In Search of the Fastest
Concurrent Union-Find Algorithm

Dan Alistarh
IST Austria, Klosterneuburg, Austria
dan.alistarh@ist.ac.at

Alexander Fedorov

Higher School of Economics, St. Petersburg, Russia
JetBrains, St. Petersburg, Russia
afedorov2602@gmail.com

Nikita Koval

IST Austria, Klosterneuburg, Austria
JetBrains, St. Petersburg, Russia
ndkoval@ya.ru

—— Abstract

Union-Find (or Disjoint-Set Union) is one of the fundamental problems in computer science; it has
been well-studied from both theoretical and practical perspectives in the sequential case. Recently,
there has been mounting interest in analyzing this problem in the concurrent scenario, and several
asymptotically-efficient algorithms have been proposed. Yet, to date, there is very little known
about the practical performance of concurrent Union-Find.

This work addresses this gap. We evaluate and analyze the performance of several concurrent
Union-Find algorithms and optimization strategies across a wide range of platforms (Intel, AMD,
and ARM) and workloads (social, random, and road networks, as well as integrations into more
complex algorithms). We first observe that, due to the limited computational cost, the number of
induced cache misses is the critical determining factor for the performance of existing algorithms.
We introduce new techniques to reduce this cost by storing node priorities implicitly and by using
plain reads and writes in a way that does not affect the correctness of the algorithms. Finally, we
show that Union-Find implementations are an interesting application for Transactional Memory
(TM): one of the fastest algorithm variants we discovered is a sequential one that uses coarse-grained
locking with the lock elision optimization to reduce synchronization cost and increase scalability.

2012 ACM Subject Classification Theory of computation — Concurrent algorithms; Computing
methodologies — Concurrent algorithms; Theory of computation — Graph algorithms analysis

Keywords and phrases union-find, concurrency, evaluation, benchmarks, hardware transactional
memory

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2019.15

Related Version https://arxiv.org/abs/1911.06347

1 Introduction

Union-Find — the problem of maintaining the global connectivity structure of a set of integer
elements based on their pair-wise connectivity — is a fundamental problem in computer
science. This problem is alternatively known as Disjoint-Set Union (DSU), and is a key
component of several classic algorithms, such as Kruskal’s [12] and Boruvka’s [6] algorithms
for finding minimum spanning trees (MSTs), maintaining connected components and finding
loops under edge additions, or finding strongly-connected components in directed graphs.

In its classic formulation, the sequential DSU problem assumes a finite ground set .5,
upon whose elements we perform the following operations:

SameSet (u, v) checks whether two elements u and v are in the same set;

Union (u, v) merges the sets to which u and v are currently assigned;
]@ Dan Alistarh, Alcx‘andcr Fedorov, 'and Nikita Koval;

5v icensed under Creative Commons License CC-BY

23rd International Conference on Principles of Distributed Systems (OPODIS 2019).
Editors: Pascal Felber, Roy Friedman, Seth Gilbert, and Avery Miller; Article No. 15; pp. 15:1-15:16

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:dan.alistarh@ist.ac.at
mailto:afedorov2602@gmail.com
mailto:ndkoval@ya.ru
https://doi.org/10.4230/LIPIcs.OPODIS.2019.15
https://arxiv.org/abs/1911.06347
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

15:2

In Search of the Fastest Concurrent Union-Find Algorithm

Find (u) returns the representative of the set in which u is located. This representative
must be the same for all elements from the corresponding subset.

It is worth noting that in sequential case SameSet can be easily implemented via two
Find invocations, on u and v, and checking whether the representatives coincide. Further
optimizations exist to implement this method more efficiently; we discuss them in Section 4.2.

This classic problem is known to have a rich theoretical structure. A masterclass by
Tarjan linked the upper bound on the worst-case time complexity of the problem to the
inverse Ackermann function [18], followed by a matching lower bound for a restricted
case [19], which was later extended to arbitrary algorithms to show optimality [13]. Later,
Tarjan and Van Leeuwen [17] performed one of the first worst-case analyses for compaction
heuristics in the context of Disjoint-Set Union (DSU), exposing the highly non-trivial fact
that, with appropriate path compaction and linking heuristics, the problem can be solved
in O(m - a(n, ™)) time complexity, where n is the number of elements, m is the number of
operations, and « is a functional inverse of Ackermann’s function.

Patwary, Blair, and Manne [15] were the first to perform an in-depth experimental
study of sequential strategies. Their work clearly showed the importance of minimizing the
number of reads from memory on the performance of DSU, since the various strategies have
very limited computational demands. Their experiments exposed the fact that the fastest
sequential algorithm was the one designed by Rem in 1976 [8], which we describe in detail in
the following sections.

The first concurrent algorithm for DSU was proposed by Cybenko, Allen, and Polito [7],
whose key idea was using a spin-lock for write operations. Years later, Anderson and Woll
proposed a wait-free concurrent algorithm [5], which is roughly a concurrent generalization of
one of the linking-and-compression strategies studied by Tarjan and Van Leeuwen [17]. Their
paper claims a worst-case upper bound for the algorithm of ©@(m - (a(m,0) + p)), where p is
the number of parallel processes, and m is the number of operations; it was later observed
that this proof is correct only under the non-standard assumption that threads cannot be
preempted in between some certain operations in the algorithm [10].

Recently, Jayanti and Tarjan presented a set of correct and asymptotically-efficient
concurrent DSU algorithms, which use fixed random priorities rather than ranks, based
on the randomized sequential algorithm of [9]. These algorithms achieve a (total) work
complexity upper bound of O(m - (a(n, 7) +log(7% +1))). Recent work by these authors, in
collaboration with Boix-Adsera, suggested an algorithm with the same total work complexity
bounds, but showed that this is optimal for a class of natural “symmetric algorithms” [11].

Our Contribution

Motivated by the significant recent interest in the concurrent DSU problem, as well as by its
numerous practical applications, in this paper we perform the first thorough study of the
practical performance of concurrent DSU implementations. While our focus is to implement
and study existing algorithmic proposals, along the way we discover new optimizations and
algorithmic insights. We start from the basic observation that, given the simple structure of
most algorithms for DSU, memory access and synchronization costs will be the dominating
factors behind practical performance. With this in mind, we analyze the performance of
several classic baselines, and propose a host of optimizations to specifically reduce the impact
of these factors.

We perform a range of experiments across several architectures, algorithm variants and
optimizations, synchronization primitives, as well as workloads, to determine the fastest
concurrent DSU algorithm. We provide a wide range of results and discuss our findings
across several dimensions in detail in Section 5. In brief, the variant which appears to be
“fastest” for most of the settings considered is an optimized sequential algorithm variant that

D. Alistarh, A. Fedorov, and N. Koval

func ParallelMST(G: Graph) {
mst = {} // empty set initially
while mst.Size < THRESHOLD (G.Size) {
shortestEdges: Edge([G.Size] // shortest edges for each component
// Phase 1. Find the shortest edges for each vertex
parallel for e in G.Edges {
if SameSet (e.from, e.to) { G.Edges.remove (e) continue }
UpdateIfShorter (&shortestEdges[Find(e.from)], e)
UpdateIfShorter (&shortestEdges|[Find(e.to)],
}
// Phase 2. Unite components and update MST
parallel for u in G.Vertices {
Unite (shortestEdges[u].from, shortestEdges[u].to)
mst += shortestEdges|[u]
}
}
return mst + SequentialMST (graph)

}

i
’
e)

Listing 1 Parallel Boruvka’s algorithm pseudo-code used in our experiments.

leverages HTM (lock elision) for high path compaction while minimizing synchronization
cost.

2 Experimental Setup

For our evaluation, we use two classic graph algorithms based on DSU data structures. The
first maintains the connected components for a given graph. In this case, for benchmarking,
we randomly split graph edges between threads, and also mark whether the Union of the
SameSet operation should be executed with a given edge as a parameter. The set of graphs
we consider is presented in Table 1.

The second benchmark is a parallel version of the Boruvka’s algorithm [6] for finding
the minimum spanning tree. (The pseudo-code of the algorithm we use in the experiments
is presented in Listing 1.) This algorithm performs at most logn iterations (where n is
number of vertices), each is split into two phases. During the first phase, the algorithm finds
the shortest adjacent edge for each vertex, removing the ones that connect vertices from
the same component, the set of which is maintained by the DSU data structure. Here, the
UpdateIfShorter function atomically checks whether the already stored edge is longer
than the specified one, and replaces it in this affirmative case. During the second phase, the
algorithm goes through all the representatives of the components and adds the corresponding
shortest edges to the MST. The main idea of the concurrent algorithm is that both phases
can be performed in parallel, with synchronization between them. However, if the number
of remaining components is small, it is better to complete the work sequentially. Thus, we
perform the parallel part until the already built MST part exceeds some size threshold. We
consider only the parallel part in the benchmark.

Graph Inputs. We evaluate the algorithms above on a range of real-world and synthetic
graphs. The connected components maintenance algorithm has linear time complexity
(assuming for simplicity that the DSU operations work in constant time), while Boruvka’s
algorithm requires logarithmic time to complete, which is why we test it on relatively smaller
graphs. Nevertheless, both benchmarks use road and social network graphs, as well as
random ones with similar properties. The list of graphs we use for the connected components
and Boruvka’s algorithm benchmarks is presented in Tables 1 and 2 respectively.

The first graphs in both tables represent the USA road network, Central and West parts.

15:3

OPODIS 2019

15:4

In Search of the Fastest Concurrent Union-Find Algorithm

Table 1 Graphs for the connected components benchmark.

Graph Vertices(M) | Edges(M) | Description

USA-ROADS 14.1 16.9 A graph with roads of the central
part of the USA

LIVE-JOURNAL 4 34.7 A graph of ground-truth communit-
ies in LiveJournal social network

POKEC 1.6 30.5 A graph of friendship relations in
Pokec social network

RANDOM 2.5 30 A random graph generated with the
Erddés-Rényi model.

HIGH-CONTENTION 12 26.8 A synthetic graph for detecting
“bad” DSU versions

Table 2 Graphs for the Boruvka’s algorithm benchmark.

Graph Vertices(M) | Edges(M) | Description

USA-ROADS 6.2 7.6 A graph with roads of the west-
ern part of the USA

BERKELEY-STANFORD 6.9 7.6 Hyperlinks between the Berke-
ley and the Stanford domains

INTERNET-TOPOLOGY 1.7 11.1 Internet topology graph, from
traceroutes run daily in 2005

RANDOM 1 10 A random graph generated with
the Erd6s-Rényi model

HIGH-CONTENTION 4 8.9 A synthetic graph for detecting
“bad” DSU versions

The next two graphs for the connected components benchmark are social network graphs,
while the ones for the Boruvka’s benchmark are Internet topology graphs. Also, we use two
large synthetic graphs. The first one is a randomly-generated Erdoes-Renyi graph, with
a specified number of vertices and edges (2.5M vertices and 30M edges for the connected
components, and 1M vertices and 10M edges for the Boruvka’s algorithm); it is denoted
as RANDOM in our experiments. The second synthetic graph is folklore for detecting “bad”
DSU implementations in programming contests — most of the edges are incident to a small
number of nodes; it is denoted as HIGH-CONTENTION.

Hardware. We perform the experiments on Intel, AMD, and ARM platforms; all the
machines we used have several sockets, which induces Non-Uniform Memory Access (NUMA)
effects. The detailed specifications are as follows:
Intel. We used our local machine with 4 sockets, Intel Xeon Gold 6150 with 18 cores per
socket, and hyperthreading enabled, for 144 hardware threads in total.
AMD. We used a general-purpose Amazon AWS [1] instance with 6 sockets, 8-core AMD
EPYC 7571 processors with hyperthreading enabled in each; 96 cores total.
ARM. We used an instance on the Packet [3] cloud service with 2 sockets of 48-core
ARM Cavium ThunderX processors; 96 cores total. The ARM memory model is more
relaxed than the TSO one on Intel and AMD architectures, which would lead us to expect
higher scalability.

Software. All algorithms and benchmarks are implemented either in Java or Kotlin, and
compiled to the JVM byte-code; we use OpenJDK 11.0.4 with Ubuntu OS on all platforms.
To avoid problems related to JIT compilers and reproducibility /benchmarking, we use the
Java Microbenchmark Harness (JMH) library to run our benchmarks and collect statistics [2].

D. Alistarh, A. Fedorov, and N. Koval

3 Sequential Implementations via Compressed Trees

We begin with an overview of sequential implementations, which are loosely based on the idea
of maintaining a compressed forest of trees [18]. Each tree in this data structure corresponds
to the membership of one set, where the root of the tree acts as its representative. The trees
are implemented by maintaining parents for each element; thus, the data structure stores an
array of parent links. Roots of the trees have their parent links point to themselves. Thus,
in order to implement the Find operation, the algorithm “climbs” using parent links until it
reaches the root. At the same time, the Union operation takes the corresponding tree roots
as representatives, checks whether they coincide (finishing the operation in that case), and
unites the sets by pointing one root to another. While the algorithm seems straightforward,
it requires some heuristics to guarantee good time complexity.

Linking Strategies. When the Union operation decides to merge two different sets, it
either changes the parent link of the first element to the second one or vice versa. Intuitively,
we want to maintain the tree height as small as possible, so that Find operation works
efficiently. The standard procedure is defining priorities on roots, so that the root with the
lower priority is “hung” under the root with higher priority. The following definitions of
priority are usually employed:
Tree size. Each root maintains the size of its tree, and smaller roots are pointed to larger
ones. This serves as a way of balancing the tree.
Rank. Since we aim at optimizing the height, it is reasonable to store the height as a
priority. When the ranks of the trees to be united are different, then the smaller tree
is pointed to the larger one, and the ranks remain the same. However, when the ranks
coincide, an arbitrary one is chosen as a new root, and its rank is incremented.
Random. Another method to choose a new root is using a set of fixed random initial
priorities; Tarjan et. al. first analyzed this technique in the sequential case [9], and after
it Jayanti and Tarjan made an analysis for the concurrent case [10].

Path Compaction. Another way to make the data structure faster is making the tree
“flatter” by shortening paths between nodes and the roots. In particular, notice that during
the Find operation, the parent links can be changed to the higher ones without breaking

correctness; this way, the algorithm reaches the root faster on the next Find invocation.

Here are several strategies which are usually employed to compact trees:
Compression. Once the root is found, all the elements on the search path can update their
parent pointers to the root. The simplest implementation uses recursion and performs
these updates in the last-in-first-out order. The disadvantage of this technique is that it
requires performing two passes, from u to the root and back to u; thus, in practice, this
strategy produces extra cache misses.

Splitting. This technique updates the parent links during the only traversal to the root.

On each step, it reads both the parent and the grandparent of the current element, and
updates its parent link to the grandparent. Thus, it compresses the paths from all visited
elements to the root by one.

Halving. This technique is similar to splitting, but after each step, each node is linked to
the grandparent. Thus, parents of only half of the elements on the path are updated.

These compaction optimizations can guarantee O(logn) amortized time complexity of the
Find operation, while the linking techniques guarantee O(logn) worst-case time complexity
(probabilistic in case of random priorities). However, using both techniques at the same
time, linking by priority and path compaction, guarantees O(m - a(n, ™*)) time complexity
on average, where n is the number of elements, m is the number of operations, and « is a
functional inverse of Ackermann’s function.

15:5

OPODIS 2019

15:6

In Search of the Fastest Concurrent Union-Find Algorithm

func Union(u, v) { func Find(u) = while (true) {

u = Find(u); v = Find(v) p = parent[u]

if u == v: return gp = parent[p]

if rank[u] <= rank[v]: if p == gp: return p
parent[u] = v parent [u] = gp

else if rank[u] > rank([v]: u = gp
parent[v] = u }

if rank[u] == rank[v]: rank[v]++

}

Listing 2 Sequential DSU with rank-based priorities using path compaction via halving.

Implementation Example. Listing 2 provides a pseudo-code of the DSU algorithm with
ranks as priorities and path compaction via halving. Here we assume that the SameSet
function is implemented with two Find invocations.

Evaluation. We evaluated all the combinations of linking and path compaction strategies.
Similarly to the work by Patwary et al., we store priorities only for roots [15]. Thus, it is
possible to use a single register to store either parent or priority — we only have to reserve
one bit as a mark whether the element is a root or not; we show in the extended version of
this paper [4] that this optimization significantly improves the performance.

In addition to the standard linking strategies, we suggest using a pseudo-random one,
which essentially shuffles priorities in the range 1..n among n elements — the following
well-known hashing formula due to Knuth is used:

priority(z) = (x 4+ SHIFT) x BIG_PRIME mod N.

It is worth noting that SHIFT can be chosen randomly to increase the algorithm’s robustness
against some adversary to make the algorithm work slow.

Figure 1 shows the results of all the 12 combinations on both connected components and
Boruvka’s algorithm benchmarks; we used our local Intel machine for this experiment.

Rank priorities are approximations for tree sizes. We predictably do not see significant
difference between these linking strategies; however, using ranks requires updates only if two
trees in the Unite operation have the same ranks. Thus, we do not consider the size-based
strategy in further concurrent tests — we believe that it cannot outperform the rank one due
to more memory updates.

The suggested pseudo-random priorities slightly outperform the real random ones in
almost all scenarios (time of random generation was not considered). We believe that this is
a consequence of the fact that we do not need to store pseudo-random priorities at all and
that the pseudo-random method shuffles elements as evenly as possible. Thus, we use only
pseudo-random priorities in further experiments. As for the comparison between pseudo-
random and rank-based priorities, we do not see one clearly and consistently outperform the
other in many scenarios. Therefore, we consider it important to test both these strategies in a
concurrent environment. Similarly, we keep all linking strategies for further experimentation.

4 Evaluating Concurrent Implementations

4.1 Basic Variants

In accordance with the evaluation of the sequential algorithms, we consider only rank-based
and pseudo-random linking strategies combined with all three path compression techniques.
Similarly to the existing concurrent DSU implementations, we achieve atomicity by merging
trees via Compare-And-Set (CAS) primitive.

D. Alistarh, A. Fedorov, and N. Koval

splitting + sizes halving + sizes compression + sizes

splitting + ranks B halving + ranks I compression + ranks

splitting + random I halving + random I compression + random
splitting + pseudorandom mm halving + pseudorandom W compression + pseudorandom

Connected components

1200

1000

800

time, ms

600

400

200

RANDOM HIGH-CONTENTION POKEC LIVE-JOURNAL USA-ROADS
Boruvka

2500
I

2000+

15001

tme, ms

10001

I 1 1 . & I
1 Ix 1
0 . RANDOM ~ HIGH-CONTENTION BERKELEY-STANFORD-WEB INTERNET-TOPOLOGY USA-ROADS

Figure 1 Time comparison for sequential DSU versions with different linking and path compaction
strategies on the Intel machine on various input graphs. Lower is better.

Listing 3 contains a pseudo-code for the concurrent version with ranks based on the
approach of Anderson and Woll [5]. For strategies with ranks we need to be sure that
for a node a rank and a parent can not be updated concurrently, otherwise we can get a
non-linearizable behavior, where, for instance, two nodes have parent links pointing to each
other violating the forest structure invariant. We can create a structure storing both a parent
and a rank and change with Compare-And-Set primitive the pointer to a structure, which
was proposed by Anderson and Woll, but a faster way would be to store both a rank and a
parent in the same register by either dividing it into two parts (i.e. a rank and a parent will
have less bits) or by using the same trick as we used in the sequential case, when we stored
priorities only for roots. The last technique was chosen since it uses twice less memory. A
heuristic that was used for an optimization in the sequential case becomes important for the
correctness in the concurrent case.

Figures 2 and 3 present the running time of the basic concurrent implementations for
several of the strategies. One may expect that, following the sequential analysis, either
rank-based or pseudo-random priorities would behave significantly better, but this is not
apparent in the results, what motivates our further investigation. Another natural conjecture,
which is apparent empirically, is that splitting and halving compaction strategies have very
similar performance (since their cost is similar), while compression is inferior by comparison,
due to two path traversals — for finding the root and for path compaction. Thus, we use
only splitting heuristic in our next experiments. We also have collected statistics with the
numbers of cache misses, which shows that the algorithms with the compression technique
get about x7 more cache misses on loads and almost the same number on stores.

15:7

OPODIS 2019

15:8

In Search of the Fastest Concurrent Union-Find Algorithm

func Union(u, v) = while (true) { func Find(u): (root, rank) {
(u, ru) = Find(u) p = Afu]
(v, rv) = Find(v) if isRank (p): return (u, p)
if u == v: return (root, rank) = Find(p)
if ru < rv { if p != root:
if CAS(&A[u], u, v): return CAS (&A[u], p, root)
} else if ru > rv { return (root, rank)
if CAS(&A[v], v, u): return }
} else { // ru == rv
if u < v && CAS(&A[ul], u, v): func SameSet (u, v) = while (true) {
CAS (&A[v], rv, rv+l); return (u, _) = Find(u); (v, _) = Find(v)
if u > v && CAS(&A[V], Vv, u): if u == v: return true
CAS (&A[u], ru, ru+l); return if isRank(A[ul]): // still a root?
} return false

Listing 3 Concurrent DSU with priorities via ranks and the path compression heuristic.

4.2 Optimizations

Path Compaction via Plain Writes. Figure 4 shows the average number of failed CAS
operations for different algorithms and thread numbers on the connected component bench-
mark; we used our local Intel machine to collect these statistics. In worst-case scenarios, only
0.002% of the total number of CAS invocations fail. Thus, it should be safe to consider that
there is almost no contention in practice, and there is no reason to perform several attempts
to update parents, which differs from the theoretical worst-case [10].

Since path compaction is a heuristic that influences performance but not correctness,
we suggest trying to use simple writes (with or without memory barriers) for updating
parent links. What is more, when using writes without memory barriers, we can also use
reads without memory barriers at Find operations. While this trick is widely-known, our
observation is that it does not break the correctness of the DSU algorithm. The only place
where we need the reads with memory barriers is the moment when we check that a node is
a root. If the check with the parent obtained from a plain read succeeded, then we should
re-check using memory barriers. Figure 5 shows the comparison of versions with volatile and
plain writes instead of CAS. While the version with volatile memory access does not show
significant improvement, the one without memory barriers is faster to up to 40%. Thus, we
consider it useful in almost all further experiments.

Early Recognition. The standard Union and SameSet implementations perform two Find
operations on their parameters as the first step. However, if both elements are located in
the same set, it could be more efficient to terminate the global operation when both Find
invocations reach the lowest common ancestor; moreover, it potentially reduces the number
of cache misses, which is especially important for NUMA architectures. Similarly, if these
two elements are in different sets, it can also be detected during simultaneous climbs — it is
guaranteed when the first Find reaches the root while the second one stays at an element
with greater priority or vice versa. In this situation, SameSet can safely return false,
while Unite can link the first root to the current element of the second Find climb. Goel
et al. used this technique in sequential versions [9], while Jayanti and Tarjan adopted it for
the concurrent environment [11]. Since we should know priorities for all nodes, we can not
store them only for roots as we have done before for rank-based strategies; thus, we utilize
twice more memory. Figure 6 shows that this optimization makes the algorithm faster for
some scenarios, while the performance becomes worse or the same on others.

D. Alistarh, A. Fedorov, and N. Koval

—— ranks + halving

—— pseudorand + halving

—— ranks + splitting
—e— pseudorand + splitting

~#— ranks + compression
—#— pseudorand + compression

Arch: Intel, graph: RANDOM

Arch: AMD, graph: RANDOM

Arch: ARM, graph: RANDOM

1 2 4 8 16 32 64

Arch: Intel, graph: HIGH-CONTENTION

96

2 4 8 16 32 64 96

Arch: AMD, graph: HIGH-CONTENTION

4 8 16 32 64 96

Arch: ARM, graph: HIGH-CONTENTION

1 2 4 8 16 32 64

96

2 4 8 16 32 64 96

4 8 16 32 64 96

Arch: Intel, graph: POKEC

Arch: AMD, graph: POKEC

210

Arch: ARM, graph: POKEC

1 2 4 8 16 32 64

96

2 a4 8 16 32 64 96

4 8 16 32 64 96

Arch: Intel, graph: LIVE-JOURNAL

1 2 4 8 16 32 64

96

Arch: AMD, graph: LIVE-JOURNAL

2 a 8 16 32 64 9%

Arch: ARM, graph: LIVE-JOURNAL

a 8 16 32 64 B

Arch: Intel, graph: USA-ROADS

Arch: AMD, graph: USA-ROADS

213

Arch: ARM, graph: USA-ROADS

32 64

8 16
Threads

Figure 2 Basic concurrent implementations comparison on the connected components benchmark.
Each algorithm has been evaluated on five different graphs (see Table 1) and on Intel, AMD, and
ARM platforms. Halving and splitting techniques show the best results, but the compression one is
worse on both rank-based and pseudo-random strategies. While the trends on different architectures
are similar, there are changes when NUMA effects appear, which can be noticed when the number
of threads exceeds the number that one socket can have, thus forcing the algorithm to use several
sockets. The versions on Intel and ARM machines do not scale after the moment they need to use
two or more NUMA sockets, while the versions on AMD stop scaling only on three sockets. Another
observation is that for ARM machines the difference between algorithms is less noticeable, because
its processor is slower in comparison to other platforms, while the memory is as fast as in other

machines.

8 16 32 64 %6
Threads

8 16 32 64 %6
Threads

15:9

OPODIS 2019

15:10

In Search of the Fastest Concurrent Union-Find Algorithm

—— ranks + halving

—+— pseudorand + halving

—— ranks + splitting
—e— pseudorand + splitting

—&— ranks + compression
—&— pseudorand + compression

Arch: Intel, graph: RANDOM

Arch: AMD, graph: RANDOM

Arch: ARM, graph: RANDOM

2] 8 16 32 64 96

2 4 8 16 32 64 96

ms

Arch: AMD, graph: HIGH-CONTENTION

Arch: ARM, graph: HIGH-CONTENTION

2 4 8 16 32 64

96

Arch: Intel, graph: BERKELEY-STANFORD-WEB

Arch: AMD, graph: BERKELEY-STANFORD-WEB

211

Arch: ARM, graph: BERKELEY-STANFORD-WEB

i 2 a 8 16 32 64 96

2 a 8 16 32 64

96

Arch: Intel, graph: INTERNET-TOPOLOGY

Arch: AMD, graph: INTERNET-TOPOLOGY

Q4.

912

211

Arch: ARM, graph: INTERNET-TOPOLOGY

2 4 8 16 32 64
Arch: AMD, graph: USA-ROADS

96

Arch: ARM, graph: USA-ROADS

8 16 32 64
Threads

32 64 96

Figure 3 Basic concurrent implementations comparison on the Boruvka’s algorithm benchmark.
Here the algorithms do not scale well due to internal synchronization; thus, we are mainly interested
in the fastest points — on 32 threads for Intel and AMD, on 8 or 16 threads for ARM.

1 0.00020

S

et 0.00015

3

F 000010

5 0.00005

R
0.00000

—— pseudorand + splitting

—+— ranks + splitting

Arch: Intel, graph: USA-ROADS

Arch: Intel, graph: RANDOM

Arch: Intel, graph: HIGH-CONTENTION

0.002
0.0010
0.0005 0.001
0.0000 0.000
2 4 8 16 32 64 94 1 2 4 8 16 32 64 94 1 2 4 8 16 32 64 94
Threads Threads Threads

Figure 4 The average number of failed CAS operations on the connected components benchmark
(Intel platform). Here we see that almost all CAS operations succeed; thus, in practice, there is no
reason to perform several attempts to update parents.

1
2
3
A

5
5

[
8
9
10
11
12
13

D. Alistarh, A. Fedorov, and N. Koval

—— ranks + splitting

—— ranks + splitting + volatile write
—+— pseudorand + splitting —e— pseudorand + splitting + volatile write —#— pseudorand + splitting + plain
513

—4— ranks + splitting + plain

Arch: Intel, graph: RANDOM 21

1 2 a 8 16 32 64 9% 1

Arch: AMD, graph: RANDOM

a 8 16 32 64 9

Arch: ARM, graph: RANDOM

a 8 16 32 64 9%

Arch: Intel, graph: HIGH-CONTENTION

Arch: AMD, graph: HIGH-CONTENTION

Arch: ARM, graph: HIGH-CONTENTION

Arch: Intel, graph: POKEC

21
210
F - T
29 *
—
1 4 8 16 32 64 96

Arch: AMD, graph: POKEC

Arch: ARM, graph: POKEC

a 8 16 32 64 96

Arch: Intel, graph: LIVE-JOURNAL

Arch: AMD, graph: LIVE-JOURNAL

Arch: ARM, graph: LIVE-JOURNAL

Arch: Intel, graph: USA-ROADS

8 16
Threads

Arch: AMD, graph: USA-ROADS

8 16
Threads

Arch: ARM, graph: USA-ROADS

8 16
Threads

Figure 5 Volatile and plain writes instead of CAS operations to update parents. While volatile
writes does not perform better that CAS operations, plain operations give a speedup up to 40%.

func Unite(u, v) = while (true)
up = parent[u]; vp = parent|[v]

if u == v or up == vp: return
if vp < up:

swap (&u, &v); swap(&vp, &up)
if u == up:

if CAS(&u.parent, u, vp):

return true
v = parent [up]
if up != v:
CAS (&u.parent,
= up

up, V)
u

}

14 func SameSet (u, v) = while(true) {
15 up = parent[u]

16 vp = parent[v]

17 if u == v or up == vp:

18 return true

19 if vp < up:

20 swap (&u, &v); swap (&up, &vp)

21 if u ==

up:
v = parent [up]

return false

23 if up != v:

24 CAS (&u.parent, up, V)
25 u = up

26}

Listing 4 Concurrent Rem’s disjoint-set union algorithm with path splitting.

15:11

OPODIS 2019

15:12

In Search of the Fastest Concurrent Union-Find Algorithm

Immediate Parent Check. Osipov et al. showed that it is likely for two elements to be
united having the same parent links [14] (e.g., if the path is almost fully compressed after
lots of Find invocations). Therefore, they suggested using an immediate parent check
(IPC) optimization, which examines whether parent [u] and parent [v] are equal in
the beginning of SameSet and Union operations and if they are, immediately returns.
Figure 6 shows that immediate parent check significantly improves the performance of all the
considered algorithms, especially on the Intel platform. However, the combination of both
early recognition and immediate parent check optimizations work worse due to increasing
the code complexity on some graphs and architectures. The IPC optimization is so efficient
on our graphs due to having not many connectivity components; the best versio<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>