28,462 research outputs found

    Electrostatic spherically symmetric configurations in gravitating nonlinear electrodynamics

    Get PDF
    We perform a study of the gravitating electrostatic spherically symmetric (G-ESS) solutions of Einstein field equations minimally coupled to generalized non-linear abelian gauge models in three space dimensions. These models are defined by lagrangian densities which are general functions of the gauge field invariants, restricted by some physical conditions of admissibility. They include the class of non-linear electrodynamics supporting ESS non-topological soliton solutions in absence of gravity. We establish that the qualitative structure of the G-ESS solutions of admissible models is fully characterized by the asymptotic and central-field behaviours of their ESS solutions in flat space (or, equivalently, by the behaviour of the lagrangian densities in vacuum and on the point of the boundary of their domain of definition, where the second gauge invariant vanishes). The structure of these G-ESS configurations for admissible models supporting divergent-energy ESS solutions in flat space is qualitatively the same as in the Reissner-Nordstr\"om case. In contrast, the G-ESS configurations of the models supporting finite-energy ESS solutions in flat space exhibit new qualitative features, which are discussed in terms of the ADM mass, the charge and the soliton energy. Most of the results concerning well known models, such as the electrodynamics of Maxwell, Born-Infeld and the Euler-Heisenberg effective lagrangian of QED, minimally coupled to gravitation, are shown to be corollaries of general statements of this analysis.Comment: 11 pages, revtex4, 4 figures; added references; introduction, conclusions and several sections extended, 2 additional figures included, title change

    Studies of the nucler equation of state using numerical calculations of nuclear drop collisions

    Get PDF
    A numerical calculation for the full thermal dynamics of colliding nuclei was developed. Preliminary results are reported for the thermal fluid dynamics in such processes as Coulomb scattering, fusion, fusion-fission, bulk oscillations, compression with heating, and collisions of heated nuclei

    Simultaneous measurement of multiple parameters of a subwavelength structure based on the weak value formalism

    Get PDF
    A mathematical extension of the weak value formalism to the simultaneous measurement of multiple parameters is presented in the context of an optical focused vector beam scatterometry experiment. In this example, preselection and postselection are achieved via spatially-varying polarization control, which can be tailored to optimize the sensitivity to parameter variations. Initial experiments for the two-parameter case demonstrate that this method can be used to measure physical parameters with resolutions at least 1000 times smaller than the wavelength of illumination

    Packing subgroups in relatively hyperbolic groups

    Full text link
    We introduce the bounded packing property for a subgroup of a countable discrete group G. This property gives a finite upper bound on the number of left cosets of the subgroup that are pairwise close in G. We establish basic properties of bounded packing, and give many examples; for instance, every subgroup of a countable, virtually nilpotent group has bounded packing. We explain several natural connections between bounded packing and group actions on CAT(0) cube complexes. Our main result establishes the bounded packing of relatively quasiconvex subgroups of a relatively hyperbolic group, under mild hypotheses. As an application, we prove that relatively quasiconvex subgroups have finite height and width, properties that strongly restrict the way families of distinct conjugates of the subgroup can intersect. We prove that an infinite, nonparabolic relatively quasiconvex subgroup of a relatively hyperbolic group has finite index in its commensurator. We also prove a virtual malnormality theorem for separable, relatively quasiconvex subgroups, which is new even in the word hyperbolic case.Comment: 45 pages, 2 figures. To appear in Geom. Topol. v2: Updated to address concerns of the referee. Added theorem that an infinite, nonparabolic relatively quasiconvex subgroup H of a relatively hyperbolic group has finite index in its commensurator. Added several new geometric results to Section 7. Theorem 8.9 on packing relative to peripheral subgroups is ne
    • …
    corecore