16 research outputs found

    A Chemical Strategy for Intracellular Arming of an Endogenous Broad-Spectrum Antiviral Nucleotide

    Get PDF
    The naturally occurring nucleotide 3′-deoxy-3′,4′-didehydro-cytidine-5′-triphosphate (ddhCTP) was recently found to exert potent and broad-spectrum antiviral activity. However, nucleoside 5′-triphosphates in general are not cell-permeable, which precludes the direct use of ddhCTP as a therapeutic. To harness the therapeutic potential of this endogenous antiviral nucleotide, we synthesized phosphoramidate prodrug HLB-0532247 (1) and found it to result in dramatically elevated levels of ddhCTP in cells. We compared 1 and 3′-deoxy-3′,4′-didehydro-cytidine (ddhC) and found that 1 more effectively reduces titers of Zika and West Nile viruses in cell culture with minimal nonspecific toxicity to host cells. We conclude that 1 is a promising antiviral agent based on a novel strategy of facilitating elevated levels of the endogenous ddhCTP antiviral nucleotide

    Whole-Genome SNP Association in the Horse: Identification of a Deletion in Myosin Va Responsible for Lavender Foal Syndrome

    Get PDF
    Lavender Foal Syndrome (LFS) is a lethal inherited disease of horses with a suspected autosomal recessive mode of inheritance. LFS has been primarily diagnosed in a subgroup of the Arabian breed, the Egyptian Arabian horse. The condition is characterized by multiple neurological abnormalities and a dilute coat color. Candidate genes based on comparative phenotypes in mice and humans include the ras-associated protein RAB27a (RAB27A) and myosin Va (MYO5A). Here we report mapping of the locus responsible for LFS using a small set of 36 horses segregating for LFS. These horses were genotyped using a newly available single nucleotide polymorphism (SNP) chip containing 56,402 discriminatory elements. The whole genome scan identified an associated region containing these two functional candidate genes. Exon sequencing of the MYO5A gene from an affected foal revealed a single base deletion in exon 30 that changes the reading frame and introduces a premature stop codon. A PCR–based Restriction Fragment Length Polymorphism (PCR–RFLP) assay was designed and used to investigate the frequency of the mutant gene. All affected horses tested were homozygous for this mutation. Heterozygous carriers were detected in high frequency in families segregating for this trait, and the frequency of carriers in unrelated Egyptian Arabians was 10.3%. The mapping and discovery of the LFS mutation represents the first successful use of whole-genome SNP scanning in the horse for any trait. The RFLP assay can be used to assist breeders in avoiding carrier-to-carrier matings and thus in preventing the birth of affected foals

    Identification of genetic variants associated with Huntington's disease progression: a genome-wide association study

    Get PDF
    Background Huntington's disease is caused by a CAG repeat expansion in the huntingtin gene, HTT. Age at onset has been used as a quantitative phenotype in genetic analysis looking for Huntington's disease modifiers, but is hard to define and not always available. Therefore, we aimed to generate a novel measure of disease progression and to identify genetic markers associated with this progression measure. Methods We generated a progression score on the basis of principal component analysis of prospectively acquired longitudinal changes in motor, cognitive, and imaging measures in the 218 indivduals in the TRACK-HD cohort of Huntington's disease gene mutation carriers (data collected 2008–11). We generated a parallel progression score using data from 1773 previously genotyped participants from the European Huntington's Disease Network REGISTRY study of Huntington's disease mutation carriers (data collected 2003–13). We did a genome-wide association analyses in terms of progression for 216 TRACK-HD participants and 1773 REGISTRY participants, then a meta-analysis of these results was undertaken. Findings Longitudinal motor, cognitive, and imaging scores were correlated with each other in TRACK-HD participants, justifying use of a single, cross-domain measure of disease progression in both studies. The TRACK-HD and REGISTRY progression measures were correlated with each other (r=0·674), and with age at onset (TRACK-HD, r=0·315; REGISTRY, r=0·234). The meta-analysis of progression in TRACK-HD and REGISTRY gave a genome-wide significant signal (p=1·12 × 10−10) on chromosome 5 spanning three genes: MSH3, DHFR, and MTRNR2L2. The genes in this locus were associated with progression in TRACK-HD (MSH3 p=2·94 × 10−8 DHFR p=8·37 × 10−7 MTRNR2L2 p=2·15 × 10−9) and to a lesser extent in REGISTRY (MSH3 p=9·36 × 10−4 DHFR p=8·45 × 10−4 MTRNR2L2 p=1·20 × 10−3). The lead single nucleotide polymorphism (SNP) in TRACK-HD (rs557874766) was genome-wide significant in the meta-analysis (p=1·58 × 10−8), and encodes an aminoacid change (Pro67Ala) in MSH3. In TRACK-HD, each copy of the minor allele at this SNP was associated with a 0·4 units per year (95% CI 0·16–0·66) reduction in the rate of change of the Unified Huntington's Disease Rating Scale (UHDRS) Total Motor Score, and a reduction of 0·12 units per year (95% CI 0·06–0·18) in the rate of change of UHDRS Total Functional Capacity score. These associations remained significant after adjusting for age of onset. Interpretation The multidomain progression measure in TRACK-HD was associated with a functional variant that was genome-wide significant in our meta-analysis. The association in only 216 participants implies that the progression measure is a sensitive reflection of disease burden, that the effect size at this locus is large, or both. Knockout of Msh3 reduces somatic expansion in Huntington's disease mouse models, suggesting this mechanism as an area for future therapeutic investigation

    Characterization of Nine Cancer-Associated Variants in Human DNA Polymerase κ

    No full text
    Specialized DNA damage-bypass Y-family DNA polymerases contribute to cancer prevention by providing cellular tolerance to DNA damage that can lead to mutations and contribute to cancer progression by increasing genomic instability. Y-family polymerases can also bypass DNA adducts caused by chemotherapy agents. One of the four human Y-family DNA polymerases, DNA polymerase (pol) κ, has been shown to be specific for bypass of minor groove adducts and inhibited by major groove adducts. In addition, mutations in the gene encoding pol κ are associated with different types of cancers as well as with chemotherapy responses. We characterized nine variants of pol κ whose identity was inferred from cancer-associated single nucleotide polymorphisms for polymerization activity on undamaged and damaged DNA, their abilities to extend from mismatched or damaged base pairs at primer termini, and overall stability and dynamics. We find that these pol κ variants generally fall into three categories: similar activity to wild-type (WT) pol κ (L21F, I39T, P169T, F192C, and E292K), more active than WT pol κ (S423R), and less active than pol κ (R219I, R298H, and Y432S). Of these, only pol κ variants R298H and Y432S had markedly reduced thermal stability. Molecular dynamics (MD) simulations with undamaged DNA revealed that the active variant F192C and more active variant S423R with either correct or incorrect incoming nucleotide mimic WT pol κ with the correct incoming nucleotide, whereas the less active variants R219I, R298H, and Y432S with the correct incoming nucleotide mimic WT pol κ with the incorrect incoming nucleotide. Thus, the observations from MD simulations suggest a possible explanation for the observed experimental results that pol κ adopts specific active and inactive conformations that depend on both the protein variant and the identity of the DNA adduct

    Stoichiometric Ecotoxicology for a Multisubstance World

    No full text
    Nutritional and contaminant stressors influence organismal physiology, trophic interactions, community structure, and ecosystem-level processes; however, the interactions between toxicity and elemental imbalance in food resources have been examined in only a few ecotoxicity studies. Integrating well-developed ecological theories that cross all levels of biological organization can enhance our understanding of ecotoxicology. In the present article, we underline the opportunity to couple concepts and approaches used in the theory of ecological stoichiometry (ES) to ask ecotoxicological questions and introduce stoichiometric ecotoxicology, a subfield in ecology that examines how contaminant stress, nutrient supply, and elemental constraints interact throughout all levels of biological organization. This conceptual framework unifying ecotoxicology with ES offers potential for both empirical and theoretical studies to deepen our mechanistic understanding of the adverse outcomes of chemicals across ecological scales and improve the predictive powers of ecotoxicology
    corecore