141 research outputs found

    Structural and functional map for forelimb movement phases between cortex and medulla

    Get PDF
    The cortex influences movement by widespread top-down projections to many nervous system regions. Skilled forelimb movements require brainstem circuitry in the medulla; however, the logic of cortical interactions with these neurons remains unexplored. Here, we reveal a fine-grained anatomical and functional map between anterior cortex (AC) and medulla in mice. Distinct cortical regions generate three-dimensional synaptic columns tiling the lateral medulla, topographically matching the dorso-ventral positions of postsynaptic neurons tuned to distinct forelimb action phases. Although medial AC (MAC) terminates ventrally and connects to forelimb-reaching-tuned neurons and its silencing impairs reaching, lateral AC (LAC) influences dorsally positioned neurons tuned to food handling, and its silencing impairs handling. Cortico-medullary neurons also extend collaterals to other subcortical structures through a segregated channel interaction logic. Our findings reveal a precise alignment between cortical location, its function, and specific forelimb-action-tuned medulla neurons, thereby clarifying interaction principles between these two key structures and beyond

    Brainstem Circuits Controlling Action Diversification

    Get PDF
    Neuronal circuits that regulate movement are distributed throughout the nervous system. The brainstem is an important interface between upper motor centers involved in action planning and circuits in the spinal cord ultimately leading to execution of body movements. Here we focus on recent work using genetic and viral entry points to reveal the identity of functionally dedicated and frequently spatially intermingled brainstem populations essential for action diversification, a general principle conserved throughout evolution. Brainstem circuits with distinct organization and function control skilled forelimb behavior, orofacial movements, and locomotion. They convey regulatory parameters to motor output structures and collaborate in the construction of complex natural motor behaviors. Functionally tuned brainstem neurons for different actions serve as important integrators of synaptic inputs from upstream centers, including the basal ganglia and cortex, to regulate and modulate behavioral function in different contexts

    Connecting neuronal circuits for movement

    Get PDF

    Characterization of two Runx1-dependent nociceptor differentiation programs necessary for inflammatory versus neuropathic pain

    Get PDF
    BACKGROUND: The cellular and molecular programs that control specific types of pain are poorly understood. We reported previously that the runt domain transcription factor Runx1 is initially expressed in most nociceptors and controls sensory neuron phenotypes necessary for inflammatory and neuropathic pain. RESULTS: Here we show that expression of Runx1-dependent ion channels and receptors is distributed into two nociceptor populations that are distinguished by persistent or transient Runx1 expression. Conditional mutation of Runx1 at perinatal stages leads to preferential impairment of Runx1-persistent nociceptors and a selective defect in inflammatory pain. Conversely, constitutive Runx1 expression in Runx1-transient nociceptors leads to an impairment of Runx1-transient nociceptors and a selective deficit in neuropathic pain. Notably, the subdivision of Runx1-persistent and Runx1-transient nociceptors does not follow the classical nociceptor subdivision into IB4+ nonpeptidergic and IB4- peptidergic populations. CONCLUSION: Altogether, we have uncovered two distinct Runx1-dependent nociceptor differentiation programs that are permissive for inflammatory versus neuropathic pain. These studies lend support to a transcription factor-based distinction of neuronal classes necessary for inflammatory versus neuropathic pain

    Connecting Circuits for Supraspinal Control of Locomotion

    Get PDF
    Locomotion is regulated by distributed circuits and achieved by the concerted activation of body musculature. While the basic properties of executive circuits in the spinal cord are fairly well understood, the precise mechanisms by which the brain impacts locomotion are much less clear. This Review discusses recent work unraveling the cellular identity, connectivity, and function of supraspinal circuits. We focus on their involvement in the regulation of the different phases of locomotion and their interaction with spinal circuits. Dedicated neuronal populations in the brainstem carry locomotor instructions, including initiation, speed, and termination. To align locomotion with behavioral needs, brainstem output structures are recruited by midbrain and forebrain circuits that compute and infer volitional, innate, and context-dependent locomotor properties. We conclude that the emerging logic of supraspinal circuit organization helps to understand how locomotor programs from exploration to hunting and escape are regulated by the brain

    A RET-ER81-NRG1 Signaling Pathway Drives the Development of Pacinian Corpuscles

    Get PDF
    Axon-Schwann cell interactions are crucial for the development, function, and repair of the peripheral nervous system, but mechanisms underlying communication between axons and nonmyelinating Schwann cells are unclear. Here, we show that ER81 is functionally required in a subset of mouse RET(+) mechanosensory neurons for formation of Pacinian corpuscles, which are composed of a single myelinated axon and multiple layers of nonmyelinating Schwann cells, and Ret is required for the maintenance of Er81 expression. Interestingly, Er81 mutants have normal myelination but exhibit deficient interactions between axons and corpuscle-forming nonmyelinating Schwann cells. Finally, ablating Neuregulin-1 (Nrg1) in mechanosensory neurons results in no Pacinian corpuscles, and an Nrg1 isoform not required for communication with myelinating Schwann cells is specifically decreased in Er81-null somatosensory neurons. Collectively, our results suggest that a RET-ER81-NRG1 signaling pathway promotes axon communication with nonmyelinating Schwann cells, and that neurons use distinct mechanisms to interact with different types of Schwann cells.; Communication between neurons and Schwann cells is critical for development, normal function, and regeneration of the peripheral nervous system. Despite many studies about axonal communication with myelinating Schwann cells, mostly via a specific isoform of Neuregulin1, the molecular nature of axonal communication with nonmyelinating Schwann cells is poorly understood. Here, we described a RET-ER81-Neuregulin1 signaling pathway in neurons innervating Pacinian corpuscle somatosensory end organs, which is essential for communication between the innervating axon and the end organ nonmyelinating Schwann cells. We also showed that this signaling pathway uses isoforms of Neuregulin1 that are not involved in myelination, providing evidence that neurons use different isoforms of Neuregulin1 to interact with different types of Schwann cells

    Postmitotic Hoxa5 Expression Specifies Pontine Neuron Positional Identity and Input Connectivity of Cortical Afferent Subsets

    Get PDF
    The mammalian precerebellar pontine nucleus (PN) has a main role in relaying cortical information to the cerebellum. The molecular determinants establishing ordered connectivity patterns between cortical afferents and precerebellar neurons are largely unknown. We show that expression of Hox5 transcription factors is induced in specific subsets of postmitotic PN neurons at migration onset. Hox5 induction is achieved by response to retinoic acid signaling, resulting in Jmjd3-dependent derepression of Polycomb chromatin and 3D conformational changes. Hoxa5 drives neurons to settle posteriorly in the PN, where they are monosynaptically targeted by cortical neuron subsets mainly carrying limb somatosensation. Furthermore, Hoxa5 postmigratory ectopic expression in PN neurons is sufficient to attract cortical somatosensory inputs regardless of position and avoid visual afferents. Transcriptome analysis further suggests that Hoxa5 is involved in circuit formation. Thus, Hoxa5 coordinates postmitotic specification, migration, settling position, and subcircuit assembly of PN neuron subsets in the cortico-cerebellar pathway.Peer reviewe

    Differing clinical features between Japanese and Caucasian patients with myelodysplastic syndromes:Analysis from the International Working Group for Prognosis of MDS

    Get PDF
    Clinical features of myelodysplastic syndromes (MDS) could be influenced by many factors, such as disease intrinsic factors (e.g., morphologic, cytogenetic, molecular), extrinsic factors (e.g, management, environment), and ethnicity. Several previous studies have suggested such differences between Asian and European/USA countries. In this study, to elucidate potential differences in primary untreated MDS between Japanese (JPN) and Caucasians (CAUC), we analyzed the data from a large international database collected by the International Working Group for Prognosis of MDS (300 and 5838 patients, respectively). JPN MDS were significantly younger with more severe cytopenias, and cytogenetic differences: less del(5q) and more +1/+1q, -1/del(1p), der(1;7), -9/del(9q), del(16q), and del(20q). Although differences in time to acute myeloid leukemia transformation did not occur, a significantly better survival in JPN was demonstrated, even after the adjustment for age and FAB subtypes, especially in lower, but not in higher prognostic risk categories. Certain clinical factors (cytopenias, blast percentage, cytogenetic risk) had different impact on survival and time to transformation to leukemia between the two groups. Although possible confounding events (e.g., environment, diet, and access to care) could not be excluded, our results indicated the existence of clinically relevant ethnic differences regarding survival in MDS between JPN and CAUC patients. The good performance of the IPSS-R in both CAUC and JP patients underlines that its common risk model is adequate for CAUC and JP

    Locomotor speed control circuits in the caudal brainstem

    Get PDF
    Locomotion is a universal behaviour that provides animals with the ability to move between places. Classical experiments have used electrical microstimulation to identify brain regions that promote locomotion, but the identity of neurons that act as key intermediaries between higher motor planning centres and executive circuits in the spinal cord has remained controversial. Here we show that the mouse caudal brainstem encompasses functionally heterogeneous neuronal subpopulations that have differential effects on locomotion. These subpopulations are distinguishable by location, neurotransmitter identity and connectivity. Notably, glutamatergic neurons within the lateral paragigantocellular nucleus (LPGi), a small subregion in the caudal brainstem, are essential to support high-speed locomotion, and can positively tune locomotor speed through inputs from glutamatergic neurons of the upstream midbrain locomotor region. By contrast, glycinergic inhibitory neurons can induce different forms of behavioural arrest mapping onto distinct caudal brainstem regions. Anatomically, descending pathways of glutamatergic and glycinergic LPGi subpopulations communicate with distinct effector circuits in the spinal cord. Our results reveal that behaviourally opposing locomotor functions in the caudal brainstem were historically masked by the unexposed diversity of intermingled neuronal subpopulations. We demonstrate how specific brainstem neuron populations represent essential substrates to implement key parameters in the execution of motor programs
    corecore