133 research outputs found

    miRNA expression is increased in serum from patients with semantic variant primary progressive aphasia

    Get PDF
    Primary progressive aphasia (PPA) damages the parts of the brain that control speech and language. There are three clinical PPA variants: nonfluent/agrammatic (nfvPPA), logopenic (lvPPA) and semantic (svPPA). The pathophysiology underlying PPA variants is not fully understood, including the role of micro (mi)RNAs which were previously shown to play a role in several neurodegenerative diseases. Using a two-step analysis (array and validation through real-time PCR), we investigated the miRNA expression pattern in serum from 54 PPA patients and 18 controls. In the svPPA cohort, we observed a generalized upregulation of miRNAs with miR-106b-5p and miR-133a-3p reaching statistical significance (miR-106b-5p: 2.69 ± 0.89 mean ± SD vs. 1.18 ± 0.28

    PRNP P39L variant is a rare cause of frontotemporal dementia in Iialian population

    Get PDF
    The missense P39L variant in the prion protein gene (PRNP) has recently been associated with frontotemporal dementia (FTD). Here, we analyzed the presence of the P39L variant in 761 patients with FTD and 719 controls and found a single carrier among patients. The patient was a 67-year-old male, with a positive family history for dementia, who developed apathy, short term memory deficit, and postural instability at 66. Clinical and instrumental workup excluded prion disease. At MRI, bilateral frontal lobe atrophy was present. A diagnosis of FTD was made, with a mainly apathetic phenotype. The PRNP P39L mutation may be an extremely rare cause of FTD (0.13%)

    Testing the 2018 NIA-AA research framework in a retrospective large cohort of patients with cognitive impairment: From biological biomarkers to clinical syndromes

    Get PDF
    Background According to the 2018 NIA-AA research framework, Alzheimer's disease (AD) is not defined by the clinical consequences of the disease, but by its underlying pathology, measured by biomarkers. Evidence of both amyloid-beta (A beta) and phosphorylated tau protein (p-tau) deposition-assessed interchangeably with amyloid-positron emission tomography (PET) and/or cerebrospinal fluid (CSF) analysis-is needed to diagnose AD in a living person. Our aim was to test the new NIA-AA research framework in a large cohort of cognitively impaired patients to evaluate correspondence between the clinical syndromes and the underlying pathologic process testified by biomarkers. Methods We retrospectively analysed 628 subjects referred to our centre in suspicion of dementia, who underwent CSF analysis, together with neuropsychological assessment and neuroimaging, and were diagnosed with different neurodegenerative dementias according to current criteria, or as cognitively unimpaired. Subjects were classified considering CSF biomarkers, and the prevalence of normal, AD-continuum and non-AD profiles in each clinical syndrome was calculated. The positivity threshold of each CSF biomarker was first assessed by receiver operating characteristic analysis, using A beta-positive/negative status as determined by amyloid-PET visual reads. The agreement between CSF and amyloid-PET data was also evaluated. Results Among patients with a clinical diagnosis of AD, 94.1% were in the AD-continuum, whereas 5.5% were classified as non-AD and 0.4% were normal. The AD-continuum profile was found also in 26.2% of frontotemporal dementia, 48.6% of Lewy body dementia, 25% of atypical parkinsonism and 44.7% of vascular dementia. Biomarkers' profile did not differ in amnestic and not amnestic mild cognitive impairment. CSF A beta levels and amyloid-PET tracer binding negatively correlated, and the concordance between the two A beta biomarkers was 89%. Conclusions The examination of the 2018 NIA-AA research framework in our clinical setting revealed a good, but incomplete, correspondence between the clinical syndromes and the underlying pathologic process measured by CSF biomarkers. The AD-continuum profile resulted to be a sensitive, but non-specific biomarker with regard to the clinical AD diagnosis. CSF and PET A beta biomarkers were found to be not perfectly interchangeable to quantify the A beta burden, possibly because they measure different aspects of AD pathology

    CSF β-amyloid predicts prognosis in patients with multiple sclerosis

    Get PDF
    Background: The importance of predicting disease progression in multiple sclerosis (MS) has increasingly been recognised, hence reliable biomarkers are needed. Objectives: To investigate the prognostic role of cerebrospinal fluid (CSF) Amyloid beta1-42 (A) levels by the determination of a cut-off value to classify patients in slow and fast progressors. To evaluate possible association with white (WM) and grey matter (GM) damage at early disease stages. Methods: Sixty patients were recruited and followed-up for three to five years. Patients underwent clinical assessment, CSF analysis to determine Aβ levels, and brain MRI (at baseline and after 1 year). T1-weighted volumes were calculated. T2-weighted scans were used to quantify WM lesion loads. Results: Lower CSF Aβ levels were observed in patients with a worse follow-up EDSS (r=−0.65, p0.05). Conclusions: Low CSF Aβ levels may represent a predictive biomarker of disease progression in MS

    Progranulin plasma levels predict the presence of GRN mutations in asymptomatic subjects and do not correlate with brain atrophy: results from the GENFI study.

    Get PDF
    We investigated whether progranulin plasma levels are predictors of the presence of progranulin gene (GRN) null mutations or of the development of symptoms in asymptomatic at risk members participating in the Genetic Frontotemporal Dementia Initiative, including 19 patients, 64 asymptomatic carriers, and 77 noncarriers. In addition, we evaluated a possible role of TMEM106B rs1990622 as a genetic modifier and correlated progranulin plasma levels and gray-matter atrophy. Plasma progranulin mean ± SD plasma levels in patients and asymptomatic carriers were significantly decreased compared with noncarriers (30.5 ± 13.0 and 27.7 ± 7.5 versus 99.6 ± 24.8 ng/mL, p 61.55 ng/mL, the test had a sensitivity of 98.8% and a specificity of 97.5% in predicting the presence of a mutation, independent of symptoms. No correlations were found between progranulin plasma levels and age, years from average age at onset in each family, or TMEM106B rs1990622 genotype (p > 0.05). Plasma progranulin levels did not correlate with brain atrophy. Plasma progranulin levels predict the presence of GRN null mutations independent of proximity to symptoms and brain atrophy

    Behavioral and Neurophysiological Effects of Transcranial Direct Current Stimulation (tDCS) in Fronto-Temporal Dementia

    Get PDF
    Fronto-temporal dementia (FTD) is the clinical-diagnostic term that is now preferred to describe patients with a range of progressive dementia syndromes associated with focal atrophy of the frontal and anterior temporal cerebral regions. Currently available FTD medications have been used to control behavioral symptoms, even though they are ineffective in some patients, expensive and may induce adverse effects. Alternative therapeutic approaches are worth pursuing, such as non-invasive brain stimulation with transcranial direct current (tDCS). tDCS has been demonstrated to influence neuronal excitability and reported to enhance cognitive performance in dementia. The aim of this study was to investigate whether applying Anodal tDCS (2 mA intensity, 20 min) over the fronto-temporal cortex bilaterally in five consecutive daily sessions would improve cognitive performance and behavior symptoms in FTD patients, also considering the neuromodulatory effect of stimulation on cortical electrical activity measured through EEG. We recruited 13 patients with FTD and we tested the effect of Anodal and Sham (i.e., placebo) tDCS in two separate experimental sessions. In each session, at baseline (T0), after 5 consecutive days (T1), after 1 week (T2), and after 4 weeks (T3) from the end of the treatment, cognitive and behavioral functions were tested. EEG (21 electrodes, 10–20 international system) was recorded for 5 min with eyes closed at the same time points in nine patients. The present findings showed that Anodal tDCS applied bilaterally over the fronto-temporal cortex significantly improves (1) neuropsychiatric symptoms (as measured by the neuropsychiatric inventory, NPI) in FTD patients immediately after tDCS treatment, and (2) simple visual reaction times (sVRTs) up to 1 month after tDCS treatment. These cognitive improvements significantly correlate with the time course of the slow EEG oscillations (delta and theta bands) measured at the same time points. Even though further studies on larger samples are needed, these findings support the effectiveness of Anodal tDCS over the fronto-temporal regions in FTD on attentional processes that might be correlated to a normalized EEG low-frequency pattern

    Amyloid PET imaging and dementias: potential applications in detecting and quantifying early white matter damage

    Get PDF
    Purpose Positron emission tomography (PET) with amyloid tracers (amy-PET) allows the quantification of pathological amyloid deposition in the brain tissues, including the white matter (WM). Here, we evaluate amy-PET uptake in WM lesions (WML) and in the normal-appearing WM (NAWM) of patients with Alzheimer’s disease (AD) and non-AD type of dementia. Methods Thirty-three cognitively impaired subjects underwent brain magnetic resonance imaging (MRI), Aβ1-42 (Aβ) determination in the cerebrospinal fluid (CSF) and amy-PET. Twenty-three patients exhibiting concordant results in both CSF analysis and amy-PET for cortical amyloid deposition were recruited and divided into two groups, amyloid positive (A+) and negative (A−). WML quantification and brain volumes’ segmentation were performed. Standardized uptake values ratios (SUVR) were calculated in the grey matter (GM), NAWM and WML on amy-PET coregistered to MRI images. Results A+ compared to A− showed a higher WML load (p = 0.049) alongside higher SUVR in all brain tissues (p < 0.01). No correlations between CSF Aβ levels and WML and NAWM SUVR were found in A+, while, in A−, CSF Aβ levels were directly correlated to NAWM SUVR (p = 0.04). CSF Aβ concentration was the only predictor of NAWM SUVR (adj R2 = 0.91; p = 0.04) in A−. In A+ but not in A− direct correlations were identified between WM and GM SUVR (p < 0.01). Conclusions Our data provide evidence on the role of amy-PET in the assessment of microstructural WM injury in non-AD dementia, whereas amy-PET seems less suitable to assess WM damage in AD patients due to a plausible amyloid accrual therein

    Distinct patterns of brain atrophy in Genetic Frontotemporal Dementia Initiative (GENFI) cohort revealed by visual rating scales.

    Get PDF
    BACKGROUND: In patients with frontotemporal dementia, it has been shown that brain atrophy occurs earliest in the anterior cingulate, insula and frontal lobes. We used visual rating scales to investigate whether identifying atrophy in these areas may be helpful in distinguishing symptomatic patients carrying different causal mutations in the microtubule-associated protein tau (MAPT), progranulin (GRN) and chromosome 9 open reading frame (C9ORF72) genes. We also analysed asymptomatic carriers to see whether it was possible to visually identify brain atrophy before the appearance of symptoms. METHODS: Magnetic resonance imaging of 343 subjects (63 symptomatic mutation carriers, 132 presymptomatic mutation carriers and 148 control subjects) from the Genetic Frontotemporal Dementia Initiative study were analysed by two trained raters using a protocol of six visual rating scales that identified atrophy in key regions of the brain (orbitofrontal, anterior cingulate, frontoinsula, anterior and medial temporal lobes and posterior cortical areas). RESULTS: Intra- and interrater agreement were greater than 0.73 for all the scales. Voxel-based morphometric analysis demonstrated a strong correlation between the visual rating scale scores and grey matter atrophy in the same region for each of the scales. Typical patterns of atrophy were identified: symmetric anterior and medial temporal lobe involvement for MAPT, asymmetric frontal and parietal loss for GRN, and a more widespread pattern for C9ORF72. Presymptomatic MAPT carriers showed greater atrophy in the medial temporal region than control subjects, but the visual rating scales could not identify presymptomatic atrophy in GRN or C9ORF72 carriers. CONCLUSIONS: These simple-to-use and reproducible scales may be useful tools in the clinical setting for the discrimination of different mutations of frontotemporal dementia, and they may even help to identify atrophy prior to onset in those with MAPT mutations

    Conceptual framework for the definition of preclinical and prodromal frontotemporal dementia

    Get PDF
    The presymptomatic stages of frontotemporal dementia (FTD) are still poorly defined and encompass a long accrual of progressive biological (preclinical) and then clinical (prodromal) changes, antedating the onset of dementia. The heterogeneity of clinical presentations and the different neuropathological phenotypes have prevented a prior clear description of either preclinical or prodromal FTD. Recent advances in therapeutic approaches, at least in monogenic disease, demand a proper definition of these predementia stages. It has become clear that a consensus lexicon is needed to comprehensively describe the stages that anticipate dementia. The goal of the present work is to review existing literature on the preclinical and prodromal phases of FTD, providing recommendations to address the unmet questions, therefore laying out a strategy for operationalizing and better characterizing these presymptomatic disease stages

    The giardial VPS35 retromer subunit is necessary for multimeric complex assembly and interaction with the Vacuolar protein sorting receptor

    Get PDF
    The retromer is a pentameric protein complex that mediates the retrograde transport of acid hydrolase receptors between endosomes and the trans-Golgi network and is conserved across all eukaryotes. Unlike other eukaryotes, the endomembrane system of Giardia trophozoite is simple and is composed only of the endoplasmic reticulum and peripheral vesicles (PVs), which may represent an ancient organellar system converging compartments such as early and late endosomes and lysosomes. Sorting and trafficking of membrane proteins and soluble hydrolases from the endoplasmic reticulum to the PVs have been described as specific and conserved but whether the giardial retromer participates in receptor recycling remains elusive. Homologs of the retromer Vacuolar Protein Sorting (Vps35p, Vps26p, and Vps29p) have been identified in this parasite. Cloning the GlVPS35 subunit and antisera production enabled the localization of this protein in the PVs as well as in the cytosol. Tagged expression of the subunits was used to demonstrate their association with membranes, and immunofluorescence confocal laser scanning revealed high degrees of colabeling between the retromer subunits and also with the endoplasmic reticulum and PV compartment markers. Protein-protein interaction data revealed interaction between the subunits of GlVPS35 and the cytosolic domain of the hydrolase receptor GlVps. Altogether our data provide original information on the molecular interactions that mediate assembly of the cargo-selective retromer subcomplex and its involvement in the recycling of the acid hydrolase receptor in this parasite.Fil: Miras, Silvana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Instituto de Investigaciones Médicas Mercedes y Martín Ferreyra; ArgentinaFil: Merino, Maria Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Instituto de Investigaciones Médicas Mercedes y Martín Ferreyra; ArgentinaFil: Gottig Schor, Natalia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Ropolo, Andrea Silvana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Instituto de Investigaciones Médicas Mercedes y Martín Ferreyra; ArgentinaFil: Touz, Maria Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Instituto de Investigaciones Médicas Mercedes y Martín Ferreyra; Argentin
    • …
    corecore