257 research outputs found

    Factors affectingwater drainage long-time series in the salinized low-lying coastal area of Ravenna (Italy)

    Get PDF
    The low-lying coastal area of Ravenna (North-eastern Italy), like the majority of delta and coastal zones around the world, is affected by groundwater salinization due to natural processes (such as low topography, natural land subsidence, seawater encroachment along estuaries, etc.) and anthropogenic activities (i.e., increased anthropogenic subsidence rate, sea level rise, geofluids extraction, and drainage). Among all factors causing aquifer salinization, water drainage plays an important role in lowering the hydraulic head and favouring saltwater seepage in the Ravenna coastal aquifer. A network of drainage canals and water pumping stations first allowed for the reclamation of the low-lying territory and today are fundamental to keep land and infrastructures dry and maintain effective soil depth for agriculture practices. The aim of this work is to identify and assess factors affecting water drainage long-time series (1971-2017) of the most important mechanical drainage basin in this low-lying coastal area. Statistical analyses of drainage, climate, and land use change datasets help constrain the relative weight of each single factor potentially causing an increase of water drainage through time. The results show that, among these factors, subsidence rates and seepage processes are the most significant. The data trends also indicate that the climate, especially in terms of precipitation amount and extreme events, played no important role during the studied time interval. The process of infiltration soil capacity loss due to urbanization and consequent soil sealing probably has a small secondary effect. Moreover, an increase in pumping through time will exacerbate aquifer salinization and compromise freshwater availability in the coastal area

    Evolution of salinity and water table level of the phreatic coastal aquifer of the Emilia Romagna region (Italy)

    Get PDF
    The coastal aquifers of the Mediterranean region are highly susceptible to seawater intrusion due to a combination of challenges such as land subsidence, high aquifer permeability, urbanization, drainage, and an unsustainable use of water during the dry summer months. The present study is focused on a statistical analysis of groundwater data to evaluate the spatial changes of water level and electrical conductivity in the coastal phreatic aquifer of the Emilia-Romagna (Northeast Italy) for the period from 2009 to 2018. Data from 35 wells distributed across the entire regional coastal area are used to establish a temporal trend, as well as correlations between salinity, water table level, and rainfall. Water table and salinity distribution maps for the entire study area are discussed regarding surface geology and water management. Most of the wells are in the beach wedge sand unit, which allows for easy connectivity between groundwater and surface water. Surface water and groundwater salinization are enhanced along the surface water bodies connected to the sea. The lowest water table level occurs in the western and northern parts of the study area, because of the semiconfined behavior of the aquifer. Only in the northernmost, close to the Po River, and in the southernmost parts of the study area does the groundwater remain fresh for the whole period considered due to river aquifer recharge. In the rest of the region, the thickness of freshwater lenses, where present, is less than 4.5 m. The existence of a water table level below sea level and high saline water at the bottom of the aquifer in most of the study area suggest that the aquifer is in unstable hydrodynamic conditions and groundwater quality is not fit for human consumption or for irrigation. This study is the first to provide a regional overview of the state of groundwater level and salinization within the coastal aquifer of the Emilia-Romagna Region; it also suggests that, overall, the salinization trend has slightly decreased from 2009 to 2018

    Structural control on carbon emissions at the Nirano mud volcanoes – Italy

    Get PDF
    The Nirano Salse in Italy is a well-studied site where natural gas seepage (NGS) and other hydrocarbon fluids and gases are emitted at the earth's surface. A novel integrated approach is applied to define a comprehensive structural interpretation of the gas seepage and flow dynamic in the mud volcano system of the Nirano Salse Regional Nature Reserve (Modena, Northern Apennines). The paper investigates the relationship between gas emissions and local structures, particularly faults and fractures, in the shallow subsurface (down to 500–600 m depth) to understand the control that structures have on fluid ascent from deep leaky hydrocarbon traps. We performed continuous monitoring of mud levels within vents; carried out geological surveys to characterize the main stratigraphic and structural discontinuities; measured the carbon emissions (CH4 and CO2) seepage both from volcanoes and the surrounding soil by a portable gas fluxmeter; and integrated the results with available geophysical surveys. The authors argue that the transgressive Pleistocene-Pliocene Argille Azzurre Formation hides the complex and highly structured pre-Pliocene geology of the area, in which faults and fractures act as pathways for deep fluid ascent. The emissions are aligned along a NE-SW trend at the intersection of a NE-SW fracture system and NW-SE-oriented normal faults, which are both associated to the local tensional stress field of a likely left-lateral strike-slip transfer structure or in the extrados of a fold. By examining both natural gas macroseepage and diffuse flux, it is shown that local structures control the fluid ascent and contribute to the emission of hydrocarbon gases and fluids at the Earth's surface. Understanding the structural control of carbon emissions at the Nirano Salse is also important for evaluating the carbon budget at the site, particularly in areas where there are detectable surface emissions. The study has implications for geologic, environmental, and economic issues, including hydrocarbon exploration, hazard assessment, and impact on the atmospheric carbon budget. Furthermore, the outcomes have an important implication to evaluate the potential for dangerous abrupt mud eruptions, and the site safety in proximity to the mud volcanoes

    Physiotherapy management of nociplastic pain: A Delphi study of Italian specialists

    Get PDF
    Background and Purpose: Nociplastic pain due to central sensitization (CS) is common in people suffering from chronic pain, but no clinical practice guideline is available in rehabilitative settings for patients' management. The aim of this study is to achieve expert consensus on physiotherapy competencies in the management of people with nociplastic pain and suspected CS mechanisms. Methods: A web-based Delphi process was employed. Experts in the rehabilitation field were recruited following pre-defined eligibility criteria. Following completion of three Delphi rounds, the final list of competencies was generated. Results: In all, 23 participants were recruited. They all completed Round 1 (23/23, 100%), twenty Round 2 and Round 3 (20/23, 87%). Following Round 1, seven areas were identified by the panel as crucial for CS physiotherapy management; 19 competencies out of 40 reached the consensus between experts, and nine additional competencies were added to Round 2 following literary review. Round 2 identified the agreement for all the 29 competencies. During Round 3, all the experts confirmed the final list generated through the consensus process. Discussion: An agreement between experts was found for the final list of competencies that a physiotherapist should implement every time it approaches people with suspected CS mechanisms. Further research is needed to support the clinical utility of our findings and their applicability in daily practice

    Assessment of seasonal changes in water chemistry of the ridracoli water reservoir (Italy): Implications for water management

    Get PDF
    The Ridracoli artificial basin is the main water reservoir of the Emilia-Romagna region (Northeast Italy). The reservoir was made by construction of a dam on the Bidente River in 1982. It is used as the main drinking water supply of the region and for hydropower production. The physical and chemical parameterseters (temperature, pH, electrical conductivity, and dissolved oxygen) of shallow water are continuously monitored whereas vertical depth profiles of water chemical data (major anions and cations, as well as heavy metals) are available on a bimonthly base. The dataset used in this research is related to the years 2015 and 2016. Data show that the reservoir is affected by an alternation of water stratification and mixing processes due to seasonal change in water temperature, density, and the reservoir water level. In late summer and winter months, the water column is stratified with anoxic conditions at the bottom. During the spring, on the other hand, when storage is at its maximum, water recirculation and mixing occur. The reservoir is characterized by a dynamic system in which precipitation, dissolution, and adsorption processes at the bottom affect water quality along the reservoir depth column. The temperature stratification and anoxic conditions at the reservoir bottom influence the concentration and mobility of some heavy metals (i.e., Fe and Mn) and, consequently, the quality of water that reaches the treatment and purification plant. This study is relevant for water resource management of the reservoir. Assessing the seasonal changes in water quality along the reservoir water column depth is fundamental to plan water treatment operations and optimize their costs. The reservoir assessment allows one to identify countermeasures to avoid or overcome the high concentrations of heavy metals and the stratification problem (i.e., artificial mixing of the water column, new water intakes at different depths operating at different times of the year, blowers, etc.)

    Driving and limiting factors of CH4 and CO2 emissions from coastal brackish-water wetlands in temperate regions

    Get PDF
    Coastal wetlands play a fundamental role in mitigating climate change thanks to their ability to store large amounts of organic carbon in the soil. However, degraded freshwater wetlands are also known to be the first natural emitter of methane (CH4). Salinity is known to inhibit CH4 production, but its effect in brackish ecosystems is still poorly understood. This study provides a contribution to understanding how environmental variables may affect greenhouse gas (GHG) emissions in coastal temperate wetlands. We present the results of over 1 year of measurements performed in four wetlands located along a salinity gradient on the northeast Adriatic coast near Ravenna, Italy. Soil properties were determined by coring soil samples, while carbon dioxide (CO2) and CH4 fluxes from soils and standing waters were monitored monthly by a portable gas flux meter. Additionally, water levels and surface and groundwater physical–chemical parameters (temperature, pH, electrical conductivity, and sulfate concentrations of water) were monitored monthly by multiparametric probes. We observed a substantial reduction in CH4 emissions when water depth exceeded the critical threshold of 50 cm. Regardless of the water salinity value, the mean CH4 flux was 5.04 g m−2 d−1 in freshwater systems and 12.27  g m−2 d−1 in brackish ones. In contrast, when water depth was shallower than 50 cm, CH4 fluxes reached an average of 196.98  g m−2 d−1 in freshwater systems, while non-significant results are available for brackish/saline waters. Results obtained for CO2 fluxes showed the same behavior described for CH4 fluxes, even though they were statistically non-significant. Temperature and irradiance strongly influenced CH4 emissions from water and soil, resulting in higher rates during summer and spring

    Geothermal characterization of the coastal aquifer near Ravenna (Italy)

    Get PDF
    The coastal aquifer near Ravenna (Italy) contains a large volume of groundwater (2,5x109 m3) whose quality has been compromised by sea-water intrusion. Today, the phreatic groundwater is mostly brackish with some lenses of freshwater floating on top of more saline water. This water, although impossible to use as drink-water or for irrigation, is still important to guarantee the health of wetland habitats and especially of the roman historical and coastal pine forests of Ravenna. With the objective of defining the flow pattern within the aquifer and the exchange between surface and ground water, we characterized the temperature distribution in the shallow subsurface by means of a dense network of piezometers. At the same time we had the opportunity to characterize the phreatic aquifer from the geothermal point of view, so that it could eventually be considered for use as a "low enthalpy" heat source. Heat pumps are able to extract heat during the winter and dissipate it during the summer. The temperature of the groundwater in the top layer of the aquifer (surficial zone) is sensitive to the changes in atmospheric temperature throughout the year whereas the temperature of the deeper groundwater follows the geothermal gradient (geothermal zone). One of the scopes of the project is to discover at what depth is located the geothermal zone, so that the aquifer has a constant temperature throughout the year. A constant temperature is needed for storage of heat at low enthalpy. The thickness of the surficial zone and the temperature at the top of the geothermal zone are essentially related to land use, distance from the sea, sediment type, and amount of interaction between surface and groundwater. A knowledge of these factors allows to better exploit the geothermal potential of the aquifer when choosing the optimal placement of the heat pumps

    Mid-IR spectra of pre-main sequence Herbig stars : an explanation for the non-detections of water lines

    Get PDF
    The research leading to these results has received funding from the European Union Seventh Framework Programme FP7-2011 under grant agreement No. 284405.Context. The mid-IR detection rate of water lines in disks around Herbig stars disks is about 5%, while it is around 50% for disks around T Tauri stars. The reason for this is still unclear. Aims. In this study, we want to find an explanation for the different detection rates between low mass and high mass pre-main-sequence stars in the mid-IR regime. Methods. We ran disk models with stellar parameters adjusted to spectral types B9 through M2, using the radiation thermo-chemical disk modelling code ProDiMo. We explored also a small parameter space around a standard disk model, considering dust-to-gas mass ratio, disk gas mass, mixing coefficient for dust settling, flaring index, dust maximum size, and size power law distribution index. We produced convolved spectra at the resolution of Spitzer, IRS, JWST MIRI, and VLT VISIR spectrographs. We applied random noise derived from typical Spitzer spectra for a direct comparison with observations. Results. The strength of the mid-IR water lines correlates directly with the luminosity of the central star. The models show that it is possible to suppress the water emission; however, current observations are not sensitive enough to detect mid-IR lines in disks for most of the explored parameters. The presence of noise in the spectra, combined with the high continuum flux (noise level is proportional to the continuum flux), is the most likely explanation for the non-detections towards Herbig stars. Conclusions. Mid-IR spectra with resolution higher than 20 000 are needed to investigate water in protoplanetary disks. Intrinsic differences in disk structure, such as inner gaps, gas-to-dust ratio, dust size and distribution, and inner disk scale height, between Herbig and T Tauri star disks are able to explain a lower water detection rate in disks around Herbig stars.Publisher PDFPeer reviewe

    Spatial distribution of micrometre‐scale porosity and permeability across the damage zone of a reverse‐reactivated normal fault in a tight sandstone : Insights from the Otway Basin, SE Australia

    Get PDF
    This research forms part of a PhD project supported by the Australian Research Council [Discovery Project DP160101158] and through an Australian Government Research Training Program Scholarship. Dave Healy acknowledges the support of the Natural Environment Research Council (NERC, UK) through the award NE/N003063/1 ‘Quantifying the Anisotropy of Permeability in Stressed Rock’. This study was also funded by scholarships from the Petroleum Exploration Society of Australia and the Australian Petroleum Production and Exploration Association. We thank Gordon Holm for preparing thin sections and Colin Taylor for carrying out particle size measurements and mercury injection capillary pressure analyses. Aoife McFadden and David Kelsey from Adelaide Microscopy, Braden Morgan, and Sophie Harland are acknowledged for their assistance with laboratory work. Field assistants James Hall, Rowan Hansberry, and Lachlan Furness are also gratefully acknowledged for their assistance with sample collection. Discussions with Ian Duddy on the mineralogy of the Eumeralla Formation are also greatly appreciated. This forms TRaX record 416.Peer reviewedPublisher PD
    corecore