35 research outputs found

    Development of hydrides for hydrogen storage and purification

    Get PDF
    Entre las alternativas que existen para reducir los problemas asociados al uso de combustibles tradicionales se evalúa el uso del hidrógeno (H2) como una manera de transportar y almacenar energía. Su combustión no genera emisiones contaminantes, de manera que su utilización sería favorable en situaciones donde el uso de otro tipo de combustible fuera particularmente nociva (transporte de pasajeros en ciudades, p. ej.) o también como método de acumulación de energía (instalaciones rurales). Un sistema basado en H2 requiere soluciones tecnológicas para todas las etapas que comprenden desde su producción hasta su utilización. En este proyecto se abordan dos de ellas: la purificación de H2 y su almacenamiento, considerando que el conjunto de estas etapas es necesario para proveer de H2 a una aplicación específica. Tanto para el almacenamiento de H2 como para su purificación se propone el uso de materiales formadores de hidruros buscando los siguientes objetivos generales: 1) Desarrollar materiales de última generación (amiduros, sistemas desestabilizados) optimizando sus propiedades de almacenamiento. 2) Explorar el comportamiento a escalas de masa intermedias de materiales con propiedades conocidas. Este segundo objetivo tiene como finalidad avanzar en la construcción de un tanque almacenador de H2 apto para su utilización en instalaciones aisladas (no móviles). 3) Aprovechar la alta selectividad de la reacción de estos materiales con H2 frente a otros gases (CO y CO2, por ejemplo) para utilizarlos en purificación de H2. 4) Desarrollar hidruros nanoconfinados en matrices carbonáceas (eventualmente dopados) a fines de mejorar la estabilidad frente al ciclado de estos materiales almacenadores.The use of hydrogen (H2) as an energy vector is considered an alternative to reduce the problems associated with traditional fuels. Since its combustion does not generate polluting emissions, its use would be favorable in situations where another type of fuel is particularly harmful (city transport, for example) or where an energy storage media is required (rural facilities). A system based on H2 requires technological solutions for all the stages from production to utilization. In this project two of them are addressed: H2 purification and storage. The use of hydride forming materials is proposed for both H2 storage and purification, seeking the following general objectives: 1) Development of new materials (amides, destabilized systems) optimizing their storage properties. 2) Evaluation of the behavior at intermediate mass scales of materials with known properties. The purpose of this second objective is to advance in the construction of an H2 storage tank suitable for use in isolated (non-mobile) installations. 3) Application of these materials to H2 purification, based on the high selectivity of the reaction with H2 against other gases (CO and CO2, for example). 4) Development of nanoconfined hydrides in carbonaceous matrices (possibly doped) in order to improve the stability against cycling of these storage materials

    Effect of β-Li3N phase, Li2O addition and thermal treatment on the hydrogen sorption behavior of Li3N

    Get PDF
    The hydriding of Li3N to LiNH2 is investigated to clarify the influence of the beta-Li3N phase, the addition of Li2O and the thermal treatment of Li3N on the hydrogen storage properties of the Li-N-H system. As-milled Li3N displays fast initial absorption that is attributed to the formation of beta-Li3N nanograins, the increase of the surface area, and the presence of surface defects induced by mechanical milling. However, further hydrogen absorption is retarded in comparison with the as-received sample due to the presence of the beta-Li3N phase formed during milling. Thus, commercial Li3N exhibits the highest hydrogen storage capacity in the first cycle in comparison with as-heated Li3N and as-milled samples. In the case of Li2O addition, no interaction with Li3N was detected. The addition of LiH to the commercial Li3N, as-milled Li3N and Li3N-Li2O influences only the stability of the samples under hydrogen cycling. The hydrogen absorption/desorption behavior is mainly controlled by the amount of beta-Li3N formed during milling, while at long times the microstructure has a minor effect.Fil: Fernández Albanesi, Luisa Francisca. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Arneodo Larochette, Pierre Paul. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; ArgentinaFil: Gennari, Fabiana Cristina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentin

    Improvements in the hydrogen storage properties of the Mg(NH2)2-LiH composite by KOH addition

    Get PDF
    Potassium-containing compounds, such as KH, KOH, KNH2 and different potassium halides, have shown positive effects on the dehydrogenation properties of the Li-Mg-N-H system. However, it is still discussed whether the K-compounds modify the thermodynamics of the system or if they have only a catalytic effect. In this work the impact of the addition of two K-containing compounds (0.08 mol% of KCl and KOH) on the hydrogen storage performance of the Mg(NH2)2-LiH composite was studied. The KOH incorporation reduced the dehydrogenation temperature from 197 °C to 154 °C, beginning the process at low temperature (∼70 °C). The doped sample was able to reversibly absorb and desorb 4.6 wt% of hydrogen with improved kinetics; dehydrogenation rates were increased four times, whereas absorptions required 20% less time to be completed in comparison to the pristine material. The thermodynamic destabilization of the Mg(NH2)2-2LiH composite by the addition of a small amount of KOH was demonstrated by an increment of 30% in the dehydrogenation equilibrium pressure. According to detailed structural investigations, the KH formed by the KOH decomposition through milling and thermal treatment, can replace LiH and react with Mg(NH2)2 to produce a mixed potassium-lithium amide (Li3K(NH2)4). The KH role is not limited to catalysis, but rather it is responsible for the thermodynamic destabilization of the Mg(NH2)2-LiH composite and it is actively involved in the dehydrogenation process.Fil: Amica, Guillermina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Enzo, S.. Università Degli Studi Di Sassari; ItaliaFil: Arneodo Larochette, Pierre Paul. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Gennari, Fabiana Cristina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentin

    Fabrication of copper foams by powder metallurgy

    Get PDF
    Se presenta un método de fabricación de esponjas de cobre por pulvimetalurgia, empleando perlas de urea como formadores de poros que son removidas por disolución en agua antes de sinterizar el compacto. Este método permite un control preciso de las características de las celdas (tamaño, forma y distribución), obteniéndose una porosidad de celdas interconectadas. El empleo de metales en polvo lleva a tener una porosidad asociada a las paredes de las mismas que afecta a las propiedades mecánicas, provocando la falla a tensiones menores de lo esperable. Se optimizó el método de fabricación seleccionando los parámetros de sinterizado (presión de compactado, temperatura y atmósfera). Para caracterizar la meso y microestructura de las muestras se emplearon técnicas de microscopía tradicionales (microscopio electrónico de barrido SEM) y tomografía de rayos x. Esta última técnica permite visualizar en 3D la distribución de las celdas, realizar una caracterización completa de la mesoestructura, evaluar la porosidad de las muestras y seguir la evolución de la deformación de las celdas en ensayos de compresión.A method for the fabrication of copper foams by powder metallurgy, employing carbamide beads as space holders, is presented. These are removed by water dissolution before sintering the compact. The method allows for a precise control of the cell characteristics (size, shape and distribution) within an interconnected porosity. The use of metal powder promotes the formation of an inherent porosity in the cell walls that affects their mechanical properties, producing failure at a lower than expected tension. Optimization of the method was achieved by selecting the sintering parameters (compaction pressure, temperature and atmosphere). The mesostructure and microstructure of the samples were characterized by traditional microscopy (scanning electron microscope SEM) and x-ray tomography. The latter technique allows a 3D visualization of the cell distribution, a complete characterization of the mesostructure, the evaluation of the porosity and to follow the cell evolution during compression tests.Fil: Malachevsky, Maria Teresa. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Bertolino, Graciela Mabel. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Arneodo Larochette, Pierre Paul. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Baruj, Alberto Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Oliber, Edgardo Antonio. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: D'ovido, Claudio. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Cuscueta, Diego Javier. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentin

    Sorption behavior of the MgH2-Mg2FeH6 hydride storage system synthesized by mechanical milling followed by sintering

    Get PDF
    The hydrogen sorption behavior of the Mg2FeH6eMgH2hydride system is investigated via in-situ synchrotron and laboratory powder X-ray diffraction (SR-PXD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), particle size distribution (PSD) and volumetric techniques. The Mg2FeH6eMgH2 hydride system is obtained by mechanical milling in argon atmosphere followed by sintering at high temperature and hydrogen pressure. In-situ SR-PXD results show that upon hydriding MgH2 is a precursor for Mg2FeH6 formation and remained as hydrided phase in the obtained material. Diffusion constraints preclude the further formation of Mg2FeH6. Upon dehydriding, our results suggest that MgH2 and Mg2FeH6 decompose independently in a narrow temperature range between 275 and 300 C. Moreover, the decomposition behavior of both hydrides in the Mg2FeH6eMgH2 hydride mixture is influenced by each other via dual synergetic-destabilizing effects. The final hydriding/dehydriding products and therefore the kinetic behavior of the Mg2FeH6eMgH2 hydride system exhibits a strong dependence on the temperature and pressure conditions.Fil: Puszkiel, Julián Atilio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica; ArgentinaFil: Gennari, Fabiana Cristina. Comision Nacional de Energia Atomica. Gerencia de Area de Aplicaciones de la Tecnologia Nuclear. Gerencia de Investigacion Aplicada; . Universidad Nacional de Cuyo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Arneodo Larochette, Pierre Paul. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comision Nacional de Energia Atomica. Gerencia de Area de Aplicaciones de la Tecnologia Nuclear. Gerencia de Investigacion Aplicada; . Universidad Nacional de Cuyo; ArgentinaFil: Karimi, Fahim. Materials Technology. Institute of Materials Research; AlemaniaFil: Pistidda, Claudio. Materials Technology. Institute of Materials Research; AlemaniaFil: Gosalawit Utke, Rapee. Materials Technology. Institute of Materials Research; Alemania. Suranaree University of Technology. Institute of Science, School of Chemistry; TailandiaFil: Jepsen, Julian. Materials Technology. Institute of Materials Research; AlemaniaFil: Jensen, Torben R.. University of Aarhu. Center for Energy Materials, iNANO and Department of Chemistry; DinamarcaFil: Gundlach, Carsten. Lund University. MAX-lab; SuizaFil: Bellosta von Colbe, José. Materials Technology. Institute of Materials Research; AlemaniaFil: Klassen, Thomas. Materials Technology. Institute of Materials Research; AlemaniaFil: Dornheim, Martin. Materials Technology. Institute of Materials Research; Alemani

    New Insight on the Hydrogen Absorption Evolution of the Mg-Fe-H System under Equilibrium Conditions

    Get PDF
    Mg2FeH6 is regarded as potential hydrogen and thermochemical storage mediumdue to its high volumetric hydrogen (150 kg/m3) and energy (0.49 kWh/L) densities. In this work, the mechanism of formation of Mg2FeH6 under equilibrium conditions is thoroughly investigated applying volumetric measurements, X-ray diffraction (XRD), X-ray absorption near edge structure (XANES), and the combination of scanning transmission electron microscopy (STEM) with energy-dispersive X-ray spectroscopy (EDS) and high-resolution transmission electron microscopy (HR-TEM). Starting from a 2Mg:Fe stoichiometric powder ratio, thorough characterizations of samples taken at different states upon hydrogenation under equilibrium conditions confirm that the formation mechanism of Mg2FeH6 occurs from elemental Mg and Fe by columnar nucleation of the complex hydride at boundaries of the Fe seeds. The formation of MgH2 is enhanced by the presence of Fe. However, MgH2 does not take part as intermediate for the formation of Mg2FeH6 and acts as solid-solid diffusion barrier which hinders the complete formation of Mg2FeH6. This work provides novel insight about the formation mechanism of Mg2FeH6.Fil: Puszkiel, Julián Atilio. Helmholtz–Zentrum Geesthacht; Alemania. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Castro Riglos, Maria Victoria. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Ramallo Lopez, Jose Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Mizrahi, Martin Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Gemming, Thomas. IFW Dresden; AlemaniaFil: Pistidda, Claudio. Helmholtz–Zentrum Geesthacht; AlemaniaFil: Arneodo Larochette, Pierre Paul. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Bellosta von Colbe, José. Helmholtz–Zentrum Geesthacht; AlemaniaFil: Klassen, Thomas. Helmut Schmidt University; Alemania. Helmholtz–Zentrum Geesthacht; AlemaniaFil: Dornheim, Martin. Helmholtz–Zentrum Geesthacht; AlemaniaFil: Gennari, Fabiana Cristina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Effect of Fe additive on the hydrogenation-dehydrogenation properties of 2LiH + MgB2/2LiBH4 + MgH2 system

    Get PDF
    Lithium reactive hydride composite 2LiBH4 + MgH2 (Li-RHC) has been lately investigated owing to its potential as hydrogen storage medium for mobile applications. However, the main problem associated with this material is its sluggish kinetic behavior. Thus, aiming to improve the kinetic properties, in the present work the effect of the addition of Fe to Li-RHC is investigated. The addition of Fe lowers the starting decomposition temperature of Li-RHC about 30 °C and leads to a considerably faster isothermal dehydrogenation rate during the first hydrogen sorption cycle. Upon hydrogenation, MgH2 and LiBH4 are formed whereas Fe appears not to take part in any reaction. Upon the first dehydrogenation, the formation of nanocrystalline, well distributed FeB reduces the overall hydrogen storage capacity of the system. Throughout cycling, the agglomeration of FeB particles causes a kinetic deterioration. An analysis of the hydrogen kinetic mechanism during cycling shows that the hydrogenation and dehydrogenation behavior is influenced by the activity of FeB as heterogeneous nucleation center for MgB2 and its non-homogenous distribution in the Li-RHC matrix.Fil: Puszkiel, Julián Atilio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Helmholtz-zentrum Geesthacht - Zentrum Für Material- Und Küstenforschung Gmbh;Fil: Gennari, Fabiana Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Centro Atómico Bariloche; ArgentinaFil: Arneodo Larochette, Pierre Paul. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Centro Atómico Bariloche; ArgentinaFil: Ramallo Lopez, Jose Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Vainio, U.. Helmholtz-zentrum Geesthacht - Zentrum Für Material- Und Küstenforschung Gmbh; . Deutsches Elektronen-Synchrotron; AlemaniaFil: Karimi, F.. Helmholtz-zentrum Geesthacht - Zentrum Für Material- Und Küstenforschung Gmbh;Fil: Pranzas, P. K.. Helmholtz-zentrum Geesthacht - Zentrum Für Material- Und Küstenforschung Gmbh;Fil: Troiani, Horacio Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Centro Atómico Bariloche; ArgentinaFil: Pistidda, C.. Helmholtz-zentrum Geesthacht - Zentrum Für Material- Und Küstenforschung Gmbh;Fil: Jepsen, J.. Helmholtz-zentrum Geesthacht - Zentrum Für Material- Und Küstenforschung Gmbh;Fil: Tolkiehn, M.. Deutsches Elektronen-Synchrotron; AlemaniaFil: Welter, E.. Deutsches Elektronen-Synchrotron; AlemaniaFil: Klassen, T.. Helmholtz-zentrum Geesthacht - Zentrum Für Material- Und Küstenforschung Gmbh;Fil: Bellosta Von Colbe, J.. Helmholtz-zentrum Geesthacht - Zentrum Für Material- Und Küstenforschung Gmbh;Fil: Dornheim, M.. Helmholtz-zentrum Geesthacht - Zentrum Für Material- Und Küstenforschung Gmbh

    New Insight on the Hydrogen Absorption Evolution of the Mg–Fe–H System under Equilibrium Conditions

    Get PDF
    Mg₂FeH₆ is regarded as potential hydrogen and thermochemical storage medium due to its high volumetric hydrogen (150 kg/m³) and energy (0.49 kWh/L) densities. In this work, the mechanism of formation of Mg₂FeH₆ under equilibrium conditions is thoroughly investigated applying volumetric measurements, X-ray diffraction (XRD), X-ray absorption near edge structure (XANES), and the combination of scanning transmission electron microscopy (STEM) with energy-dispersive X-ray spectroscopy (EDS) and high-resolution transmission electron microscopy (HR-TEM). Starting from a 2Mg:Fe stoichiometric powder ratio, thorough characterizations of samples taken at different states upon hydrogenation under equilibrium conditions confirm that the formation mechanism of Mg₂FeH6 occurs from elemental Mg and Fe by columnar nucleation of the complex hydride at boundaries of the Fe seeds. The formation of MgH₂ is enhanced by the presence of Fe. However, MgH₂ does not take part as intermediate for the formation of Mg₂FeH₆ and acts as solid-solid diffusion barrier which hinders the complete formation of Mg₂FeH₆. This work provides novel insight about the formation mechanism of Mg₂FeH₆.Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicada

    Li4(NH2)3Cl amide-chloride: A new synthesis route, and hydrogen storage kinetic and thermodynamic properties

    Get PDF
    Amide-halide compounds were identified as possible promoters of the dehydrogenation kinetics of the Li-N-H system. However, reversible hydrogen storage capacities and sorption kinetics of Li4(NH2)3Cl and Li3Mg0.5(NH2)3Cl have not been reported yet. In the present work, Li4(NH2)3Cl was synthesized using a new synthesis route that involves the pre-milling of a LiNH2-LiCl mixture. Attempts to synthesize Li3Mg0.5(NH2)3Cl by applying similar synthesis procedures using LiNH2 and 0.5MgCl2 were unsuccessful; instead, a mixture of Li4(NH2)3Cl-0.5Mg(NH2)2 was obtained. The hydrogen storage properties of the Li4(NH2)3Cl-3LiH and Li4(NH2)3Cl-0.5Mg(NH2)2-3LiH composites were evaluated between 200 °C and 300 °C. The onset of hydrogen release was reduced by 20 °C when Li4(NH2)3Cl-3LiH decomposed in the presence of Mg(NH2)2 (180 °C with respect to 200 °C) and its hydrogen desorption rate increased by 83%. However, no change in the dehydrogenation activation energy was observed for Li4(NH2)3Cl-3LiH decomposition due to minor amounts of Mg(NH2)2. The hydrogen storage capacity under cycling was reduced from about 3.0 wt% to 1.5 wt% at 300 °C, after rehydrogenation at 6.0 MPa. The formation of Li7(NH)3Cl was clearly identified in the dehydrogenated material. Unfortunately, the sloped plateau and the thermodynamic stability of Li4(NH2)3Cl-3LiH precludes its hydrogen storage applicability.Fil: Gamba, Nadia Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Arneodo Larochette, Pierre Paul. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; ArgentinaFil: Gennari, Fabiana Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentin
    corecore