) opened the way for simultaneous ratiometric measurement of these two ions (Arosio et al., 2010). ClopHensor was obtained by fusion of a red-fluorescent protein (DsRed-monomer) to the E2GFP variant that contains a specific Cl--binding site. This construct possesses pKa = 6.8 for H+ and Kd in the 40-50 mM range for Cl- at physiological pH (~7.3) As in the majority of cell types the intracellular Cl- concentration ([Cl-]i) is about 10 mM, the development of sensors with higher sensitivity is highly desirable. Here we report the intracellular calibration and functional characterization of ClopHensor and its two derivatives: the membrane targeting PalmPalm-ClopHensor and the H148G/V224L mutant with improved Cl- affinity, reduced pH dependence and pKa shifted to more alkaline values. For functional analysis, constructs were expressed in CHO cells and [Cl-]i was changed by using pipettes with different Cl- concentrations during whole-cell recordings. Kd values for Cl- measured at 33°C and pH ~ 7.3 were, respectively, 39 mM, 47 mM and 21 mM for ClopHensor, PalmPalm-ClopHensor and the H148G/V224L mutant. PalmPalm-ClopHensor resolved responses to activation of Cl--selective glycine receptor channels better than did ClopHensor. Our observations indicate that these different ClopHensor constructs are promising tools for non- invasive measurement of [Cl-]i in various living cells. © 2013 Mukhtarov, Liguori, Waseem, Rocca, Buldakova, Arosio and Bregestovski
    • …
    corecore