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Abstract: Regulons, which serve as co-regulated gene groups contributing to the transcriptional
regulation of microbial genomes, have the potential to aid in understanding of underlying regulatory
mechanisms. In this study, we designed a novel computational pipeline, regulon identification
based on comparative genomics and transcriptomics analysis (RECTA), for regulon prediction
related to the gene regulatory network under certain conditions. To demonstrate the effectiveness
of this tool, we implemented RECTA on Lactococcus lactis MG1363 data to elucidate acid-response
regulons. A total of 51 regulons were identified, 14 of which have computational-verified significance.
Among these 14 regulons, five of them were computationally predicted to be connected with acid
stress response. Validated by literature, 33 genes in Lactococcus lactis MG1363 were found to have
orthologous genes which were associated with six regulons. An acid response related regulatory
network was constructed, involving two trans-membrane proteins, eight regulons (llrA, llrC, hllA,
ccpA, NHP6A, rcfB, regulons #8 and #39), nine functional modules, and 33 genes with orthologous
genes known to be associated with acid stress. The predicted response pathways could serve as
promising candidates for better acid tolerance engineering in Lactococcus lactis. Our RECTA pipeline
provides an effective way to construct a reliable gene regulatory network through regulon elucidation,
and has strong application power and can be effectively applied to other bacterial genomes where
the elucidation of the transcriptional regulation network is needed.

Keywords: RECTA; Lactococcus lactis MG1363; acid stress response; differentially expressed gene;
gene co-expression; cis-regulatory motif finding; regulon; gene regulatory network

1. Introduction

Genomic and transcriptomic analyses have been widely used for elucidating gene regulatory
network (GRN) hierarchies and offering insight into the coordination of response capabilities in
microorganisms [1–4]. One way to study the mechanism of transcriptional regulation in microbe
genomics is regulon prediction. A regulon is a group of co-regulated operons, which contains single or
multiple consecutive genes along the genome [5–7]. Genes in the same operon are controlled by the
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same promoter and are co-regulated by one or a set of transcriptional factors (TFs) [8]. The elucidation
of regulons can improve the identification of transcriptional genes, and thus, reliably predict the gene
transcription regulation networks [9].

There are three ways for regulon prediction: (i) predicting new operons for a known regulon [10,11].
This method combines motif profiling with a comparative genomic strategy to search for related
regulon members and carries out systematical gene regulation study; (ii) Integrating cis-regulatory
motif (motif for short) comparison and clustering to find significantly enriched motif candidates [12,13].
The candidate motifs are then assembled into regulons; (iii) Performing ab initio novel regulon
inference using the de novo motif finding strategy [14]. This approach uses a phylogenetic footprinting
technique which mostly relies on reference verification [15–17] and can perform a horizontal sequential
comparison to predict regulons in target organisms by searching known functionally-related regulons
or TFs from other relevant species. One algorithm for phylogenetic footprinting analysis called
Motif Prediction by Phylogenetic footprinting (MP3) has been used for regulon prediction in
Escherichia coli [17]. Phylogenetic footprinting was then integrated into the DMINDA webserver
along with other algorithms, such as the Database of Prokaryotic Operons 2.0 (DOOR2) [7,18],
Bottleneck Broken (BoBro) [19], and BoBro-based motif comparison (BBC) [13], to construct a
complete pipeline for regulon prediction. In the latest research, a newly developed pipeline called
Single-cell Regulatory Network Inference and Clustering (SCENIC) combines motif finding from
co-expression gene modules (CEMs) with regulon prediction for single-cell clustering and analysis [20].
Such a method builds up a way of regulon application in single-cell and metagenomic research.
Nevertheless, without a suitable regulon database, researchers need to build up the library first
through operon identification, CEM analysis, motif prediction and comparison [21]. Here, we reported
an integrated computational framework of regulon identification based on comparative genomics
and transcriptomics analysis (RECTA) to elucidate the GRN responses in microbes under specific
conditions. To better elucidate the methodology of RECTA, we built a regulatory network responding
to the acid stress in Lactococcus lactis species.

Lactococcus lactis is one of the mesophilic Gram-positive lactic acid-producing bacteria. It has
been widely applied in dairy fermentations, such as cheese and milk product [22]. Several studies
have provided evidence of its essential roles in wrapping and delivering proteins or vaccinations for
immune treatment, such as diabetes [23], malaria [24], tumors [25,26], and infections [27]. Holding
the advantage of higher acid tolerance to protect vectors from resolving during delivery inside of
the animal body, L. lactis has more potential and safety in oral drug development [28]. Moreover,
it has been found that L. lactis, along with some Lactobacillus, Bifidobacterium, and other gut microbiota,
were associated with obesity [29]. Such studies lead to the possibility and availability of L. lactis in
metagenomic studies to investigate the effect of microbial interaction between L. lactis and other species
in the human body. It is now well established that Lactococcus have evolved stress-sensing systems,
which enable them to tolerate harsh environmental conditions [1,30,31].

Among the harsh environmental conditions that microorganisms confront, acid stress is known
to change the level of the alarmones (guanosine tetraphosphate and guanosine pentaphosphate),
collectively referred to as (p)ppGpp [32] and leads to a stringent response to cellular regulation [33].
The reason that bacteria maintain the protection mechanism against acid stress is to withstand the
deleterious effects caused by the harmful high level of protons in the exposed environment. Many
mechanisms or genes related to the acid stress response (ASR) have been identified. Proton-pumping
activity, the direct regulator to acid stress response, controls the intracellular pH level by pumping
extra protons out of the cell [34,35], and the increase of alkaline compound levels also counters the
acidification found in Streptococcus [36]. Acid damage repair of cells by chaperones or proteases, such as
GroES, GroEL, GrpE, HrcA, DnaK, DnaJ, Clp [37,38], hdeA/B and Hsp31 in E. coli [39,40], the arginine
deiminase (ADI) system [41–44] and glutamate decarboxylases (GAD) pathways, and so on [45–47],
have been proven to be associated with the acid response. Additionally, transcriptional regulators,
σ factors, and two-component signal transduction system (TCSTs) have also been demonstrated to
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be responsible for ASR by modifying gene expression [48]. These genes or pathways suggest low
pH has widespread adverse effects on cell functions and inflicts response at genomic, metabolic,
and macromolecular levels. To better understand the mechanism that controls the acid tolerance
and response to the acid stress in L. lactis, we considered MG1363, a strain extensively studied for
acid resistance, to carry out computational analyses [1,49–51]. Nevertheless, to adequately describe
the transcriptional state and gene regulation responsible for ASR in L. lactis, a GRN integrating all
individual pathways is needed.
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Figure 1. The flowchart of constructing the global acid stress response (ASR) transcriptional network
in MG1363. Step 1: microarray data was used to generate co-expressed gene clusters and differentially
expressed genes (DEGs), and the MG1363 genome sequence was used to find operons. Step 2: a motif
finding progress was carried out to identify all statistically significant motifs in each of the co-expression
gene modules (CEMs). Step 3: a regulon finding procedure was designed to identify all the possible
regulon candidates encoded in the genome based on motif comparison and clustering. Step 4: the motifs
of each of these regulons were compared to known transcription factor binding sites (TFBSs), and
differential gene expression (DGE) analysis between low pH conditions and normal conditions was
used to figure out the ASR-related regulons. Step 5: regulon validation based on literature information
verified the significant putative regulons and expanded the results to some insufficiently significant
regulons. Step 6: the ASR-related gene regulatory network (GRN) in MG1363 was predicted and
described with eight regulons, nine functional modules, and 33 genes. The combination of the above
information forms a genome-scale regulatory network constructed for ASR. Abbreviations: DOOR2,
Database of Prokaryotic Operons 2.0; BBC, BoBro-based motif comparison; BLAST, basic local alignment
search tool; BoBro, Bottleneck Broken.

The experiment was conducted by six steps and the general framework is showcased in Figure 1:
(i) MG1363 co-expression gene modules (CEMs) and differentially expressed genes (DEG) were
generated from microarray data by hcluster package [52] and Wilcoxon test [53] in R, respectively.
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MG1363 operons were predicted from the genome sequence using the DOOR2 webserver and assigned
into each CEM; (ii) for each CEM, the 300 bp upstream to the promoter was extracted and the sequences
were used to find motifs using DMINDA 2.0; (iii) the top five significant motifs in each CEM were
reassembled by their similarity comparison and clustering to predict regulons; (iv) the motifs were
compared to known transcription factor binding sites (TFBSs) in the MEME suite [54], and the TFs
corresponding to these TFBSs were mapped to MG1363 using basic local alignment search tool (BLAST).
Only regulons with DEGs and mapped TF were kept as ASR-related regulons; (v) experimentally
identified ASR-related genes in other organisms were mapped to MG1363 using BLAST and allocated
to corresponding regulons for further verification; and (vi) the relationship between regulons and
functional gene modules was established to elucidate the overall ASR mechanism in MG1363.

As a result, 14 regulons are identified, literature verified or putative, to be connected to ASR. Eight
regulons, related to nine functional modules and 33 associated genes, are considered as the essential
elements in acid resistance in MG1363. This proposed computational pipeline and the above results
significantly expand the current understanding of the ASR system, providing a new method to predict
systematic regulatory networks based on regulon clustering.

2. Materials and Methods

2.1. Data Acquisition

The L. lactic MG1363 genome sequence was downloaded from NCBI (GenBank accession number:
AM406671). The microarray dataset containing eight samples under different acid stress conditions
for MG1363 was downloaded from the Gene Expression Omnibus (GEO) database (Series number:
GSE47012). The data has been treated with LOWESS normalization by the provider. The details on
cell culture preparation and data processing can be found in the previous study [1]. This dataset
has all bacteria grown in basic conditions: a two-liter fermenter in chemically defined medium
containing 1% (w/v) glucose at 30 ◦C. The control and treatment samples were grown at a pH of 6.5
and 5.1, respectively.

Several TFBS databases integrated in the MEME suite, including DPInteract (E. coli) [55],
JASPAR [56], RegTransBase (prokaryotes) [57], Prodoric Release (prokaryotes) [58], and Yeastract
(yeast) [59], were utilized for regulon filtering in known TF templates to find homologous TFs and
corresponding genes in MG1363 using BLAST with default parameters. In the literature validation
part, all ASR-related transporters and genes were collected from published articles, and their sequences
were obtained from NCBI and UniProt databases.

2.2. Operon Identification

The genome-scale operons of MG1363 were identified by DOOR2. It is a one-stop operon-centered
resource including operons, alternative transcriptional units, motifs, terminators, and conserved
operons information across multiple species [18]. Operons were predicted by the back-end prediction
algorithm with a prediction accuracy of 90–95% [60], based on the features of intergenic distance,
neighborhood conservation, short DNA motifs, length ratio between gene pairs, and newly developed
transcriptomic features trained from the strand-specific RNA sequencing (RNA-Seq) dataset [61,62].

2.3. Gene Differential Expression Analysis and Co-Expression Analysis

Differentially expressed genes were identified based on the Wilcoxon signed-rank test [53] between
the control and treatment, which was performed in R. The gene co-expression analysis was performed
using a hierarchical clustering method (hcluster package in R) [52] to detect the CEMs under the acid
stress in MG1363.
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2.4. Motif finding and Regulon Prediction

Genes from each CEM were first mapped to the identified operons to retrieve the basic
transcription units. Next, 300 bps in the upstream of the translation starting sites for each operon were
extracted, in which motif finding was carried out using the webserver DMINDA [63,64], with the whole
genome sequence used as the control set. DMINDA is a dominant motif prediction tool, embraced five
analytical algorithms to find, scan, and compare motifs [13,61,65], including a phylogenetic footprint
framework to elucidate the mechanism of transcriptional regulation at a system level in prokaryotic
genomes [9,17,19]. A motif length of 12 nucleotides was used as the representative length for regulon
prediction [12,13]. The sequences were uploaded to the server and default parameters were used in
the BBC program to conduct motif clustering to find the top five significant motifs (p-value < 0.05) in
each cluster. The identified motifs were subjected to motif comparison and grouped into regulons
using Kruskal’s algorithm with two similarity thresholds, T1 and T2, to give rise to the highly reliable
and relatively reliable motif clusters, respectively, in the BBC program in DMINDA [13].

2.5. Regulon Validation Based on Transcription Factor BLAST and Differentially Expressed Gene Filtering

Each highly conserved motif was considered to contain the same TFBS among species.
Therefore, a comparison study was performed using Tomtom with default parameters in the MEME
Suite [54] between identified motif and public-domain TFBS databases, including DPInteract, JASPAR,
RegTransBase, Prodoric Release and Yeastract, to find TFBSs and corresponding TFs with significant
p-values in other prokaryotic species. Those TFs were then mapped to MG1363 using BLAST by
default parameters to predict the connection between regulons and TFs in MG1363. On the other
hand, since genes without differential expression were supposed not to react to pH changes, and thus,
irrelevant to ASR, regulons without DEGs were not involved in the GRN, and thus, excluded from the
following steps.

2.6. Regulon Validation Based on Known Acid Stress Response Proteins from the Literature

To validate the performance of the above computational pipeline for regulon prediction,
a literature-based validation was performed. Thirty-six ASR-related proteins and genes in other
organisms including L. lactis, E. coli, Streptococcus, and so on were first manually collected from
literature, and their sequence was retrieved from the NCBI and UniProt databases. They were used
to examine the existing known mechanisms in response to pH changes in MG1363 using the BLAST
program by default parameters on NCBI. Such literature-based validation can either confirm the
putative regulons when known ASR-related genes can be found in the significant regulons or expand
our results to some insufficiently significant regulons, which indicate both false positive and true
negative rate to evaluate the computational pipeline.

3. Results

3.1. Predicted Operons and Co-Expression Gene Module Generation

A total of 1565 operons with 2439 coding genes of MG1363 (dataset S1) were retrieved from
the DOOR2 database. Through co-expression analysis, the 1565 operons were grouped into
124 co-expressed clusters by calculating the Euclidean distance using h = 0.05 × (MAX (distance)).
Among these clusters, two large groupings contain more than 200 operons. Each of which was
removed from the subsequent analyses as larger clusters may have higher chances to induce false
positive operons which were connected with true operons by co-expression analysis. For the remaining
122 clusters covering 2122 genes, 26 (21%) contain no more than 10 operons; the smallest cluster had
two operons, and most of the clusters (90%) contained between 10 and 50 operons (dataset S2 and
Figure S1).
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3.2. Predicted Regulons Based on Motif Finding and Clustering

Using BoBro in the DMINDA webserver, multiple motif sequences were identified from the
300 bps in the upstream of the translation start sites for each operon. Only the top five significant
motifs (adjusted p-value < 0.001) were selected in each cluster, giving rise to a total of 610 (122 × 5)
identified. The motif comparison-and-clustering analysis was then performed on the 610 motifs, and
51 motif clusters were identified, with a motif similarity 0.8 as a cutoff. Intuitively, the operons sharing
highly similar motifs in each motif cluster are supposed to be regulated by the same TF and tend to be
in the same regulon. Hence, these 51 motif clusters correspond to 51 regulons (dataset S3).

3.3. Computationally-Verified Regulon Based on Transcription Factor BLAST and Differential Gene Expression
Analysis

Among the above 51 regulons, 14 were found containing motifs significantly (E-value < 0.05)
matched to known TFBSs using TOMTOM in the MEME suite, representatively. The motif logos are
shown in Figure S2, and more details can be found in dataset S4. The 14 TFBS-corresponding TFs
were then mapped to MG1363 using BLAST to identify the real TFs/genes regulating each regulon.
As a result, eight known TFs—spo0A, lhfB, GAL80, CovR, c4494, ihfA, CovR, and RHE_PF00288—were
successfully mapped to MG1363 resulting in eight TFs with multiple hits. The gene llrA (llmg_0908)
regulates regulons #12 and #37, ccpA (llmg_0775) regulated regulons #15 and #47, hllA (llmg_0496)
regulates regulons #7 and #31 (Table 1). The genes ccpA [66,67], llrA [68], llrC [68], and hllA [69],
were known to be ASR-related genes in L. lactis; the gene llmg_0271, without any related known TF,
was found to be similar to template TF GAL80 in yeast, which has not been associated with any ASR
regulation pathways yet. For all 14 significant regulons, regulons #3, #4, #20, #28, #40, and #44 are
potential candidates as, currently, no related TFs in L. lactis have been found (Table 1).

Table 1. Altogether, 14 significant regulons that are verified and mapped to known transcription factors
(TFs). According to analyses, operon numbers and DEG determination (yes or no), matched template
TFs and mapped TFs were assigned for each significant regulon, respectively, and were aligned based
on regulon ID number. Five regulons containing DEGs and having the corresponding TF at the same
time were bolded, being computationally verified as the regulons responsible for acid stress in MG1363.

Regulon ID No. of Operons DEG TF Template TF (Gene) BLAST in MG1363

Regulon #2 82 Y spo0A llrC (llmg_0414)
Regulon #3 32 Y FoxQ1 N/A
Regulon #4 20 Y SPT2 N/A
Regulon #7 49 Y lhfB hllA (llmg_0496)
Regulon #10 5 N GAL80 llmg_0271
Regulon #12 259 Y CovR llrA (llmg_0908)
Regulon #15 19 Y c4494 ccpA (llmg_0775)
Regulon #20 79 Y NHP6A N/A
Regulon #28 5 Y 1Z916 N/A
Regulon #31 65 Y ihfA hllA (llmg_0496)
Regulon #37 10 N CovR llrA (llmg_0908)
Regulon #40 7 Y Awh N/A
Regulon #44 12 N YBR182C N/A
Regulon #47 5 N RHE_PF00288 ccpA (llmg_0775)

Abbreviations: N, no; Y, yes; N/A, not found.

Additionally, 86 down-regulated genes and 55 up-regulated genes (dataset S5), resulting from
DGE analysis were integrated into the regulons. Regulons #10, #37, #44 and #47 were found to be
lacking DEGs. Thus, gene llmg_0271, related to regulon #10, was not likely to respond to acid stress
in MG1363 even though it has been successfully mapped to MG1363, and was then grouped into the
potential candidate. On the contrary, ccpA and llrA were still retained due to their involvements in
regulons #15 and #12 with DEGs, respectively.
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By the end of the computational pipeline, we predicted that regulons #2, #7, #12, #15 and #31 were
related to GRN in MG1363 (Figure S3). A hypergeometric algorithm was used to verify the possibility
of the of DEG numbers in each regulon (dataset S6). Merging regulon #7 and #31 as one, we referred to
their TF names (ccpA, llrA, llrC, and hllA) to represent the five regulons for convenience.

3.4. Verified Regulons Based on Literature Verification

Altogether, 36 literature-supported ASR-related transporters were successfully mapped to
MG1363 using blast with an E-value cutoff as 1e−10, which resulted in a total of 33 mapped genes.
All the 36 transporters were categorized into nine modules based on their biological functions
or regulated pathways, including L-lactate dehydrogenase (LDH), GAD, ADI, urea degradation,
F1/F0ATPase, acid stress, protein repair and protease, envelope alterations, and DNA repair.
The 33 mapped genes generate 22 operons and six regulons: llrA, llrC, hllA, NHP6A, regulon #8
and #39, which were subjected, one or more, to each functional module (Table 2).

Table 2. Known ASR-related gene mapping from literature in response to pH change.
Literature-supported ASR-related genes found in close species or other Lactococcus lactis strains.
The template transporters and genes were first identified in published studies from the NCBI and
UniProt databases. Lactococcus lactis Il1403 was used as the organism which is very close to MG1363 if
template gene existed. Only 36 templates that successfully mapped to the MG1363 genome were listed,
which resulted in 33 genes. All mapped genes and corresponding templated were organized by their
regulated pathways which were further used as functional modules. Mapped genes were searched in
51 regulons to build the connections between functional modules and regulons.

Template Organisms MG1363

Organisms Transporters Functions/Pathways Mapped Genes (Locus Tag) Regulons

Lactococcus lactis
ldh

LDH
ldh (llmg_1120)

NHP6A,
llrA

ldhB ldhB (llmg_0392, llmg_0475)
ldhX ldhX (llmg_1429)

Lactococcus lactis
gadB

GAD
gadB (llmg_1179)

N/AgadC gadC (llmg_1178)

L actococcus lactis

arcA

ADI pathway

arcA (llmg_2313)

NHP6A,
llrA, llrC, hllA

arcB arcB (llmg_2312)
arcC1 arcC1 (llmg_2310)
arcC2 arcC2 (llmg_2309)
argF argF (llmg_1754)

Bacteria ureA/B/C $ Urea degradation pyrC (llmg_1508) N/A

L actococcus lactis atpEBFHAGDC $$ F0/F1ATPase

llmg_1952, llmg_1951,
llmg_1950, llmg_1949,
llmg_1948, llmg_1947,
llmg_1946, llmg_1945

llrA,
(Regulon8, llmg_1803) $$$

Lactococcus lactis rcfB Acid response rcfB (llmg_2512) (Regulon39, llrD) $$$

Lactococcus lactis,
Escherichia coli K12

dnak

Chaperone, Protein
repair and protease

dnaK (llmg_1574)

llrA

groEL groEL2 (llmg_0411)
groES groES (llmg_0410)
grpE grpE (llmg_1575)
clpE clpE (llmg_0528)
clpC clpC (llmg_0615)
clpP clpP (llmg_0638)

Lactococcus lactis,
Bacillus subtilis

dltC, agK,
SGP, ffh

Envelope
alterations llmg_0878 NHP6A,

llrA

Lactococcus lactis recA, uvr, smn DNA repair llmg_0374, llmg_0534,
llmg_1718 llmg_1221

(Regulon39,
llrD) $$$

$ Three subunits of urease enzymes coded by ureABC operon found preserved in multiple bacteria. $$ Altogether
eight genes. $$$ The homolog prediction or motif research results with low homolog similarity but have meaningful
biological relevance. Abbreviations: LDH, L-lactate dehydrogenase; GAD, glutamate decarboxylases; ADI, arginine
deiminase; N/A, not found.
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Regulons llrA, llrC, and hllA have already been computationally identified in Table 1 and
supported again by literature verification results. The NHP6A gene, interestingly, has a homologous
TF in humans and fungi but not in L. lactis [70,71], yet failed to map in MG1363. Here, we are using
NHP6A to represent regulon #20, as their relationship has been predicted computationally in Table 1.
Regulon #39 was identified to be regulated by llrD, one of the six two-component regulatory systems in
MG1363 [68]. Regulons #8 (llmg_1803) and #39 (llrD) were not included in the 14 significant regulons
in Table 1. For NHP6A, regulons #8 and #39 were enriched by literature validation as it expanded
regulon results of the RECTA pipeline. Among the nine functional modules, llrA was found connected
to five of them, and NHP6A related to three. On the other hand, the GAD and urea degradation
functional modules failed to connect to any previous regulons.

Compared to the regulon verification based on TF BLAST and DGE, the literature verification
identified two more regulons (#8 and #39) that lay in the insignificant group, however, with no sign
of ccpA regulon. Thus, such a result indicates a possible false positive rate of 1:5 and a true negative
rate of 2:37 of our computational pipeline, indicating the reliability and feasibility of using RECTA to
predict the ASR-related regulons. In Figure 2, we show the processes and results for both literature
verification and the computational pipeline in detail. The final eight regulons predicted from both parts
were then compared to construct a GRN response to acid stress, integrated with other information
found in the literature.
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3.5. A Model of Regulatory Network in Response to pH Change 

Figure 2. Regulon prediction using regulon identification based on comparative genomics and
transcriptomics analysis (RECTA) pipeline (red) and validation and enrichment using literature
information and gene blast (blue). All processes were shown in rectangles and results were highlighted
with corresponding background colors. In the computational pipeline, 51 regulons with assigned
motifs and operons were analyzed sequentially through significant TFBS pairing, DEG conformation,
and TF BLAST. Only regulons contained DEGs (10) which had related mapped TF (8) were believed
to be the final predicted ASR-related regulons (5). These five regulons were then merged into four,
using the corresponding TFs to represent their names. In the literature validation process, known
ASR-related transporters were first mapped to the MG1363 genome and resulted in 33 genes. Those
genes were then searched in 51 regulons and determined six related regulons. All regulons resulting
from both computational pipeline and literature validation were combined, along with the information
of functional modules, to determine the GRN.
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3.5. A Model of Regulatory Network in Response to pH Change

According to the results outlined above, we are presenting a working model of the transcriptional
regulatory network for acid stress response in MG1363 (Figure 3). The network consists of two
transmembrane proteins (dataset S7), eight regulons, nine functional modules, and 33 orthologous
genes known for ASR in other bacteria that are also contributing in MG1363.
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Figure 3. A working model of the transcriptional gene regulatory network in response to pH change
in L. lactis. The mechanism is activated by the change of proton signal in a cell. Regulon RcfB
is assumed to be the overall activator for the rest seven regulons and controls the ASR functional
module solely. Three kinds of literature were verified; significant ASR-related regulons, llrA, llrC,
and hllA, and two insufficiently significant regulons, llrD (regulon #39) and regulon #8 (llmg_1803)
were predicted via our workflow but with results under a 0.8 motif similarity cutoff or a hit could
not be found; one putative significant regulon NHP6A controls the seven functional modules which
are experimentally verified in the close species MG1363. The other significant regulon ccpA failed to
be confirmed by any literature-proved genes or transporters. Two extra functional modules, GAD,
and urea degradation show no direct connection to all seven of the regulons. One or more homology
genes are found in MG1363 for all the nine modules using BLAST. The solid arrows indicate regulation
between regulons/TFs and functional modules/genes, and the dashed arrows indicate uncertain
control processes. Additionally, two ovals indicate two trans-membrane proteins; one is confirmed as
F0/F1ATPase and the other one, with the dashed line, whose related information we cannot find in the
public-domain literature.

The network is subjected to respond to the change of intracellular proton level. The signal is
captured by H+ sensor and regulons are initiated to be regulated. Although significance was not
shown for rcfB in our computational results, it has been reported to recognize and regulate promoter
P170 [72], P1, and P3 [73,74], which are activated by boxes A, C and D (ACiD-box) and essential to acid
response [75]. With the ACiD box, operons like groESL, lacticin 481 and lacZ have been proved to be
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regulated by rcfB, while als, aldB, etc., have not [75]. The homologous comparative study also predicted
the existence of the ACiD box in llrA [68,76]. With such evidence, we separated rcfB from regulon
#39 and predicted that rcfB is first triggered by H+ sensor and acts as the global initiator that controls
the other seven regulons. It is reasonable that rcfB-related regulon #39 failed to show significant
TF matching results after CEM treatment in the operon clustering step. The rcfB regulator worked
as a trustworthy global factor; its differential expression should be less significant than regulons
directly responding to acid stress, thus leading to the failure of being predicted by the RECTA pipeline.
Nevertheless, the low number of microarray data sets (8) also limited the real performance to the ASR.
However, the mechanism of how H+ sensor is activating and regulating the GRN and rcfB remains
unclear. In the seven regulons, three—llrA, llrC and hllA—were verified through literature to be related
to ASR; regulons #8 and #39 showed less significant in regulon prediction; NHP6A was considered as
putative regulon due to its failure to map in MG1363; and ccpA was another putative regulon without
literature support.

The six downstream regulons (llrA, llrC, hllA, NHP6A, regulon #39, and regulon #8) other than
ccpA, interact with each other to regulate six ASR-related functional modules, including the ADI
system, DNA repair, LDH, protein repair, envelope alterations, and F0/F1 adenosine triphosphatase
(F0/F1ATPase). The ADI pathway, which generates adenosine triphosphate (ATP) and protects cells
from acid stress [44], is under the regulation of NHP6A, llrC, llrA, and hllA. Another important pathway
is the LDH (EC 1.1.1.27) under the regulation of NHP6A and llrA, which converts pyruvate and H+ to
lactate which is exported outside of cells [77]. Chaperons which take part in macromolecule protection
and repairing are subjected to regulon llrA. Chaperons have functions that include providing protection
to against environmental stress, helping protein folding, and repairing damaged proteins, and have
been demonstrated to show clear linkage with acid stress in numerous Gram-positive bacteria [37–40].
The F0/F1ATPase, controlled by llrA and regulon #8, also plays an important role in maintaining
normal cellular pH, which pumps H+ out of cells at the expense of ATP [34,35,78,79]. The GAD [45,46]
and urea degradation [48] functional modules are missing reliable associations with the regulons in
MG1363 while maintaining functions in ASR mechanism in other species.

4. Discussion and Conclusions

Implementation of the novel computational pipeline RECTA resulted in the construction of an
eight-regulons enrolled ASR regulatory network. The framework provides a useful tool and will be a
starting point toward a more systems-level understanding of the question [80]. The identified motifs
and regulons suggest acid resistance is a coordinated response regarding regulons, although most of
these have not been identified or experimentally verified. From the three well-identified regulons—llrA,
llrC, and hllA—it appears the gene regulation is also complex, as these regulons also interact with
other proteins and TFs. The F0/F1ATPase is directly involved in the concentration regulations of
the intracellular proton. Other pathways are responsible for repairing the damage caused by acid
stress, such as DNA repair, protein repair, and cell envelops alterations. However, there were also
several reported ASR-related genes or transporters such as htrA in Clostridium spp. [81], CovS/CovR
acid response regulator in Streptococcus [82], cyclopropane fatty acid (cfa) synthase for cell-membrane
modification [83], and oxidative damage protectant genes like sodA, nox-1 and nox-2 [84] that failed to
map to MG1363. Using more gene expression datasets for CEM and DGE analyses could be a way to
strengthen the result of our computational pipeline, which might cover more significant regulons to
construct a more solid and complete regulatory network.

Homology mapping at the genomic level showed very a long evolutionary distance between
MG1363 and currently well-annotated model species. Hence, the functional analysis for MG1363 is
limited, and it is hard to apply gene functional enrichment to verify our prediction results. With more
expression datasets and experiments about protein–protein interactions, the ASR mechanism can be
largely improved in L. lactic MG1363.
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In summary, through the implementation of RECTA, we found that the ASR at the transcriptome
level in MG1363 is an orchestrated complex network. Functional annotation shows these regulons
are involved in many levels of biological processes, including but not limited to DNA expression,
transcription, and metabolism. Our method builds a TF-regulons-GRN relationship so that the new
ASR-related genes can be predicted. Besides, the low false positive and true negative rate indicate
the RECTA pipeline as sensitive and reasonable. In fact, considering the high accuracy, we regarded
ccpA as the putative regulon, though not connected to any related functional modules, while more
robust methods are required. Such results expand current pathways to those that can corroborate
cell structures—cell wall, cell membranes, and so on—and related functions. Our findings suggest
that acid has profound adverse effects and inflicts a systems-level response. Such predicted response
pathways can inform better resistance design.

Looking forward to the acid tolerance advantage of L. lactis, which makes its prospective
application in drug and vaccine delivery, the effects on anti-obesity research, and metagenomic studies,
the ASR-related GRN in L. lactis shows an excellent research value. Fully understanding its theory
may contribute to the development of Lactococcus therapy and can even expand to other close species
by genetic modification. Furthermore, our computational pipeline provides an effective method to
construct a reliable GRN based on regulon prediction, integrating CEMs, DGE analysis, motif finding,
and comparative genomics study. It has a durable application power and can be effectively applied to
other bacterial genomes, where the elucidation of the transcriptional regulation network is needed.

In this study, we designed a computational framework, RECTA, for acid-response regulon
elucidation. This tool integrates differential gene expression, co-expression analysis, cis-regulatory
motif identification, and comparative genomics to predict and validate regulons associated with
acid response. In demonstrating the efficacy of this tool, we analyzed Lactococcus lactis MG1363.
This implementation resulted in the expanded understanding of the acid-response regulon network
for this one strain of L. lactis and provides an applicable method for acid-response regulon elucidation
of further species. Through utilization of the RECTA pipeline, researchers can readily evaluate
acid-response mechanisms for numerous bacterial species, while simultaneously validating the results
of their study.
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s1. Figure S1: The distribution of operon numbers among 122 clusters, Figure S2: The motif logos extracted
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results for regulon prediction, Dataset S4: Computational validation results for predicted regulons, Dataset S5:
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regulon, Dataset S7: The prediction results for trans-membrane proteins.
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Abbreviations

ADI Arginine deiminase
BBC Bobro-based motif comparison
BoBro Bottleneck broken
CEM Co-expression (gene) module
DEG Differentially expressed gene
DGE Differential gene expression
E. coli Escherichia coli
GAD Glutamate decarboxylases
GRN Gene regulatory network
LDH Lactate dehydrogenase
L. lactis Lactococcus lactis
MG1363 Lactococcus lactis MG1363
Motif Cis-regulatory motif
RECTA Regulon identification based on comparative genomics and transcriptomics analysis
TF Transcription factors
TFBS Transcriptional factor binding site
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