138 research outputs found

    Control and amplification of Bloch oscillations via photon-mediated interactions

    Full text link
    We propose a scheme to control and enhance atomic Bloch oscillations via photon-mediated interactions in an optical lattice supported by a standing-wave cavity with incommensurate lattice and cavity wavelengths. Our scheme uses position-dependent atom-light couplings to spatially prepare, from a thermal gas, to an array of atoms at specific lattice sites. On this initial state we take advantage of dispersive position-dependent atom-cavity couplings to perform non-destructive measurements of single-particle Bloch oscillations, and to generate long-range interactions self-tuned by atomic motion. The latter leads to the generation of dynamical phase transitions in the deep lattice regime and the amplification of Bloch oscillations in the shallow lattice regime. Our work introduces new possibilities accessible in state-of-the-art cavity QED experiments for the exploration of many-body dynamics in self-tunable potentials.Comment: 6+10 pages, 3+4 figure

    Combating the Fragile Karst Environment in Guizhou, China

    Get PDF

    Prediction of regulatory motifs from human Chip-sequencing data using a deep learning framework

    Get PDF
    The identification of transcription factor binding sites and cis-regulatory motifs is a frontier whereupon the rules governing protein-DNA binding are being revealed. Here, we developed a new method (DEep Sequence and Shape mOtif or DESSO) for cis-regulatory motif prediction using deep neural networks and the binomial distribution model. DESSO outperformed existing tools, including DeepBind, in predicting motifs in 690 human ENCODE ChIP-sequencing datasets. Furthermore, the deep-learning framework of DESSO expanded motif discovery beyond the state-of-the-art by allowing the identification of known and new protein-protein-DNA tethering interactions in human transcription factors (TFs). Specifically, 61 putative tethering interactions were identified among the 100 TFs expressed in the K562 cell line. In this work, the power of DESSO was further expanded by integrating the detection of DNA shape features. We found that shape information has strong predictive power for TF-DNA binding and provides new putative shape motif information for human TFs. Thus, DESSO improves in the identification and structural analysis of TF binding sites, by integrating the complexities of DNA binding into a deep-learning framework

    IRIS3: integrated cell-type-specific regulon inference server from single-cell RNA-Seq

    Get PDF
    group of genes controlled as a unit, usually by the same repressor or activator gene, is known as a regulon. The ability to identify active regulons within a specific cell type, i.e., cell-type-specific regulons (CTSR), provides an extraordinary opportunity to pinpoint crucial regulators and target genes responsible for complex diseases. However, the identification of CTSRs from single-cell RNA-Seq (scRNA-Seq) data is computationally challenging. We introduce IRIS3, the first-of-its-kind web server for CTSR inference from scRNA-Seq data for human and mouse. IRIS3 is an easy-to-use server empowered by over 20 functionalities to support comprehensive interpretations and graphical visualizations of identified CTSRs. CTSR data can be used to reliably characterize and distinguish the corresponding cell type from others and can be combined with other computational or experimental analyses for biomedical studies. CTSRs can, therefore, aid in the discovery of major regulatory mechanisms and allow reliable constructions of global transcriptional regulation networks encoded in a specific cell type. The broader impact of IRIS3 includes, but is not limited to, investigation of complex diseases hierarchies and heterogeneity, causal gene regulatory network construction, and drug development

    Aggregation-Induced Emission (AIE), Life and Health

    Get PDF
    Light has profoundly impacted modern medicine and healthcare, with numerous luminescent agents and imaging techniques currently being used to assess health and treat diseases. As an emerging concept in luminescence, aggregation-induced emission (AIE) has shown great potential in biological applications due to its advantages in terms of brightness, biocompatibility, photostability, and positive correlation with concentration. This review provides a comprehensive summary of AIE luminogens applied in imaging of biological structure and dynamic physiological processes, disease diagnosis and treatment, and detection and monitoring of specific analytes, followed by representative works. Discussions on critical issues and perspectives on future directions are also included. This review aims to stimulate the interest of researchers from different fields, including chemistry, biology, materials science, medicine, etc., thus promoting the development of AIE in the fields of life and health

    Concentration effects in solid-state CD spectra of chiral atropisomeric compounds

    Get PDF
    Atropisomerism is one of the basic concepts in stereochemistry. Chiral crystals of stereochemically labile atropisomers that originated from Mirror Symmetry Breaking (MSB) can only be characterized by solid-state chiroptical techniques. Herein, solid-state circular dichroism and UV-Vis spectra of six atropisomeric compounds (most of them were obtained from MSB) have been studied. A concentration effect including a wavelength shift and inverse concentration-dependence has been found and preliminarily explained by the absorption flattening effect, scattering effect and the torsion in the molecular structures.National Natural Science Foundation of China[20973136, 20974028, 20732004]; Natural Science Foundation of Fujian Province[2010J01048

    RECTA: Regulon Identification Based on Comparative Genomics and Transcriptomics Analysis

    Get PDF
    Regulons, which serve as co-regulated gene groups contributing to the transcriptional regulation of microbial genomes, have the potential to aid in understanding of underlying regulatory mechanisms. In this study, we designed a novel computational pipeline, regulon identification based on comparative genomics and transcriptomics analysis (RECTA), for regulon prediction related to the gene regulatory network under certain conditions. To demonstrate the effectiveness of this tool, we implemented RECTA on Lactococcus lactis MG1363 data to elucidate acid-response regulons. A total of 51 regulons were identified, 14 of which have computational-verified significance. Among these 14 regulons, five of them were computationally predicted to be connected with acid stress response. Validated by literature, 33 genes in Lactococcus lactis MG1363 were found to have orthologous genes which were associated with six regulons. An acid response related regulatory network was constructed, involving two trans-membrane proteins, eight regulons (llrA, llrC, hllA, ccpA, NHP6A, rcfB, regulons #8 and #39), nine functional modules, and 33 genes with orthologous genes known to be associated with acid stress. The predicted response pathways could serve as promising candidates for better acid tolerance engineering in Lactococcus lactis. Our RECTA pipeline provides an effective way to construct a reliable gene regulatory network through regulon elucidation, and has strong application power and can be effectively applied to other bacterial genomes where the elucidation of the transcriptional regulation network is needed

    SAR Image Classification Using Gated Channel Attention Based Convolutional Neural Network

    No full text
    Algorithms combining CNN (Convolutional Neural Network) and super-pixel based smoothing have been proposed in recent years for Synthetic Aperture Radar (SAR) image classification. However, the smoothing may lead to the damage of details. To solve this problem the feature fusion strategy is utilized, and a novel adaptive fusion module named Gated Channel Attention (GCA) is designed in this paper. In this module, the relevance between channels is embedded into the conventional gated attention module to emphasize the variation in contribution on classification results between channels of feature-maps, which is not well considered by the conventional gated attention module. A GCA-CNN network is then constructed for SAR image classification. In this network, feature-maps corresponding to the original image and the smoothed image are extracted, respectively, by feature-extraction layers and adaptively fused. The fused features are used to obtain the results. Classification can be performed by the GCA-CNN in an end-to-end way. By the adaptive feature fusion in GCA-CNN, the smoothing of misclassification and the detail keeping can be realized at the same time. Experiments have been performed on one elaborately designed synthetic image and three real world SAR images. The superiority of the GCA-CNN is demonstrated by comparing with the conventional algorithms and the relative state-of-the-art algorithms

    Mechanism Study of Aggregation-Induced Emission

    No full text
    Aggregation of classical fluorophores always quenches their light emission, which is notoriously known as aggregation-caused quenching (ACQ). The ACQ effect prevents many fluorophores from finding aggregation-state applications. In contrast, a group of fluorophores is weakly luminescent or even nonluminescent in isolated state but highly emissive in aggregate state. Aggregation-induced emission (AIE) was coined for this novel phenomenon. Because of their unique advantages, more and more new AIE systems with emission colors covering the entire visible spectral region were developed by numerous research groups. Their applications as solid-state emitters and chemo/bio-sensors were explored widely and deeply. Deciphering the working principle of the AIE phenomenon is of great value in terms of helping gain new photophysical insights and guide further efforts in the development of new AIE materials with high luminescence efficiencies. However, whilst the mature theories to explain the ACQ effect had been written into textbooks, the "abnormal" AIE phenomenon still poses a challenge to our current understanding of solid-state luminescence. In this review, we summarize the accessible mechanisms for the AIE phenomenon, such as restricted intramolecular rotation (RIR), intramolecular coplanarization, inhibition intramolecular photochemical or photophysical process, relatively loose molecular packing, J-aggregate formation, and special excimer formation. Particularly, we emphasize on the description of RIR mechanism, which is the most universal and best studied one among the proposed mechanisms. In addition, some new AIE systems based on these mechanisms are introduced briefly
    • …
    corecore