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Abstract

We study the problem of learning from multi-
ple untrusted data sources, a scenario of increas-
ing practical relevance given the recent emer-
gence of crowdsourcing and collaborative learn-
ing paradigms. Specifically, we analyze the situa-
tion in which a learning system obtains datasets
from multiple sources, some of which might be bi-
ased or even adversarially perturbed. It is known
that in the single-source case, an adversary with
the power to corrupt a fixed fraction of the training
data can prevent PAC-learnability, that is, even
in the limit of infinitely much training data, no
learning system can approach the optimal test er-
ror. In this work we show that, surprisingly, the
same is not true in the multi-source setting, where
the adversary can arbitrarily corrupt a fixed frac-
tion of the data sources. Our main results are a
generalization bound that provides finite-sample
guarantees for this learning setting, as well as
corresponding lower bounds. Besides establish-
ing PAC-learnability our results also show that in
a cooperative learning setting sharing data with
other parties has provable benefits, even if some
participants are malicious.

1. Introduction
An important problem of current machine learning research
is to make learned systems more trustworthy. One par-
ticular aspect of this is robustness against data of unex-
pected or even adversarial nature. Robustness at prediction
time has recently received a lot of attention, in particu-
lar with work on the detection of out-of-distribution con-
ditions (Hendrycks & Gimpel, 2017; Liang et al., 2018;
Lee et al., 2018) and protection against adversarial exam-
ples (Raghunathan et al., 2018; Singh et al., 2018; Cohen
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et al., 2019). Robustness at training time, however, is repre-
sented less prominently, despite also being of great impor-
tance. One reason might be that learning from a potentially
adversarial data source is very hard: a classic result states
that when a fixed fraction of the training dataset is adver-
sarially corrupted, successful learning in the PAC sense is
not possible anymore (Kearns & Li, 1993). In other words,
there exists no robust learning algorithm that could over-
come the effects of adversarial corruptions in a constant
fraction of the training dataset and approach the optimal
model, even in the limit of infinite data.

In this work, we study the question of robust learning in
the multi-source case, i.e. when more than one dataset is
available for training. This is a situation of increasing rele-
vance in the era of big data, where machine learning models
tend to be trained on very large datasets. To create these,
one commonly relies on distributing the task of collecting
and annotating data, e.g. to crowdsourcing (Sheng & Zhang,
2019) services, or by adopting a collective or federated
learning scenario (McMahan & Ramage, 2017).

Unfortunately, relying on data from other parties comes
with the danger that some of the sources might produce
data of lower quality than desired, be it due to negligence,
bias or malicious behaviour. Consequently, the analogous
question to the classic problem described above is the fol-
lowing, which we refer to as adversarial multi-source learn-
ing. Given a number of i.i.d. datasets, a constant fraction
of which might have been adversarially manipulated, is
there a learning algorithm that overcomes the effect of the
corruptions and approaches an optimal model?

In this work, we study this problem formally and provide
a positive answer. Specifically, our main result is an upper
bound on the sample complexity of adversarial multi-source
learning, that holds as long as less than half of sources are
manipulated (Theorem 1).

A number of interesting results follow as immediate corol-
laries. First, we show that any hypothesis class that is uni-
formly convergent and hence PAC-learnable in the classical
i.i.d. sense is also PAC-learnable in the adversarial multi-
source scenario. This is in stark contrast to the single-source
situation where, as mentioned above, no non-trivial hypoth-
esis class is robustly PAC-learnable. As a second conse-
quence, we obtain the insight that in a cooperative learning
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scenario, every honest party can benefit from sharing their
data with others, as compared to using their own data only,
even if some of the participants are malicious.

Besides our main result we prove two additional theorems
that shed light on the difficulty of adversarial multi-source
learning. First, we prove that the naı̈ve but common strat-
egy of simply merging all data sources and training with
some robust procedure on the joint dataset cannot result
in a robust learning algorithm (Theorem 2). Second, we
prove a lower bound on the sample complexity under very
weak conditions (Theorem 3). This result shows that un-
der adversarial conditions a slowdown of convergence is
unavoidable, and that in order to approach optimal perfor-
mance, the number of samples per source must necessarily
grow, while increasing the number of sources need not help.

2. Related work
To our knowledge, our results are the first that formally char-
acterize the statistical hardness of learning from multiple
i.i.d. sources, when a constant fraction of them might be
adversarially corrupted. There are a number of conceptually
related works, though, which we will discuss for the rest of
this section.

Qiao & Valiant (2018), as well as the follow-up works of
Chen et al. (2019); Jain & Orlitsky (2019), aim at estimating
discrete distributions from multiple batches of data, some
of which have been adversarially corrupted. The main dif-
ference to our results is the focus on finite data domains
and estimating the underlying probability distribution rather
than learning a hypothesis.

Qiao (2018) studies collaborative binary classification: a
learning system has access to multiple training datasets and
a subset of them can be adversarially corrupted. In this setup,
the uncorrupted sources are allowed to have different input
distributions, but share a common labelling function. The
author proves that it is possible to robustly learn individual
hypotheses for each source, but a single shared hypothesis
cannot be learned robustly. For the specific case that all data
distributions are identical, the setup matches ours, though
only for binary classification in the realizable case, and with
a different adversarial model.

In a similar setting, Mahloujifar et al. (2019) show, in par-
ticular, that an adversary can increase the probability of
any ”bad property” of the learned hypothesis by a term at
least proportional to the fraction of manipulated sources.
These results differ from ours, by their assumption that dif-
ferent sources have different distributions, which renders
the learning problem much harder.

In Konstantinov & Lampert (2019), a learning system has
access to multiple datasets, some of which are manipulated,

and the authors prove a generalization bound and propose an
algorithm based on learning with a weighted combination
of all datasets. The main difference to our work is that their
proposed method crucially relies on a trusted subset of the
data being known to the learner. Their adversary is also
weaker, as it cannot influence the data points directly, but
only change the distribution from which they are sampled,
and the work does not provide finite sample guarantees.

There are a number of classic results on the fundamental
limits of PAC learning from a single labelled set of samples,
a fraction of which can be arbitrarily corrupted, e.g. (Kearns
& Li, 1993; Bshouty et al., 2002). We compare our results
against this classic scenario in Section 4.1.

Another related general direction is the research on
Byzantine-resilient distributed learning, which has seen sig-
nificant interest recently, e.g. (Blanchard et al., 2017; Chen
et al., 2017; Yin et al., 2018; 2019; Alistarh et al., 2018).
There the focus is on learning by exchanging gradient up-
dates between nodes in a distributed system, an unknown
fraction of which might be corrupted by an omniscient ad-
versary and may behave arbitrarily. These works tend to
design defences for specific gradient-based optimization al-
gorithms, such as SGD, and their theoretical analysis usually
assumes strict conditions on the objective function, such as
convexity or smoothness. Nevertheless, the (nearly) tight
sample complexity upper and lower bounds developed for
Byzantine-resilient gradient descent (Yin et al., 2018) and its
stochastic variant (Alistarh et al., 2018) are relevant to our
results and are therefore discussed in detail in Sections 4.2
and 5.2.

The work of Awasthi et al. (2017) considers learning from
crowdsourced data, where some of the workers might be-
have arbitrarily. However, they only focus on label cor-
ruptions. Feng (2017) consider the fundamental limits of
learning from adversarial distributed data, but in the case
when each of the nodes can iteratively send corrupted up-
dates with certain probability. Feng et al. (2014) provide a
method for distributing the computation of any robust learn-
ing algorithm that operates on a single large dataset. There
is also a large body of literature on attacks and defences for
federated learning, e.g. (Bhagoji et al., 2019; Fung et al.,
2018). Apart from focusing on iterative gradient-based
optimization procedures, these works also allow for natu-
ral variability in the distributions of the uncorrupted data
sources.

After the submission deadline, two further relevant works
have appeared on ArXiv. In particular, (Jain & Orlitsky,
2020) extend the framework of (Qiao & Valiant, 2018) to
learning of distributions over infinite domains, from un-
trusted batches of data. They also develop a robust algorithm
for binary classification, achieving similar statistical rates
to ours. Regarding hardness results, (Hanneke & Kpotufe,
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2020) recently gave a number of sample complexity lower
bounds for multi-task learning with N tasks that share an
optimal hypothesis. Their work shows in particular that no
learning procedure can achieve optimal risk as N → ∞,
even in this non-adversarial setting, as long as the number
of data points per task is constant and the learner has no
additional information about the relationship between the
tasks, apart from the given data.

3. Preliminaries
In this section we introduce the technical definitions that
are necessary to formulate and prove our main results. We
start by reminding the reader of the classical notion of PAC-
learnability and uniform convergence, as they can be found
in most machine learning textbooks. We then introduce the
setting of learning from multiple sources and notions of
adversaries of different strengths.

3.1. Notation and Background

Let X and Y be given input and output sets, respectively,
and D ∈ P(X ×Y) be a fixed but unknown probability
distribution. By ` : Y×Y → R we denote a loss function,
and byH ⊂ {h : X → Y} a set of hypotheses. All of these
quantities are assumed arbitrary but fixed for the purpose of
this work.

A (statistical) learner is a function L : ∪∞m=1(X×Y)m →
H. In the classic supervised learning scenario, the learner
has access to a training set of m labelled examples,
{(x1, y1), . . . , (xm, ym)}, sampled i.i.d. from D, and aims
at learning a hypothesis h ∈ H with small risk, i.e. expected
loss, under the unknown data distribution,

R(h) = E(x,y)∼D(`(h(x), y)). (1)

PAC-learnability is a key property of the hypothesis set,
which ensures the existence of an algorithm that performs
successful learning:
Definition 1 (PAC-Learnability). We call H (agnostic)
probably approximately correct (PAC) learnable with re-
spect to `, if there exists a learner L and a function mH,` :
(0, 1)×(0, 1)→ N, such that for any ε, δ ∈ (0, 1), whenever
S is a set of m ≥ mH,`(ε, δ) i.i.d. labelled samples from D,
then with probability at least 1− δ over the sampling of S:

R(L(S)) ≤ min
h∈H
R(h) + ε. (2)

Another important concept related to PAC-learnability is
that of uniform convergence.
Definition 2 (Uniform convergence). We say that H has
the uniform convergence property with respect to ` with
rate sH,`, if there exists a function sH,` : N× (0, 1)×⋃∞
m=1 (X×Y)

m → R, such that for any distribution
D ∈ P (X×Y ) and any δ ∈ (0, 1):

• given m samples S = {(x1, y1) , . . . , (xm, ym)} i.i.d.∼
D, with probability at least 1− δ over the data :

sup
h∈H
|R(h)− R̂(h)| ≤ sH,` (m, δ, S) , (3)

where R̂(h) is the empirical risk of the hypothesis h.

• sH,` (m, δ, Sm) → 0 as m → ∞, for any sequence
(Sm)m∈N with Sm ∈ (X×Y)m.

Throughout the paper we drop the dependence on H and
` and simply write s for sH,`. Note that above definition
is equivalent to the classic definition of uniform conver-
gence (e.g. Chapter 4 in (Shalev-Shwartz & Ben-David,
2014)). We only introduce an explicit notation, s, for the
sample complexity rate of uniform convergence, as this sim-
plifies the layout of our analysis later. It is well-known
that uniform convergence implies PAC-learnability and that
the opposite is also true for agnostic binary classification
(Shalev-Shwartz & Ben-David, 2014).

3.2. Multi-source learning

Our focus in this paper is on learning from multiple data
sources. For simplicity of exposition, we assume that they
all provide the same number of data points, i.e. the train-
ing data consists of N groups of m samples each, where
m,N ∈ N are fixed integers.

Formally, we denote by (X × Y)
N×m the set of all possible

collections (i.e. unordered sequences) of N groups of m
datapoints each. A (statistical) multi-source learner is a
function L : ∪∞N=1 ∪∞m=1 (X×Y)

N×m → H that takes
such a collection of datasets and returns a predictor fromH.

3.3. Robust Multi-Source Learning

Informally, one considers a learning system robust if it is
able to learn a good hypothesis, even when the training data
is not perfectly i.i.d., but contains some artifacts, e.g. annota-
tion errors, a selection bias or even malicious manipulations.
Formally, one models this by assuming the presence of an
adversary, that observes the original datasets and outputs
potentially manipulated versions. The learner then has to
operate on the manipulated data without knowledge of what
the original one had been or what manipulations have been
made.
Definition 3 (Adversary). An adversary is any function
A : (X×Y)

N×m → (X×Y)
N×m.

Throughout the paper, we denote by S′ =
{S′1, S′2, . . . , S′N} the original, uncorrupted datasets, drawn
i.i.d. from D, and by S = {S1, S2, . . . , SN} = A(S′) the
datasets returned by the adversary.

Different scenarios are obtained by giving the adversary
different amounts of power. For example, a weak adversary
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might only be able to randomly flip labels, i.e. simulate the
presence of label noise. A much stronger adversary would
be one that can potentially manipulate all data and do so
with knowledge not only of all of the datasets but also of
the underlying data distribution and the learning algorithm
to be used later.

In this work, we adopt the latter view, as it leads to much
stronger robustness guarantees. We define two adversary
types that can make arbitrary manipulations to data sources,
but only influence a certain subset of them.

Definition 4 (Fixed-Set Adversary). Let G ⊂ [N ]. An
adversary is called fixed-set (with preserved set G), if it only
influences the datasets outside of G. That is, Si = S

′

i for all
i ∈ G.

Definition 5 (Flexible-Set Adversary). Let k ∈
{0, 1, . . . , N}. An adversary is called flexible-set (with pre-
served size k), if it can influence any N − k of the N given
datasets. That is, there exists a set G ⊂ [N ], such that
|G| = k and Si = S′i for all i ∈ G.

In both cases, we call the fraction α of corrupted datasets
the power of the adversary, i.e. α = N−|G|

N for the fixed-set
and α = N−k

N for the flexible-set adversaries.

While similarly defined, the fixed-set adversary is strictly
weaker than the flexible-set one, as the latter one can first in-
spect all data and then choose which subset to modify, while
the former one is restricted to a fixed, data-independent sub-
set of sources. In particular, the flexible-set adversary can
already bias the distribution of the data by throwing out a
carefully chosen set of sources, before replacing them with
new data.

Both adversary models are inspired by real-world consid-
erations and analogs have appeared in a number of other
research areas. The fixed-set adversaries can model a situa-
tion in which N parties collaborate on a single learning task,
but an unknown and fixed set of them are compromised, e.g.
by hackers, that can act maliciously and collude with each
other. This is a similar reasoning as in Byzantine-robust
optimization, where an unknown subset of computing nodes
are assumed to behave arbitrarily, thereby disrupting the
optimization progress.

The second adversary corresponds to a situation where a
malicious party can observe all of the available datasets and
choose which ones to corrupt, up to a certain budget. This is
similar to classic models in the fields of robust PAC learning,
e.g. (Bshouty et al., 2002), and robust mean estimation, e.g.
(Diakonikolas et al., 2019), where the adversary itself can
influence which subset of the data to modify once the whole
dataset is observed.

Whether robust learning in the presence of an adversary is
possible for a certain hypothesis set or not is captured by

the following definition:

Definition 6. A hypothesis set, H, is called multi-source
PAC-learnable against the class of fixed-set adversaries (or
flexible-set adversaries) and with respect to `, if there exists
a multi-source learner L and a function m : (0, 1)2 → N,
such that for any ε, δ ∈ (0, 1) and any set G ⊂ [N ] of size
|G| > 1

2N (or any α < 1
2 ), whenever S

′ ∈ (X×Y)
N×m

is a collection of N datasets of m ≥ m(ε, δ) i.i.d. labelled
samples from D each, then with probability at least 1 − δ
over the sampling of S

′
:

R(L(A(S
′
)) ≤ min

h∈H
R(h) + ε, (4)

uniformly against all fixed-set adversaries with preserved
set G (or all flexible-set adversaries of power α). A learner,
L, with this property is called robust multi-source learner
forH.

In particular, the same learner L should work against any
adversary and for any α or set G. In the same time, the
adversary is arbitrary once L is fixed, so in particular it can
depend on the learning algorithm.

Note that the robust learner should achieve optimal error
as m → ∞, while N can stay constant. This reflects that
we want to study adversarial multi-source learning in the
context of a constant and potentially not very large number
of sources. In fact, our lower bound results in Section 5
show that the adversary can always prevent the learner from
approaching optimal risk in the opposite regime of constant
m and N →∞.

4. Sample Complexity of Robust
Multi-Source Learning

In this section, we present our main result, a theorem that
states that wheneverH has the uniform convergence prop-
erty, there exists an algorithm that guarantees a bounded
excess risk against both the fixed-set and the flexible-set ad-
versary. We then derive and discuss some instantiations of
the general result that shed light on the sample complexity
of PAC learning in the adversarial multi-source learning set-
ting. Finally, we provide a high-level sketch of the theorem’s
proof.

4.1. Main result

Theorem 1. Let N,m, k ∈ N be integers, such that
k ∈ (N/2, N ]. Let α = N−k

N < 1
2 be the proportion

of corrupted sources. Assume thatH has the uniform con-
vergence property with rate function s. Then there exists
a learner L : (X×Y)

N×m → H with the following two
properties.

(a) Let G be a fixed subset of [N ] of size |G| = k. For
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S
′

= {S′

1, . . . , S
′

N}
i.i.d.∼ D, with probability at least

1− δ over the sampling of S′:

R(L(A(S
′
)))−min

h∈H
R(h) (5)

≤ 2s
(
km,

δ

2
, SG

)
+ 6αmax

i∈[N ]
s
(
m,

δ

2N
,Si
)
,

uniformly against all fixed-set adversaries with pre-
served set G, where S = {S1, . . . , SN} = A(S

′
) is

the dataset modified the adversary and SG = ∪i∈GSi
is the set of all uncorrupted data.

(b) For S
′

= {S′

1, . . . , S
′

N}
i.i.d.∼ D, with probability at

least 1− δ over the sampling of S′:

R(L(A(S
′
)))−min

h∈H
R(h) (6)

≤ 2s
(
km,

δ

2
(
N
k

) , SG)+ 6αmax
i∈[N ]

s
(
m,

δ

2N
,Si
)
,

uniformly against all flexible-set adversaries with pre-
served size k, where S = {S1, . . . , SN} = A(S

′
)

is the dataset returned by the adversary, G is the
set of sources not modified by the adversary and
SG = ∪i∈GSi is the set of all uncorrupted data.

The learner L is in fact explicit, we define and discuss it
in the proof sketch that we provide in Section 4.3. The
complete proof is provided in the supplementary material.

As an immediate consequence we obtain:

Corollary 1. Assume thatH has the uniform convergence
property. ThenH is multi-source PAC-learnable against the
class of fixed-set and the class of flexible-set adversaries.

Proof. It suffices to show that for any δ ∈ (0, 1), the right
hand sides of (5) and (6) converge to 0 for m → ∞. This
it true, since s(m̄, δ̄, S̄) → 0 as m̄ → ∞ for any δ̄ and S̄,
by the definition of uniform convergence. Since the same
learner works regardless of the choice of G and/or α, the
result follows.

Discussion. Corollary 1 is in sharp contrast with the situa-
tion of single dataset PAC robustness. In particular, Bshouty
et al. (2002) study a setup where an adversary can manip-
ulate a fraction α datapoints out of a dataset with m i.i.d.-
sampled elements1. The authors show that in the binary
realizable case, for any hypothesis space with at least two
functions, no learning algorithm can learn a hypothesis with
risk less than 2α with probability greater than 1/2. Simi-
larly, Kearns & Li (1993) showed that for an adversary that

1To be precise, the number of influenced points has to be bino-
mially distributed with mean αm, but the difference between this
and the deterministic setting becomes irrelevant for m→ ∞.

modifies each data point with constant probability α, no
algorithm can learn a hypothesis with accuracy better than
α/(1− α). Both results hold regardless of the value of m,
thus showing that PAC-learnability is not fulfilled.

4.2. Rates of convergence

While Theorem 1 is most general, it does not yet provide
much insight into the actual sample complexity of the adver-
sarial multi-source PAC learning problem, because the rate
function s might behave in different ways. In this section
we give more explicit upper bounds in terms a standard
complexity measure of hypothesis spaces – the Rademacher
complexity. Let

RS (` ◦ H) = Eσ
(

sup
h∈H

1

n

n∑
i=1

σi`(h(xi), yi)
)
, (7)

be the (empirical) Rademacher complexity of H
with respect to the loss function ` on a sample
S = {(x1, y1), . . . , (xn, yn)}. Here {σi}ni=1 are i.i.d.
Rademacher random variables. Let SG =

⋃
i∈G Si, Ri =

RSi(` ◦ H) and RG = RSG(` ◦ H).

4.2.1. RATES FOR THE FIXED-SET ADVERSARY.

An application of Theorem 1 with a standard uniform con-
centration result gives:

Corollary 2. In the setup of Theorem 1, against any fixed-
set adversary, it holds that

R(L(A(S
′
)))−min

h∈H
R(h) ≤ 4RG + 6

√
log( 4

δ )

2km
(8)

+α
(

18

√
log
(
4N
δ

)
2m

+ 12 max
i∈[N ]

Ri

)
.

The full proof is included in the supplementary material.

In many common learning settings, the Rademacher com-
plexity scales as O(1/

√
n) with the sample size n (see e.g.

(Bousquet et al., 2004)). Thereby, we obtain the following
rates against the fixed-set adversary:

Õ
( 1√

km
+ α

1√
m

)
, (9)

where the Õ-notation hides constant and logarithmic factors.

The results in Corollary 2 and Equation (9) allow us to rea-
son about the type of guarantees that can be achieved given
a certain amount of data. However, they also imply an ex-
plicit upper bound on the sample complexity of adversarial
multi-source learning (i.e. an upper bound on the smallest
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possible m(ε, δ) in Definition 6) of the form:

m(ε, δ) ≤ O

 log(Nδ )

ε2

(
1√

(1− α)N
+ α

)2
 . (10)

Discussion. We can make a number of observations from
Equation (9). The

√
1/km-term is the rate one expects

when learning from k (uncorrupted) sources of m samples
each, that is from all the available uncorrupted data. The√

1/m-term reflects the rate when learning from any single
source of m samples, i.e. without the benefit of sharing
information between sources. The latter enters weighted
by α, i.e. it is directly proportional to the power of the
adversary. In the limit of α → 0 (i.e. all N sources are
uncorrupted, k → N ), the bound becomes Õ(

√
1/Nm).

Thus, we recover the classic convergence rate for learning
from Nm samples in the non-realizable case. This fact
is interesting, as the robust learner of Theorem 1 actually
does not need to know the value of α for its operation.
Consequently, the same algorithm will work robustly if the
data contains manipulations but without an unnecessary
overhead (i.e. with optimal rate), if all data sources are in
fact uncorrupted.

Another insight follows from the fact that for reasonably
small α, we have:

Õ
( 1√

km
+ α

1√
m

)
� Õ

( 1√
m

)
, (11)

so learning from multiple, even potentially manipulated,
datasets converges to a good hypothesis faster than learning
from a single uncorrupted dataset. This fact can be inter-
preted as encouraging cooperation: any of the honest parties
in the multi-source setting with fixed-set adversary will
benefit from making their data available for multi-source
learning, even if some of the other parties are malicious.

Comparison to Byzantine-robust optimization. Our ob-
tained rates for the fixed-set adversary can also be compared
to the state-of-art convergence results for Byzantine-robust
distributed optimization, where the compromised nodes are
also fixed, but unknown. Yin et al. (2018) and Alistarh et al.
(2018) develop robust algorithms for gradient descent and
stochastic gradient descent respectively, achieving conver-
gence rates of order

Õ
( 1√

km
+ α

1√
m

+
1

m

)
(12)

for α < 1/2 unknown. Clearly, these rates resemble ours,
except for the additional 1/m-term, which matters when α
is 0 or very small. As shown in Yin et al. (2018), this term
can also be made to disappear if an upper bound β ≥ α is
assumed to be known a priori.

Overall, these similarities should not be over-interpreted,
as the results for Byzantine-robust optimization describe
practical gradient-based algorithms for distributed optimiza-
tion under various technical assumptions, such as convexity,
smoothness of the loss function and bounded variance of
the gradients. In contrast, our work is purely statistical,
not taking computational cost into account, but holds in a
much broader context, for any hypothesis space that has the
uniform convergence property of suitable rate and without
constraints on the optimization method to be used. Addi-
tionally, our rates improve automatically in situations where
uniform convergence is faster.

4.2.2. RATES FOR THE FLEXIBLE-SET ADVERSARY

An analogous result to Corollary 2 holds also for flexible-set
adversaries:

Corollary 3. In the setup of Theorem 1, against any flexible-
set adversary, it holds that

R(L(A(S
′
)))−min

h∈H
R(h) (13)

≤ 4RG + 12αmax
i∈[N ]

Ri + Õ
(

4
√
α√
m

)
.

The proof is provided in the supplemental material.

Making the same assumptions as above, we obtain a sample
complexity rate

Õ
(

1√
km

+
4
√
α√
m

)
. (14)

which differs from (9) only in the rate of dependence on α2,
which, if at all, matters only for very small (but non-zero)
α. Despite the difference, most of our discussion above still
applies. In particular, even for the flexible-set adversary the
same learning algorithm exhibits robustness for α > 0 and
achieves optimal rates for α = 0.

Moreover, an explicit upper bound on the sample complexity
against a flexible-set adversary is given by:

m(ε, δ) ≤ Õ

 1

ε2

(
1√

(1− α)N
+ 4
√
α

)2
 . (15)

4.3. Proof Sketch for Theorem 1

The proof of Theorem 1 consists of two parts. First, we intro-
duce a filtering algorithm, that attempts to determine which
of the data sources can be trusted, meaning that it should
be safe to use them for training a hypothesis. Note that this

2In fact, we believe the 4
√
α-term to be an artifact of our proof

technique, but currently do not have a bound with improved depen-
dence on α.
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Algorithm 1
input Datasets S1, . . . , SN

Initialize T = {} // trusted sources
for i = 1, . . . , N do

if dH
(
Si, Sj

)
≤ s

(
m, δ

2N , Si
)

+ s
(
m, δ

2N , Sj
)
,

for at least bN2 c values of j 6= i, then
T = T ∪ {i}

end if
end for

output
⋃
i∈T Si // all data of trusted sources

can be because they were not manipulated, or because the
manipulations are too small to have negative consequences.
The output of the algorithm is a new filtered training set,
consisting of all data from the trusted sources only. Second,
we show that training a standard single-source learner on
the filtered training set yields the desired results.

Step 1. Pseudo-code for the filtering algorithm is provided
in Algorithm 1. The crucial component is a carefully chosen
notion of distance between the datasets, called discrepancy,
that we define and discuss below. It guarantees that if two
sources are close to each other then the difference of training
on one of them compared to the other is small.

To identify the trusted sources, the algorithm checks for each
source how close it is to all other sources with respect to the
discrepancy distance. If it finds the source to be closer than
a threshold to at least half of the other sources, it is marked
as trusted, otherwise it is not. To show that this procedure
does what it is intended to do it suffices to show that two
properties hold with high probability: 1) all trusted sources
are safe to be used for training, 2) at least all uncorrupted
sources will be trusted.

Property 1) follows from the fact that if a source has small
distance to at least half of the other datasets, it must be close
to at least one of the uncorrupted sources. By the property
of the discrepancy distance, including it in the training set
will therefore not affect the learning of the hypothesis very
negatively. Property 2) follows from a concentration of mass
argument, which guarantees that for any uncorrupted source
its distance to all other uncorrupted sources will approach
zero at a well-understood rate. Therefore, with a suitably
selected threshold, at least all uncorrupted sources will be
close to each other and end up in the trusted subset with
high probability.

Discrepancy Distance. For any dataset Si ∈ (X×Y)m, let

R̂i(h) =
1

m

∑
(x,y)∈Si

`(h(x), y) (16)

be the empirical risk of a hypothesis h with respect to the
loss `. The (empirical) discrepancy distance between two

datasets, Si and Sj , is defined as

dH(Si, Sj) = sup
h∈H

(
|R̂i(h)− R̂j(h)|

)
. (17)

This is the empirical counterpart of the so-called discrep-
ancy distance, which, together with its unsupervised form, is
widely adopted within the field of domain adaptation (Kifer
et al., 2004; Ben-David et al., 2010; Mohri & Medina, 2012).
Typically, the discrepancy is used to bound the maximum
possible effect of distribution drift on a learning system. The
metric was also used in (Konstantinov & Lampert, 2019) to
measure the effect of training on sources that have been sam-
pled randomly, but from adversarially chosen distributions.
As shown in Kifer et al. (2004); Ben-David et al. (2010),
for randomly sampled datasets, the empirical discrepancy
concentrates with known rates to its distributional value, i.e.
to zero, if two sources have the same underlying data distri-
butions. The empirical discrepancy is well-defined even for
data not sampled from a distribution, though, and together
with the uniform convergence property it allows us to bound
the effect of training on one dataset rather than another.

Step 2. Let ST =
⋃
i∈T Si be the output of the filtering

algorithm, i.e. the union of all trusted datasets. Then, for
any h ∈ H, the empirical risk over ST can be written as

R̂T(h) =
1

|T|
∑
i∈T
R̂i(h) (18)

We need to show that training on ST, e.g. by minimizing
R̂T(h), with high probability leads to a hypothesis with
small risk under the true data distribution D.

By construction, we know that for any trusted source Si,
there exists an uncorrupted source Sj , such that the differ-
ence between R̂i(h) and R̂j(h) is bounded by a suitably
chosen constant (that depends on the growth function s).
By the uniform convergence property of H, we know that
for any uncorrupted source, the difference between R̂i(h)
and the true riskR(h) can also be bounded in terms of the
growth function s. In combination, we obtain that R̂T(h)
is a suitably good estimator of the true risk, uniformly over
all h ∈ H. Consequently, ST can be used for successful
learning.

For the formal derivations and, in particular, the choice of
thresholds, please see the supplemental material.

5. Hardness of Robust Multi-Source Learning
We now take an orthogonal view compared to Section 4, and
study where the hardness of the multi-source PAC learning
stems from and what allows us to nevertheless overcome
it. For this, we prove two additional results that describe
fundamental limits of how well a learner can perform in the
multi-source adversarial setting.
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For simplicity of exposition we focus on binary classifi-
cation. Let Y = {−1, 1} and ` be the zero-one loss, i.e.
`(y, ȳ) = Jy 6= ȳK. Following Bshouty et al. (2002), we
define:
Definition 7. A hypothesis space H over an input set X
is said to be non-trivial, if there exist two points x1, x2 ∈
X and two hypotheses h1, h2 ∈ H, such that h1(x1) =
h2(x1), but h1(x2) 6= h2(x2).

5.1. What makes robust learning possible?

We show that if the learner does not make use of the multi-
source structure of the data, i.e. it behaves as a single-
source learner on the union of all data samples, then a
(multi-source) fixed-set adversary can always prevent PAC-
learnability.
Theorem 2. LetH be a non-trivial hypothesis space. Letm
andN be any positive integers and letG be a fixed subset of
[N ] of size k ∈ {1, . . . , N−1}. Let L : (X×Y)N×m → H
be a multi-source learner that acts by merging the data from
all sources and then calling a single-source learner. Let
S′ ∈ (X × Y)

N×m be drawn i.i.d. from D. Then there
exists a distribution D with minh∈HR(h) = 0 and a fixed-
set adversary A with index set G, such that:

PS′∼D

(
R
(
L(A(S′)

)
>

α

8(1− α)

)
>

1

20
, (19)

where α = N−k
N is the power of the adversary.

The proof is provided in the supplemental material. Note
that, since the theorem holds for the fixed-set adversary, it
automatically also holds for the stronger flexible-set adver-
sary.

The theorem sheds light on why PAC-learnability is possible
in the multi-source setting, while in the single source setting
it is not. The reason is not simply that the adversary is
weaker, because it is restricted to manipulating samples in
a subset of datasets instead of being able to choose freely.
Inequality (19) implies that even against such a weaker
adversary, a single-source learner cannot be adversarially
robust. Consequently, it is the additional information that
the data comes in multiple datasets, some of which remain
uncorrupted even after the adversary was active, that gives
the multi-source learner the power to learn robustly.

An immediate consequence of Theorem 2 is also that the
common practice of merging the data from all sources and
performing a form of empirical risk minimization on the
resulting dataset is not a robust learner and therefore subop-
timal in the studied context.

5.2. How hard is robust learning?

As a tool for understanding the limiting factors of learning
in the adversarial multi-source setting, we now establish

a lower bound on the achievable excess risk in terms of
the number of samples per source and the power of the
adversary.

Theorem 3. LetH ⊂ {h : X → Y} be a hypothesis space,
let m and N be any integers and let G be a fixed subset of
[N ] of size k ∈ {1, . . . , N − 1}. Let S′ ∈ (X × Y)

N×m be
drawn i.i.d. from D. Then the following statements hold for
any multi-source learner L:

(a) Suppose that H is non-trivial. Then there exists a
distribution D on X with minh∈HR(h) = 0, and a
fixed-set adversary A with index set G, such that:

PS′

(
R
(
L(A(S′)

)
>

α

8m

)
>

1

20
. (20)

(b) Suppose thatH has VC dimension d ≥ 2. Then there
exists a distribution D on X ×Y and a fixed-set adver-
sary A with index set G, such that:

PS′

(
R
(
L(A(S′)

)
−min
h∈H
R(h) (21)

>

√
d

1280Nm
+

α

16m

)
>

1

64
.

In both cases, α = N−k
N is the power of the adversary.

The proof is provided in the supplemental material. As for
Theorem 2, it is clear that the same result holds also for
flexible-set adversaries with preserved size k.

Analysis. Inequality (20) shows that even in the realizable
scenario, the risk might not shrink faster than with rate
Ω(α/m), regardless of how many data sources, and there-
fore data samples, are available. This is contrast to the i.i.d.
situation, where the corresponding rate is Ω(1/Nm). The
difference shows that robust learning with a constant frac-
tion of corrupted sources is only possible if the number of
samples per dataset grows. Conversely, if the number of
corrupted datasets is constant, regardless of the total num-
ber of sources, i.e., α = O(1/N), we recover the rates for
learning without an adversary up to constants.

In inequality (21), the term Ω(
√
d/Nm) is due to the clas-

sic lower bound on the sample complexity of binary clas-
sification (e.g. Theorem 3.23 in (Mohri et al., 2018)) and
corresponds to the fundamental limits of learning, now in
the non-realizable case. The Ω(α/m)-term appears as the
price of robustness, and as before, it implies that for con-
stant α, m→∞ is necessary in order to achieve arbitrarily
small excess risk, while just N →∞ does not suffice.

Relation to prior work. Lower bounds of similar structure
as in Theorem 3 have also been derived for Byzantine opti-
mization and collaborative learning. In particular, Yin et al.



Adversarial Multi-Source PAC Learning

(2018) prove that in the case of distributed mean estimation
of a d-dimensional Gaussian on N machines, an α fraction
of which can be Byzantine, any algorithm would incur loss

of Ω( α√
m

+
√

d
Nm ). Alistarh et al. (2018) construct specific

examples of a Lipschitz continuous and a strongly convex
function, such that no distributed stochastic optimization al-
gorithm, working with an α-fraction of Byzantine machines,

can optimize the function to error less than Ω( α√
m

+
√

d
Nm ),

where d is the number of parameters. For realizable binary
classification in the context of collaborative learning, Qiao
(2018) prove that there exists a hypothesis space of VC di-
mension d, such that no learner can achieve excess risk less
than Ω(αd/m).

Besides the different application scenario, the main dif-
ference between these results and Theorem 3 is that our
bounds hold for any hypothesis spaceH that is non-trivial
(Ineq. (20)), or has VC-dimension d ≥ 2 (Ineq. (21)), while
the mentioned references construct explicit examples of hy-
pothesis spaces or stochastic optimization problems where
the bounds hold. In particular, our results show that the limi-
tations on the learner due the finite total number of samples,
the finite number of samples per source and the fraction of
unreliable sources α are inherent and not specific to a subset
of hard-to-learn hypotheses.

6. Conclusion
We studied the problem of robust learning from multiple
unreliable datasets. Rephrasing this task as learning from
datasets that might be adversarially corrupted, we intro-
duced the formal problem of adversarial learning from mul-
tiple sources, which we studied in the classic PAC setting.

Our main results provide a characterization of the hardness
of this learning task from above and below. First, we showed
that adversarial multi-source PAC learning is possible for
any hypothesis class with the uniform convergence property,
and we provided explicit rates for the excess risk (Theorem 1
and Corollaries). The proof is constructive and shows also
that integrating robustness comes at a minor statistical cost,
as our robust learner achieves optimal rates when run on
data without manipulations. Second, we proved that adver-
sarial PAC learning from multiple sources is far from trivial.
In particular, it is impossible to achieve for learners that
ignore the multi-source structure of the data (Theorem 2).
Third, we proved lower bounds on the excess risk under very
general conditions (Theorem 3), which highlight an unavoid-
able slowdown of the convergence rate proportional to the
adversary’s strength compared to the i.i.d. (adversarial-free)
case. Furthermore, in order to facilitate successful learning
with a constant fraction of corrupted sources, the number of
samples per source has to grow.

A second emphasis of our work was to highlight connec-
tions of the adversarial multi-source learning task to related
methods in robust optimization, cryptography and statistics.
We believe that a better understanding of these connections
will allow us to come up with tighter bounds and to design
algorithms that are not only statistically efficient (as was the
focus of this work), but also obtain insight into the trade-offs
with computational complexity.
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