5,115 research outputs found

    Stretching and twisting of the DNA duplexes in coarse grained dynamical models

    Full text link
    Three coarse-grained models of the double-stranded DNA are proposed and compared in the context of mechanical manipulation such as twisting and various schemes of stretching. The models differ in the number of effective beads (between two and five) representing each nucleotide. They all show similar behavior and, in particular, lead to a torque-force phase diagrams qualitatively consistent with experiments and all-atom simulations

    Effects of non-uniform interstellar magnetic field on synchrotron X-ray and inverse-Compton gamma-ray morphology of SNRs

    Full text link
    Observations of SNRs in X-ray and gamma-ray bands promise to contribute with important information in our understanding on the nature of galactic cosmic rays. The analysis of SNRs images collected in different energy bands requires the support of theoretical modeling of synchrotron and inverse Compton (IC) emission. We develop a numerical code (REMLIGHT) to synthesize, from MHD simulations, the synchrotron radio, X-ray and IC gamma-ray emission from SNRs expanding in non-uniform interstellar medium (ISM) and/or non-uniform interstellar magnetic field (ISMF). As a first application, the code is used to investigate the effects of non-uniform ISMF on the SNR morphology in the non-thermal X-ray and gamma-ray bands. We perform 3D MHD simulations of a spherical SNR shock expanding through a magnetized ISM with a gradient of ambient magnetic field strength. The model includes an approximate treatment of upstream magnetic field amplification and the effect of shock modification due to back reaction of accelerated cosmic rays. From the simulations, we synthesize the synchrotron radio, X-ray and IC gamma-ray emission with REMLIGHT, making different assumptions about the details of acceleration and injection of relativistic electrons. A gradient of the ambient magnetic field strength induces asymmetric morphologies in radio, X-ray and gamma-ray bands independently from the model of electron injection if the gradient has a component perpendicular to the line-of-sight. The degree of asymmetry of the remnant morphology depends on the details of the electron injection and acceleration and is different in the radio, X-ray, and gamma-ray bands. The non-thermal X-ray morphology is the most sensitive to the gradient, showing the highest degree of asymmetry. The IC gamma-ray emission is weakly sensitive to the non-uniform ISMF, the degree of asymmetry of the SNR morphology being the lowest in this band.Comment: 16 pages, 13 Figures; accepted for publication on A&A. Version with full resolution images can be found at http://www.astropa.unipa.it/~orlando/PREPRINTS/sorlando_15505.pd

    Neutrino-nucleus reactions on ^{12}C and ^{16}O

    Get PDF
    Exclusive and inclusive (ΜΌ,Ό−),(Îœe,e−)(\nu_\mu, \mu^-), (\nu_e, e^-) cross-sections and Ό−\mu^--capture rates are calculated for ^{12}C and ^{16}O using the consistent random phase approximation (RPA) and pairing model. After a pairing correction is introduced to the RPA results the flux-averaged theoretical (ΜΌ,Ό−),(Îœe,e−)(\nu_\mu, \mu^-), (\nu_e, e^-) cross-sections and Ό−\mu^--capture rates in 12^{12}C are in good agreement with experiment. In particular when one takes into account the experimental error bars, the recently measured range of values for the (ΜΌ,Ό−)(\nu_\mu, \mu^-) cross-section is in agreement with the present theoretical results. Predictions of (ΜΌ,Ό−)(\nu_\mu, \mu^-) and (Îœe,e−)(\nu_e, e^-) cross-sections in ^{16}O are also presented.Comment: 13 pages, Revte

    Evidence for Neutrino Oscillations from Muon Decay at Rest

    Get PDF
    A search for nu_bar_mu to nu_bar_e oscillations has been conducted at the Los Alamos Meson Physics Facility using nu_bar_mu from mu+ decay at rest. The nu_bar_e are detected via the reaction (nu_bar_e,p) -> (e+,n), correlated with the 2.2 MeV gamma from (n,p) -> (d,gamma). The use of tight cuts to identify e+ events with correlated gamma rays yields 22 events with e+ energy between 36 and 60 MeV and only 4.6 (+/- 0.6) background events. The probability that this excess is due entirely to a statistical fluctuation is 4.1E-08. A chi^2 fit to the entire e+ sample results in a total excess of 51.8 (+18.7) (-16.9) (+/- 8.0) events with e+ energy between 20 and 60 MeV. If attributed to nu_bar_mu -> nu_bar_e oscillations, this corresponds to an oscillation probability (averaged over the experimental energy and spatial acceptance) of 0.0031 (+0.0011) (-0.0010) (+/- 0.0005).Comment: 57 pages, 34 figures, revtex, additional information available at http://nu1.lampf.lanl.gov/~lsnd

    Measurement of J/ψ production in association with a W ± boson with pp data at 8 TeV

    Get PDF
    A measurement of the production of a prompt J/ψ meson in association with a W± boson with W± → ΌΜ and J/ψ → ÎŒ+Ό− is presented for J/ψ transverse momenta in the range 8.5–150 GeV and rapidity |yJ/ψ| < 2.1 using ATLAS data recorded in 2012 at the LHC. The data were taken at a proton-proton centre-of-mass energy of s = 8 TeV and correspond to an integrated luminosity of 20.3 fb−1. The ratio of the prompt J/ψ plus W± cross-section to the inclusive W± cross-section is presented as a differential measurement as a function of J/ψ transverse momenta and compared with theoretical predictions using different double-parton-scattering cross-sections. [Figure not available: see fulltext.]

    Cosmological parameters from SDSS and WMAP

    Full text link
    We measure cosmological parameters using the three-dimensional power spectrum P(k) from over 200,000 galaxies in the Sloan Digital Sky Survey (SDSS) in combination with WMAP and other data. Our results are consistent with a ``vanilla'' flat adiabatic Lambda-CDM model without tilt (n=1), running tilt, tensor modes or massive neutrinos. Adding SDSS information more than halves the WMAP-only error bars on some parameters, tightening 1 sigma constraints on the Hubble parameter from h~0.74+0.18-0.07 to h~0.70+0.04-0.03, on the matter density from Omega_m~0.25+/-0.10 to Omega_m~0.30+/-0.04 (1 sigma) and on neutrino masses from <11 eV to <0.6 eV (95%). SDSS helps even more when dropping prior assumptions about curvature, neutrinos, tensor modes and the equation of state. Our results are in substantial agreement with the joint analysis of WMAP and the 2dF Galaxy Redshift Survey, which is an impressive consistency check with independent redshift survey data and analysis techniques. In this paper, we place particular emphasis on clarifying the physical origin of the constraints, i.e., what we do and do not know when using different data sets and prior assumptions. For instance, dropping the assumption that space is perfectly flat, the WMAP-only constraint on the measured age of the Universe tightens from t0~16.3+2.3-1.8 Gyr to t0~14.1+1.0-0.9 Gyr by adding SDSS and SN Ia data. Including tensors, running tilt, neutrino mass and equation of state in the list of free parameters, many constraints are still quite weak, but future cosmological measurements from SDSS and other sources should allow these to be substantially tightened.Comment: Minor revisions to match accepted PRD version. SDSS data and ppt figures available at http://www.hep.upenn.edu/~max/sdsspars.htm

    Modeling Molecular Interactions in Water: From Pairwise to Many-Body Potential Energy Functions.

    Get PDF
    Almost 50 years have passed from the first computer simulations of water, and a large number of molecular models have been proposed since then to elucidate the unique behavior of water across different phases. In this article, we review the recent progress in the development of analytical potential energy functions that aim at correctly representing many-body effects. Starting from the many-body expansion of the interaction energy, specific focus is on different classes of potential energy functions built upon a hierarchy of approximations and on their ability to accurately reproduce reference data obtained from state-of-the-art electronic structure calculations and experimental measurements. We show that most recent potential energy functions, which include explicit short-range representations of two-body and three-body effects along with a physically correct description of many-body effects at all distances, predict the properties of water from the gas to the condensed phase with unprecedented accuracy, thus opening the door to the long-sought "universal model" capable of describing the behavior of water under different conditions and in different environments
    • 

    corecore