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Abstract. In this note, we introduce a distributed twist on the classic
coupon collector problem: a set of m collectors wish to each obtain a
set of n coupons; for this, they can each sample coupons uniformly at
random, but can also meet in pairwise interactions, during which they
can exchange coupons. By doing so, they hope to reduce the number
of coupons that must be sampled by each collector in order to obtain a
full set. This extension is natural when considering real-world manifesta-
tions of the coupon collector phenomenon, and has been remarked upon
and studied empirically [Hayes and Hannigan 2006, Ahmad et al. 2014,
Delmarcelle 2019].
We provide the first theoretical analysis for such a scenario. We find
that “coupon collecting with friends” can indeed significantly reduce the
number of coupons each collector must sample, and raises interesting
connections to the more traditional variants of the problem. While our
analysis is in most cases asymptotically tight, there are several open ques-
tions raised, regarding finer-grained analysis of both “coupon collecting
with friends,” and of a long-studied variant of the original problem in
which a collector requires multiple full sets of coupons.

Keywords: Coupon Collector Problem · Population Protocols · Prob-
ability.

1 Introduction

The coupon collector problem is a classic exercise in probability theory, appear-
ing in standard textbooks such as those of Feller [5] and Motwani and Raghavan
[7]. It is often introduced with a story along the lines of the following: a cereal
company runs a promotion giving away a toy (the “coupon”) in each box of cereal
sold. The toys are chosen uniformly at random from some finite set of different
types. A child wishes to collect the full set of toys, and our task is to analyze the
number of cereal boxes her parents must purchase to achieve this. This number
is, of course, a random variable, and while elementary bounds on it are quite
straightforward, a tighter analysis requires more sophisticated techniques (see,
e.g., [4]).

A modern real-world example of this phenomenon is the World Cup sticker
album [6]. Collectors purchase sealed packs of stickers of football players, and
aim to collect one of each in order to fill all the slots in their album. Completing
the sticker album has proven a very popular activity among (mostly, but by
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no means exclusively) young football fans every four years, and has highlighted
an aspect which is absent from the classical analysis of the coupon collector’s
problem: one can achieve a full collection much faster by swapping duplicate
coupons with friends who are also collecting. This has been noted previously
and studied empirically, specifically for the World Cup sticker album [6, 1, 2],
but we are not aware of any prior theoretical analysis for such a setting in
general.

Of course, for theoretical analysis, one must first define a model specifying
how swapping of coupons is permitted. If all collectors are allowed to swap freely,
then the problem is equivalent to a variant which has seen prior theoretical study:
that in which m > 1 full sets of coupons must be completed by a single collector.
This variant was studied by Newman and Shepp [8] and Erdös and Rényi [4]. In
more recent works (e.g., [3] and the references therein), problem settings of this
sort are often referred to as “coupon collector with siblings:” the accompanying
story is that there is a single collector, but she has a succession of younger siblings
to whom she gives duplicate coupons upon receiving them. One can then ask
long it takes for the mth sibling to complete his collection. Specifically, Newman
and Shepp [8] showed that the number of coupons needed to complete m full sets
is n(logn+(m−1) log logn+O(1)) in expectation. Erdös and Rényi [4] provided
concentration bounds around this expectation, and specified the constant in the
linear term. However, it is important to note that this bound holds only when m
is a constant; as Erdös and Rényi themselves note, “It is an interesting problem
to investigate the limiting distribution of vm(n) when m increases together with
n, but we can not go into this question here.” Surprisingly, to our knowledge,
this open problem has never been addressed, and while we give an asymptotic
analysis here, it remains an open question to extend the more fine-grained bounds
of Newman and Shepp, and Erdös and Rényi to the case where m also tends to
infinity.

Our primary focus is a distributed generalization: when completing, for ex-
ample, the World Cup sticker album, collectors generally do not, to the authors’
knowledge, deliberately congregate in large groups in order to exchange stickers
in an organized fashion. Instead, we would expect that exchanges are usually
ad-hoc, and made between individual pairs of collectors. So, we will abstract
such behavior using a “population protocol”-style model of random pairwise in-
teractions: in each round, an independent, uniformly random pair of collectors
will meet, and can swap coupons between them as they wish. We then aim to
analyze the trade-off between the number of coupons that each collector must
sample, and the number of interactions required, in order for all collectors to
obtain full collections. We call this problem “coupon collecting with friends.”

1.1 The Formal Problem Setting

A setM ofm collectors each wish to obtain a full collection of n distinct coupons.
For this, they will operate in sequences of collection (sampling) and exchanging
(interaction) phases:
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1. A collection phase, in which each collector independently and uniformly
samples, with replacement, rc coupons from [n].

2. An exchanging phase, in which re sequential interactions between indepen-
dent, uniformly random pairs of collectors occur. An interacting pair of col-
lectors can choose to exchange coupons however they wish.

We are interested in the trade-off between the numbers of collection rounds
and exchanging rounds (rc and re) that are required for each of the m agents to
obtain a full collection of n distinct coupons.

1.2 Preliminaries

In the following, we denote ln x := loge x and log x := log2 x. We make frequent
use of the well-known inequalities 1 − x ≤ e−x for x ∈ R and 1 − x ≥ 4−x for
x ∈ [0, 1

2 ], and the Chernoff bound in the following standard form:

Lemma 1 (Chernoff bound). Suppose Z1, . . . , Zt are independent random
variables taking values in {0, 1}. Let Z denote their sum and let µ = E [Z]
denote the sum’s expected value. Then for any δ ∈ [0, 1],

Pr [Z ≤ (1− δ)µ] ≤ e−
δ2µ

2 .

2 What Happens With No Exchanges?

We first look at the most “standard” variant of the trade-off: when re = 0,
i.e., no exchanges are allowed. In this case, the problem is simply m separate
instances of the standard coupon collector problem, since each collector must
independently collect a full set without help from the other collectors.

It has long been known [8, 4] that the number of samples needed for a single
collector to obtain a full set is n lnn±O(n) with probability 1−ε, where ε > 0 is
any positive constant. To be precise, we use the following statement as phrased
by Motwani and Raghavan:

Statement 1 ([7], corollary to Theorem 3.8, Section 3.6.3) For any real
constant c, we have

lim
n→∞

Pr [X ≤ n(lnn− c)] = e−e
c

and

lim
n→∞

Pr [X ≥ n(lnn+ c)] = 1− e−e
−c

.

(Here X is the random variable denoting the number of required samples.)
The statement implies that the probability of failure for a single collector after
n lnn+ω(n) samples tends to 0 as n tends to infinity. However, this is not quite
sufficient for us: we require m independent instances to all succeed, so we need
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the probability of failure for each collector to be less than 1/m, and we do not
treat m as a constant. So, we need to know how fast the failure probability tends
to 0.

We give the following straightforward asymptotic upper and lower bounds for
the problem (for n > 1; for n = 1, exactly 1 collection round is clearly necessary
and sufficient).

Lemma 2. If re = 0, then rc = O(n logmn) is sufficient to succeed with proba-
bility 1− (mn)−1.

Proof. Let rc = 2n lnmn. Fix a particular collector v and coupon α. The
probability that v does not collect a copy of α is at most

(
1− 1

n

)2n lnmn ≤
e−

2n lnmn
n = (mn)−2. By a union bound over all coupons and collectors, the

probability that any collector does not receive a copy of any coupon is at most
mn · (mn)−2 = (mn)−1.

Lemma 3. For n > 1, if re = 0, then rc = Ω(n logmn) is necessary to succeed
with any positive constant probability.

Proof. By Statement 1, even a single collector must perform Ω(n logn) sam-
ples to collect all n coupons with any constant probability. We now show that
Ω(n logm) samples per collector are required for allm collectors to be successful.
The lower bound is then Ω(max{n logm,n logn}) = Ω(n logmn).

Fix a particular coupon α, and let rc ≤ 1
4n logm. The probability that a

particular collector v does not receive a copy of α is (1− 1
n )rc ≥ 4

−rc
n ≥ 4

− logm
4 =

m−
1
2 (using that 1− x ≥ 4−x for x ∈ [0, 1

2 ]).
The events that each collector receives a copy of α are independent. There-

fore, the probability that all collectors receive a copy is

Pr
[ ⋂
v∈M

{v receives a copy of α}
]

=
∏
v∈M

Pr [v receives a copy of α]

≤
∏
v∈M

(
1−m− 1

2

)
=
(

1−m− 1
2

)m
= e−m

− 1
2 ·m = e−

√
m.

So, in order to achieve any constant (as m→∞, which we may assume since
this component of the lower bound is only relevant when m > n) probability of
success, we require rc > 1

4n logm.

3 What Happens With Unlimited Exchanges?

If an unlimited amount of exchanges are allowed, then the problem is equiva-
lent to simply ensuring that m copies of each coupon are sampled between all
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collectors, since the exchanges will then allow these to eventually be distributed
to each collector. As mentioned, for constant m strong bounds are known [8, 4],
but we are not aware of any prior work for non-constant m.

Again, we can show straighforward matching asymptotic bounds:

Lemma 4. If re = ∞, then rc = O(n + n logn
m ) is sufficient to succeed with

probability 1− 1
n .

Proof. Let rc = 16(n + n lnn
m ), i.e., 16(mn + n lnn) total samples are taken.

Fix a particular coupon α. The expected number of copies of α obtained is
µ := 16(m + lnn), and each sample is independent. So, by a Chernoff bound
(Lemma 1),

Pr [fewer than m copies of α are collected]

< Pr
[
at most (1− 1

2)µ copies of α are collected
]

≤ e−
µ
8 ≤ e− 16 lnn

8 ≤ n−2.

Taking a union bound over all coupons, we find that the probability that
any coupon does not have at least m copies sampled is at most 1

n . So, with
probability at least 1 − 1

n , every coupon is sampled at least m times, and with
unlimited exchanges we can complete every collector’s collection.

Lemma 5. If re =∞, then rc = Ω(n+ n logn
m ) is necessary to succeed with any

positive constant probability.

Proof. A lower bound of Ω(n logn) samples follows from the standard coupon
collector problem: by Statement 1, with o(n logn) samples we cannot collect even
one copy of all coupons with any constant probability. Furthermore, mn samples
are clearly necessary to collect m copies of each of the n coupons. So, we have a
lower bound of Ω(max{mn, n logn}) total samples, i.e. rc = Ω(n+ n logn

m ).

We now see the power of allowing exchanges: with unlimited exchanges be-
tween m participants, the amount of samples required per collector reduces from
Θ(n logmn) to Θ(n+ n logn

m ). In particular, collaborating with a small group of
m = O(logn) collectors reduces the required number of samples linearly in m
(from Θ(n logn) to Θ(n logn

m )), which may be an appealing prospect to collectors
of World Cup stickers (or their parents).

4 Minimizing Exchanges for Optimal Collection Rounds

Now we reach the main question of this work: how many exchanging rounds
are necessary to ensure completion using the asymptotically optimal amount of
collection rounds?

We first prove the following upper bound:



6 Dan Alistarh and Peter Davies

Theorem 2. If rc ≥ 36(n + n lnn
m ), re = O(m logmn) is sufficient to succeed

with probability 1− 1
mn .

Proof. Fix a coupon α to analyze during the collection phase. We will call col-
lectors that receive fewer than 2 copies of α during the collection phase bad,
and call them good otherwise. Fix also a specific collector v. After rc collection
rounds, v receives, in expectation, µ := rc

n copies of α. Every collection round is
independent, so by a Chernoff bound, the probability that v is bad is at most:

Pr [v is bad] = Pr
[
v receives at most

(
1− µ− 1

µ

)
µ copies of α

]
≤ e−

(µ−1)2
2µ < e1−µ2 .

Keeping α fixed but unfixing v, we now wish to bound the probability that
at least m

3 collectors are bad (have fewer than 2 copies of α). We do this by
a union bound over all possible sets of m

3 collectors (technically dm3 e, but we
omit the ceiling functions for clarity since the effect is negligible), using that the
‘badness’ of collectors is independent:

Pr
[
at least m3 collectors are bad

]
= Pr

 ⋃
S⊂M
|S|=m

3

all collectors in S are bad


≤
∑
S⊂M
|S|=m

3

Pr [all collectors in S are bad]

≤
(
m
m
3

)
(e1−µ2 )m3

≤ (3e)
m
3 e(1−µ2 )m3

= e−(µ2−2−ln 3)m3 .

In the penultimate line here we used the inequality
(
a
b

)
≤
(
ae
b

)b. Since µ =
rc
n ≥ 36, we have µ

2 − 2− ln 3 > µ
3 . So,

Pr
[
at least m3 collectors are bad

]
< e−

µ
3 ·
m
3 = e−

rcm
9n ≤ e−4(m+lnn).

Taking a union bound over all coupons, we have that for all coupons there
are fewer than m

3 bad collectors with probability at least 1 − ne−4(m+lnn) =
1− e−4m−3 lnn. We call this event a successful collection phase.

We now describe the exchanging phase. Let re = 6m lnmn. We will use the
following simple swapping rule: whenever a collector with at least two copies of
some coupon α interacts with a collector with 0 copies of that coupon, it will
give one of its copies.
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A crucial observation is that for a coupon α which has fewer than m
3 bad

collectors after the collection phase, there will always be at least m
3 collectors

with at least two copies throughout the exchanging phase. This is because every
time a good collector gives away a copy (possibly dropping to 1 copy itself), a
collector with 0 copies goes up to 1 copy. Since there are at most m

3 collectors
with 0 copies to begin with (and collectors never drop down to 0 copies), this
can occur at most m

3 times, leaving at least m
3 collectors with multiple copies.

To analyze the exchanging phase, we fix a particular interaction, a particular
coupon α which is not yet held by all collectors, and a particular collector v
which currently has 0 copies of α. By the above observation, with probability at
least 2 · 1

m ·
1
3 = 2

3m , the interaction pairs v with a collector who has at least 2
copies of α, and so v receives a copy.

There are initially (trivially) at most mn such pairs (α, v) where v holds 0
copies of α. Conditioning on a successful collection phase, each of these pairs is
removed in each iteration with probability at least 2

3m . For a fixed pair, these
probabilities hold independently over all iterations. So the probability of a par-
ticular pair (α, v) remaining over the entire exchanging phase (i.e., for v to still
hold no copy of α upon completion) is at most(

1− 2
3m

)6m lnmn
≤ e−3 lnmn = (mn)−3.

Taking a union bound over all such pairs, the probability that any pair re-
mains is at most (mn)−2. Finally, taking another union bound to remove the
conditioning on a successful collection phase, the probability of successfully com-
pleting all collections is at least 1− e−4m−3 lnn − (mn)−2 ≥ 1− 1

mn .

We next give a pair of lower bounds, which when combined will match the
asymptotic expression for re from Theorem 2.

Lemma 6. If rc ≤ 1
4n lnn, then re = Ω(m logn) is necessary to succeed with

probability 1− 1
n .

Proof. Fix a collector v. By Statement 1, since rc = n logn−ω(n), the probability
that v receives a full set of coupons during the collection phase is o(1). Denote
this probability q. To succeed overall with probability 1− 1

n , there must be some
case in which v does not receive a full collection during the collection phase, but
gains it during the exchanging phase with probability at least 1 − 2

n (over the
randomness in the exchanging phase only), since otherwise the total probability
of v having a full collection is at most q+ (1− q)(1− 2

n ) = 1− 2
n + o(1)

n < 1− 1
n

(for sufficiently large n).
If re ≤ 1

8m logn, and for m ≥ 4, the probability that v is not involved in any
interactions is at least(

1− 2
m

)re
≥ 4− 2

m re ≥ 4− 1
4 logn = n−

1
2 .

In this case v cannot obtain a full collection of coupons if it did not have one
after the collection phase. So, the probability of success if v did not gain a full
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collection during the collection phase is at most 1− n− 1
2 < 1− 2

n , which means
that the total success probability is less than 1− 1

n .
For the remaining casem < 4, we again apply Statement 1, which implies that

the probability of collecting a single full collection with n lnn − ω(n) samples
is o(1). In total, over the m < 4 collectors, we are taking at most 3

4n lnn =
n lnn− ω(n) samples during the collection phase. So, with probability 1− o(1),
there is some coupon for which no collector has a copy, in which case we cannot
hope to be successful even with re =∞. Thus, our overall success probability is
o(1).

Lemma 7. If rc = n lnn− ω(n), then re = Ω(m logm) is necessary to succeed
with any positive constant probability.

Proof. By Statement 1, for rc = n logn−ω(n), the probability that a particular
collector v receives a full set of coupons during the collection phase is o(1). The
expected number of collectors receiving full sets is therefore o(m). By Markov’s
inequality, the probability that at least m

2 collectors receive full sets at most
o(1). With probability 1−o(1), therefore, there are at least m

2 collectors without
full sets. We call this event an unsuccessful collection phase.

To fill each collector’s collection overall with any positive constant probability
ε > 0, there must be at least one instance with an unsuccessful collection phase
on which we do so with probability at least ε

2 (over the randomness of the
exchanging phase), since otherwise the total success probability would be at
most ε

2 + o(1). We will now show that this requires re = Ω(m logm) exchanging
rounds.

Assume that we have an unsuccessful collection phase, and a set S of m
2

collectors without full sets (again omitting ceiling functions for clarity). Fixing
some v ∈ S, the probability that each interaction involves v is 2

m . Furthermore,
it is at most 4

m independently of the behavior of all other u ∈ S (the worst case
is that all other u ∈ S are not involved in the interaction, in which case v is
involved with probability 2

m
2 +1 <

4
m ).

If re ≤ 1
16m logm, and for m ≥ 8, the probability that v is not involved in

any interactions is at least(
1− 4

m

)re
≥ 4− 4

m re ≥ 4− 1
4 logm = m−

1
2 ,

independently of the other u ∈ S. Then, the probability that all collectors in
S are involved in at least one interaction is at most(

1−m− 1
2

)|S|
≤ e−m

− 1
2 m

2 = e−
√
m
2 = o(1).

That is, with probability 1−o(1), at least one collector v in S is not involved
in any interactions. In this case v cannot obtain a full collection of coupons: by
definition of S its collection is incomplete after the collection phase, and it has
no interactions in which to gain new coupons in the exchanging phase. So, we
have a total success probability of o(1).
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The above analysis assumes that m→∞; the case m = O(1) is trivial, since
by Statement 1, with probability 1− o(1) we have not completed all collections
during the collection phase, and so require at least 1 = Ω(m logm) exchanging
rounds.

Combining Lemmas 6 and 7 yields the following theorem:

Theorem 3. If rc ≤ 1
4n lnn, then re = Ω(m logmn) is necessary to succeed

with probability 1− 1
n .

Proof. By Lemmas 6 and 7, we require re = Ω(max{m logm,m logn}) = Ω(m logmn).

We make some observations about the bounds we have shown in Theorems 2
and 3. We now know that Θ(m logmn) interactions suffice to achieve an asymp-
totically optimal number of collection rounds, and are necessary to asymptoti-
cally improve over the number of samples needed for the standard single-collector
case. If one requires a high probability of success in n (i.e. probability at most
1
n of failure), these bounds are tight. However, they leave open the possibility of
using fewer interactions to achieve a lower (but still at least a positive constant)
success probability. In this regime, Lemma 6 does not apply, so we have only
that O(m logmn) interactions suffice by Theorem 2, and that Ω(m logm) are
necessary by Lemma 7. We conjecture that it is the upper bound that is tight,
and the lower bound that could be improved:

Conjecture 1. If rc = O(n + n lnn
m ), then re = Ω(m logmn) is necessary to

succeed with any positive constant probability.

The reason for this conjecture is that the current lower bound does not
take into account the difficulty for collectors with incomplete collections to ob-
tain multiple coupons during the exchanging phase; it uses only the hardness
of ensuring a single interaction. Since most collectors will have Θ(n) coupons
missing after the collection phase, we would expect that collectors will require
some number of interactions depending on n in order to complete their col-
lections. However, since the events of a collector gaining two different coupons
from an interaction are not independent, this would require more sophisticated
techniques to analyze.

5 Conclusions and Open Problems

Our aim in this paper has been to introduce the study of what we argue is a
natural distributed variant of the coupon collector problem: collection by a group
of collectors which can meet, in random pairwise fashion, to exchange coupons.
As mentioned, there is one gap in the asymptotic analysis we provide: whether
o(m logmn) exchanges can suffice for the asymptotic optimum of Θ(n + n lnn

m )
collection rounds, under a weaker success guarantee (than high probability in
n).
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Generally, most of the prior work on the standard coupon collector problem
has been on finer-grained analysis, pinning down the exact terms in the number
of samples required, and one could ask whether we can do the same here. Such
a focus would change the problem significantly: in particular, the approach of
Theorem 2 (ensuring that a constant fraction of collectors always hold multiple
copies of each coupon) would not work if the number of samples was “only just”
sufficient, and one would need to find a different way to analyze the exchanging
phase.

Surprisingly, the situation is still not fully understood, even for the more
“traditional” case, corresponding to rc =∞, when m tends to infinity alongside
n. We therefore close by reiterating the open question posed by Erdös and Rényi,
and ask how the coupon collector problem behaves when a non-constant number
of full collections are required.
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