56 research outputs found

    LNCS

    Get PDF
    In this note, we introduce a distributed twist on the classic coupon collector problem: a set of m collectors wish to each obtain a set of n coupons; for this, they can each sample coupons uniformly at random, but can also meet in pairwise interactions, during which they can exchange coupons. By doing so, they hope to reduce the number of coupons that must be sampled by each collector in order to obtain a full set. This extension is natural when considering real-world manifestations of the coupon collector phenomenon, and has been remarked upon and studied empirically (Hayes and Hannigan 2006, Ahmad et al. 2014, Delmarcelle 2019). We provide the first theoretical analysis for such a scenario. We find that “coupon collecting with friends” can indeed significantly reduce the number of coupons each collector must sample, and raises interesting connections to the more traditional variants of the problem. While our analysis is in most cases asymptotically tight, there are several open questions raised, regarding finer-grained analysis of both “coupon collecting with friends,” and of a long-studied variant of the original problem in which a collector requires multiple full sets of coupons

    How to Elect a Leader Faster than a Tournament

    Full text link
    The problem of electing a leader from among nn contenders is one of the fundamental questions in distributed computing. In its simplest formulation, the task is as follows: given nn processors, all participants must eventually return a win or lose indication, such that a single contender may win. Despite a considerable amount of work on leader election, the following question is still open: can we elect a leader in an asynchronous fault-prone system faster than just running a Θ(log⁥n)\Theta(\log n)-time tournament, against a strong adaptive adversary? In this paper, we answer this question in the affirmative, improving on a decades-old upper bound. We introduce two new algorithmic ideas to reduce the time complexity of electing a leader to O(log⁡∗n)O(\log^* n), using O(n2)O(n^2) point-to-point messages. A non-trivial application of our algorithm is a new upper bound for the tight renaming problem, assigning nn items to the nn participants in expected O(log⁥2n)O(\log^2 n) time and O(n2)O(n^2) messages. We complement our results with lower bound of Ω(n2)\Omega(n^2) messages for solving these two problems, closing the question of their message complexity

    Model compression via distillation and quantization

    Get PDF
    Deep neural networks (DNNs) continue to make significant advances, solving tasks from image classification to translation or reinforcement learning. One aspect of the field receiving considerable attention is efficiently executing deep models in resource-constrained environments, such as mobile or embedded devices. This paper focuses on this problem, and proposes two new compression methods, which jointly leverage weight quantization and distillation of larger teacher networks into smaller student networks. The first method we propose is called quantized distillation and leverages distillation during the training process, by incorporating distillation loss, expressed with respect to the teacher, into the training of a student network whose weights are quantized to a limited set of levels. The second method, differentiable quantization, optimizes the location of quantization points through stochastic gradient descent, to better fit the behavior of the teacher model. We validate both methods through experiments on convolutional and recurrent architectures. We show that quantized shallow students can reach similar accuracy levels to full-precision teacher models, while providing order of magnitude compression, and inference speedup that is linear in the depth reduction. In sum, our results enable DNNs for resource-constrained environments to leverage architecture and accuracy advances developed on more powerful devices

    LIPIcs

    Get PDF
    Union-Find (or Disjoint-Set Union) is one of the fundamental problems in computer science; it has been well-studied from both theoretical and practical perspectives in the sequential case. Recently, there has been mounting interest in analyzing this problem in the concurrent scenario, and several asymptotically-efficient algorithms have been proposed. Yet, to date, there is very little known about the practical performance of concurrent Union-Find. This work addresses this gap. We evaluate and analyze the performance of several concurrent Union-Find algorithms and optimization strategies across a wide range of platforms (Intel, AMD, and ARM) and workloads (social, random, and road networks, as well as integrations into more complex algorithms). We first observe that, due to the limited computational cost, the number of induced cache misses is the critical determining factor for the performance of existing algorithms. We introduce new techniques to reduce this cost by storing node priorities implicitly and by using plain reads and writes in a way that does not affect the correctness of the algorithms. Finally, we show that Union-Find implementations are an interesting application for Transactional Memory (TM): one of the fastest algorithm variants we discovered is a sequential one that uses coarse-grained locking with the lock elision optimization to reduce synchronization cost and increase scalability

    Synchronous multi-GPU training for deep learning with low-precision communications: An empirical study

    Get PDF
    Training deep learning models has received tremendous research interest recently. In particular, there has been intensive research on reducing the communication cost of training when using multiple computational devices, through reducing the precision of the underlying data representation. Naturally, such methods induce system trade-offs—lowering communication precision could de-crease communication overheads and improve scalability; but, on the other hand, it can also reduce the accuracy of training. In this paper, we study this trade-off space, and ask:Can low-precision communication consistently improve the end-to-end performance of training modern neural networks, with no accuracy loss?From the performance point of view, the answer to this question may appear deceptively easy: compressing communication through low precision should help when the ratio between communication and computation is high. However, this answer is less straightforward when we try to generalize this principle across various neural network architectures (e.g., AlexNet vs. ResNet),number of GPUs (e.g., 2 vs. 8 GPUs), machine configurations(e.g., EC2 instances vs. NVIDIA DGX-1), communication primitives (e.g., MPI vs. NCCL), and even different GPU architectures(e.g., Kepler vs. Pascal). Currently, it is not clear how a realistic realization of all these factors maps to the speed up provided by low-precision communication. In this paper, we conduct an empirical study to answer this question and report the insights

    The splay-list: A distribution-adaptive concurrent skip-list

    Get PDF
    The design and implementation of efficient concurrent data structures have seen significant attention. However, most of this work has focused on concurrent data structures providing good \emph{worst-case} guarantees. In real workloads, objects are often accessed at different rates, since access distributions may be non-uniform. Efficient distribution-adaptive data structures are known in the sequential case, e.g. the splay-trees; however, they often are hard to translate efficiently in the concurrent case. In this paper, we investigate distribution-adaptive concurrent data structures and propose a new design called the splay-list. At a high level, the splay-list is similar to a standard skip-list, with the key distinction that the height of each element adapts dynamically to its access rate: popular elements ``move up,'' whereas rarely-accessed elements decrease in height. We show that the splay-list provides order-optimal amortized complexity bounds for a subset of operations while being amenable to efficient concurrent implementation. Experimental results show that the splay-list can leverage distribution-adaptivity to improve on the performance of classic concurrent designs, and can outperform the only previously-known distribution-adaptive design in certain settings

    Communication-efficient randomized consensus

    Get PDF
    We consider the problem of consensus in the challenging classic model. In this model, the adversary is adaptive; it can choose which processors crash at any point during the course of the algorithm. Further, communication is via asynchronous message passing: there is no known upper bound on the time to send a message from one processor to another, and all messages and coin flips are seen by the adversary. We describe a new randomized consensus protocol with expected message complexity O(n2log2n) when fewer than n / 2 processes may fail by crashing. This is an almost-linear improvement over the best previously known protocol, and within logarithmic factors of a known Ω(n2) message lower bound. The protocol further ensures that no process sends more than O(nlog3n) messages in expectation, which is again within logarithmic factors of optimal. We also present a generalization of the algorithm to an arbitrary number of failures t, which uses expected O(nt+t2log2t) total messages. Our approach is to build a message-efficient, resilient mechanism for aggregating individual processor votes, implementing the message-passing equivalent of a weak shared coin. Roughly, in our protocol, a processor first announces its votes to small groups, then propagates them to increasingly larger groups as it generates more and more votes. To bound the number of messages that an individual process might have to send or receive, the protocol progressively increases the weight of generated votes. The main technical challenge is bounding the impact of votes that are still “in flight” (generated, but not fully propagated) on the final outcome of the shared coin, especially since such votes might have different weights. We achieve this by leveraging the structure of the algorithm, and a technical argument based on martingale concentration bounds. Overall, we show that it is possible to build an efficient message-passing implementation of a shared coin, and in the process (almost-optimally) solve the classic consensus problem in the asynchronous message-passing model

    On the sample complexity of adversarial multi-source PAC learning

    Get PDF
    We study the problem of learning from multiple untrusted data sources, a scenario of increasing practical relevance given the recent emergence of crowdsourcing and collaborative learning paradigms. Specifically, we analyze the situation in which a learning system obtains datasets from multiple sources, some of which might be biased or even adversarially perturbed. It is known that in the single-source case, an adversary with the power to corrupt a fixed fraction of the training data can prevent PAC-learnability, that is, even in the limit of infinitely much training data, no learning system can approach the optimal test error. In this work we show that, surprisingly, the same is not true in the multi-source setting, where the adversary can arbitrarily corrupt a fixed fraction of the data sources. Our main results are a generalization bound that provides finite-sample guarantees for this learning setting, as well as corresponding lower bounds. Besides establishing PAC-learnability our results also show that in a cooperative learning setting sharing data with other parties has provable benefits, even if some participants are malicious

    PMLR Press

    Get PDF
    Recently there has been significant interest in training machine-learning models at low precision: by reducing precision, one can reduce computation and communication by one order of magnitude. We examine training at reduced precision, both from a theoretical and practical perspective, and ask: is it possible to train models at end-to-end low precision with provable guarantees? Can this lead to consistent order-of-magnitude speedups? We mainly focus on linear models, and the answer is yes for linear models. We develop a simple framework called ZipML based on one simple but novel strategy called double sampling. Our ZipML framework is able to execute training at low precision with no bias, guaranteeing convergence, whereas naive quanti- zation would introduce significant bias. We val- idate our framework across a range of applica- tions, and show that it enables an FPGA proto- type that is up to 6.5 × faster than an implemen- tation using full 32-bit precision. We further de- velop a variance-optimal stochastic quantization strategy and show that it can make a significant difference in a variety of settings. When applied to linear models together with double sampling, we save up to another 1.7 × in data movement compared with uniform quantization. When training deep networks with quantized models, we achieve higher accuracy than the state-of-the- art XNOR-Net
    • 

    corecore