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ABSTRACT
Training deep learning models has received tremendous research
interest recently. In particular, there has been intensive research
on reducing the communication cost of training when using multi-
ple computational devices, through reducing the precision of the
underlying data representation. Naturally, such methods induce
system trade-offs—lowering communication precision could de-
crease communication overheads and improve scalability; but, on
the other hand, it can also reduce the accuracy of training. In this
paper, we study this trade-off space, and ask: Can low-precision
communication consistently improve the end-to-end performance
of training modern neural networks, with no accuracy loss?

From the performance point of view, the answer to this ques-
tion may appear deceptively easy: compressing communication
through low precision should help when the ratio between com-
munication and computation is high. However, this answer is less
straightforward when we try to generalize this principle across
various neural network architectures (e.g., AlexNet vs. ResNet),
number of GPUs (e.g., 2 vs. 8 GPUs), machine configurations
(e.g., EC2 instances vs. NVIDIA DGX-1), communication primi-
tives (e.g., MPI vs. NCCL), and even different GPU architectures
(e.g., Kepler vs. Pascal). Currently, it is not clear how a realistic
realization of all these factors maps to the speed up provided
by low-precision communication. In this paper, we conduct an
empirical study to answer this question and report the insights.

1 INTRODUCTION
The system tradeoffs induced by training deep neural networks
seem to be an endless discussion [9, 11, 15, 19, 24, 34, 46]. One
reason for this sophistication is the level of diversity involved. At
the algorithmic level, there are synchronous, asynchrhous, and
hybrid approaches. At the workload level, different neural net-
works have different computation and data movement patterns.
At the architecture level, different computation devices, such as
CPUs, GPUs, and FPGAs offer sharply different tradeoffs. Making
matters worse, these are not pure performance tradeoffs, which
one could tackle with performance modeling. Instead, different
point in the tradeoff space has different accuracy of the trained
model, a property that is very difficult to predict, and for which
has there currently exists little theoretical understanding [49].
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A Data Management Angle. From a datamanagement perspec-
tive, these trade-offs provide an opportunity to build a automatic
optimizers for deep learning tasks. Just as with previous optimiz-
ers that our community has been building [6, 8], the understand-
ing of the tradeoff is often the prerequisite. Given the limited
current theoretical understanding of deep learning, such model-
ing is inevitably empirical for the immediate future. Therefore,
we believe that there is timely necessity for a set of empirical,
fair, comparison to reveal the tradeoffs behind building and opti-
mizing deep learning systems.

In this paper, we present an in-depth empirical study which
focuses on a subspace of the whole tradeoff, that is, the tradeoff
introduced by the precision of communication when training deep
neural networks with a synchronous multi-GPUs system.

Low Precision Deep Learning. An emerging topic in deep
learning systems is lowering the precision of data representation
throughout the whole system [5, 14, 18, 20, 23, 33, 36, 50, 51].
There has been recent success in representing all data move-
ments involved in training a neural network with as little as 1-bit
per dimension while still getting the same accuracy for some,
but not all, networks [36]. However, none of these work depict
a full tradeoff space — they either focus on extreme cases (e.g.,
1-bit) with significant loss of accuracy and do not discuss the
impact of adding more bits, or only focus on algorithmic aspects,
without a well-implemented system. In this paper, we conduct an
empirical study to understand the impact of lower precision of
data representation both on the training accuracy and the speed.
System Artefact. A fair empirical study calls for a system that
achieves optimized performance for each configuration in the
above space. Surprisingly, such a system does not exist off-the-
shelf: if we just take CNTK or TensorFlow, the performance of
many configurations is not as optimized as they could be. Thus,
we decide to start from CNTK but conduct intensive performance
optimization to ensure the fairness of our study. We first devel-
oped a system prototype optimized for low-precision machine
learning. In this paper, we report an array of system optimiza-
tions that leads to up to 3.5× speed up over CNTK, which allows
us to understand the tradeoff as fair as possible.
Summary of Contribution 1: Experimental Study. We con-
sider the task of training deep neural networks on a single system
with multiple GPUs, in a setting where all these GPUs communi-
cate in a synchronous manner [24, 34]. In this setting, our first
contribution is a study of the impact of varying the number of
bits to communicate between these devices from 1bit to 32bits. Our
study contains the following axes in the tradeoff space:
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(1) Machine Learning Tasks/Datasets: {Image, Speech}
(2) NeuralNetworkArchitectures: {AlexNet [27], VGG [40],

ResNet [21], Inception [43], LSTM [22]}
(3) Quantization Strategy: {“1-bit SGD” [39], QSGD [5]}
(4) Number of GPUs: {1, 2, 4, 8, 16}
(5) Type of Machines: {Amazon EC2, NVIDIA DGX-1}
(6) Programming Models: {MPI, NCCL}
(7) GPU Architectures: {Kepler, Pascal}
The tradeoff space we studied contains a full cross products the

above axes (whenever possible); for each configuration, we vary
the precision of data communication and measure (1) end-to-end
performance (seconds), (2) convergence speed (#iterations), (3)
speed per iteration (seconds), and (4) accuracy (%).

To fully depict this tradeoff, our study used more than 1400 ma-
chine hours on Amazon EC2’s recently released 16-GPU instance
and more than 20 machine hours on NVIDIA DGX-1. These give
us an overview of how recent hardware and software have impact
on the importance of low precision communication. This is so
far the most comprehensive study of the impact of low-precision
communication to deep learning. The system insights we get go
significantly beyond those of previous work.
Summary of Contribution 2: Insights. Our study not only
reveals insights beyond those of previous work, but also provides
the first comparable quantitative evaluation of the results scat-
tered in previous work that was original evaluated on different
platforms and settings. We now briefly summarize these insights.

1. Does low-precision always hurt accuracy?
No. Across all datasets and models that we evaluated, we found
parameter settings under which low-precision variants are able
to achieve the same accuracy as full precision. Specifically, on all
networks we evaluated, when quantizing communication using
the 1bitSGD algorithm, a low-precision system is able to achieve
the same accuracy (within 0.2%) as a full precision run. Using
QSGD usually requires slightly higher precision: using 4-bit gra-
dients always preserves the same accuracy (within 0.1%), while
the 8-bit variant always matches or even improves final accuracy
(within 0.5%). We note a few caveats regarding this result:

(1) Different layers have different sensitivity to quantization:
for convolutional neural networks, the convolutional lay-
ers require more bits than the fully connected layers.

(2) Quantizing too aggressively can lead to significant accu-
racy loss: we identify scenarios where 2bit QSGD can no
longer train to state-of-the-art precision.

2. Does low-precision always help
performance?

Not always. The answer to this question depends on several
factors. We postpone a detailed discussion to Section 5.2.

(1) The most surprising result regarding performance regards
the impact of the communication primitives used. When
we replace MPI with the NCCL, a restricted set of com-
munication primitives optimized by NVIDIA for GPU-to-
GPU communication, 32bit full precision becomes much
faster than MPI. Consequently, the speedup we can obtain
with low-precision communication is also limited. In fact,
on most networks, the performance improvement we get
when using 8GPUs and NCLL is almost negligible; only
for one network (VGG), we only get up to 1.4× speedup.

(2) With slower MPI (which can be seen as as a proxy for a
slower interconnect), the tradeoff becomes more signif-
icant. One key factor is the ratio between computation

(time to calculate the gradient) and communication (time
to communicate the gradient). For networks with a large
number of parameters such as AlexNet, we observe up to
4× speedup using low-precision communication; For net-
works with small model, we observe almost no speedup.

(3) The number of GPUs also plays a role. Naturally, when
the number of GPUs increases, the necessity of using low-
precision communication increases.

3. Is using extremely low precision ever
helpful?

Rarely.We observe a trend of “diminishing returns” when lower-
ing the precision of gradient to extreme cases such as a single bit,
while such compression can lead to accuracy loss. Examining the
time cost of a dataset iteration, even with MPI, using 1-bit rarely
outperforms using 4-bit on our benchmarks. Through simulation,
we can project a communication-to-computation regime where
extreme low precision would have significant impact, but none
of the existing networks fall into that regime.

4. Have the current programming models
unleashed the full potential of low-precision

machine learning?
No. NCCL hardcodes the reduction semantics with 32-bit full pre-
cision, and only offers a limited set of binary operations. Hence,
there are currently no easy ways to use the NCCL primitives to
support low-precision reduction efficiently. We conduct a simu-
lation which implies that a version of NCCL with low-precision
support could lead to a low-precision system that is up to 1.4×
faster than our current prototype. MPI is also cumbersome to
use in the context of low precision, although its richer semantics
allow us to implement efficient variants of quantized methods.

5. Do we really need 16 GPUs on a single
instance?

Rarely when training a single model. Amazon EC2 provides
a single instance with 16 GPUs: p2.16xlarge, whose price price
is 2× higher than a p2.8xlarge 8-GPU instance, and currently
stands at $14/hour. We only find few scenarios where the speedup
achieved with 16 GPUs versus 8 would justify the cost doubling.
Limitations. Our study has the following limitations.

The first is that our study assumes that the user has zero error-
tolerance. That is, we focus on scenarios where the user wishes
to obtain a model with the same accuracy as one trained at full
precision, but wishes to save time (and money) on training by
using quantized methods. If the user could tolerate higher errors
(e.g., 10% accuracy loss), the results of our study might change, as
we should be able to use more aggressive low-precision schemes.

The second limitation is that our study only considers the
communication overhead when exchanging gradients across de-
vices. Other potential benefits of using low-precision data rep-
resentation is to speed up computation (each register can hold
more numbers). We do not consider these, as the current GPU
platform does not yet provide enough flexibility (e.g., 4-bit com-
putation). A related limitation is that we only focus on GPU
platforms. The current work is part of a larger ongoing study ex-
amining computation-to-communication trade-offs across CPU,
GPU, XEON PHI, and FPGA; however, these other platforms are
currently out of the scope of a single paper.

The third is that our study focuses on the speed of training,
which is currently the most computationally-intensive aspect
of neural networks. When the objective changes, e.g., energy
efficiency, or speed of inference, the results might also change.
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The fourth limitation is that we build our artefact starting
from a specific platform, Microsoft CNTK. However, we we ex-
pect similar observations to hold in the context of other deep
learning systems, such as TensorFlow. All these systems use the
same computational substrate (NVIDIA CUDA and cuDNN li-
braries [10]), and the semantics of the allreduce-based gradient
exchange are similar across all synchronous systems. However,
we do not wade into an in-depth quantitative analysis to support
this claim. In the future, we plan to extend our study to a variety
of systems, but this is out of the scope of this single paper.

The last limitation is that our study makes inherent assump-
tions of how different hyperparameters are tuned, e.g., learning
rate and batch size. Although we believe our protocol of hyper-
parameters is reasonable and fair, it is also true that we did not
fully explore all possible combinations of these hyperparameters,
as the cost would increase significantly: by a rough estimate, an
exhaustive search of the hyperparameter space would cost more
than $1M on EC2.
Reproducibility. All of our experiments can be reproduced us-
ing a virtual machine availabe on EC2: i-0a7a0521e93c329d9.
Our variant of CNTK is available under github.com/ZipML/CNTK.
Overview. The rest of this paper is organized as follows. We
introduce the background material in Section 2 and describe our
system prototype in Section 3. We describe our experiment setup
in Section 4 and analyze our results in Section 5. We provide more
discussion in Section 5.4 and survey related work in Section 7.

2 PRELIMINARIES
We present background for our study. We first describe the sto-
chastic gradient descent (SGD) algorithm and the synchronous
parallel version of it which is the focus of our study. We then
describe two low-precision SGD algorithms and discuss two dif-
ferent communication primitives based on MPI and NCCL.

2.1 Stochastic Gradient Descent
Stochastic gradient descent (SGD) is the workhorse algorithm
in training deep learning models. SGD is developed for a more
general class of optimization problems: Let f : Rn → R, it solves
minx f (x ). The assumption of SGD is that we have access to the
stochastic gradients of this function. We denote the stochastic
gradient by д̃which satisfies E[д̃(x )] = ∇f (x ). SGDwill converge
towards the minimum by iterating the following procedure

xt+1 = xt − ηt д̃(xt ),

where xt is the current state of the model, and ηt , also called the
step-size or learning rate is a hyperparameter.

In the machine learning setting, we are given i.i.d. data points
X1, . . . ,Xm generated from an unknown distribution D, and a
loss function ℓ(X ,θ ), which measures the loss of the model θ
at data point X . We wish to find a model θ∗ which minimizes
f (θ ) = EX∼D [ℓ(X ,θ )], the expected loss to the data. Since for
each i , the function ∇ℓ(Xi ,θ ) is a stochastic gradient for f , we
can use SGD to find θ∗. This captures neural network training.
Synchronous Parallel SGD. In this paper, we focus on synchro-
nous data-parallel SGD, modeling multi-GPU systems in which
each GPU has a complete copy of the model. GPUs proceed in
synchronous steps, and communicate using direct messages. Each
of the K processors maintains a local copy of the model x , of
dimension n. The algorithm is described in Algorithm 1.

Each processor aggregates the value of x , then obtains random
gradient updates for each component of x , then communicates

Data: Stochastic gradients
Data: Local copy of the parameter vector x

1 for each iteration t do
2 Let д̃it be an independent stochastic gradient ;

3 M i ← Encode(д̃i (x )) //encode gradients ;

4 broadcast M i to all peers;
5 for each peer ℓ do
6 receive M ℓ from peer ℓ;

7 д̂ℓ ← Decode(M ℓ ) //decode gradients ;

8 end
9 end
Algorithm 1: Synchronous Data-Parallel SGD Algorithm.

Data: Gradient vector v to be quantized
Data: Error ϵ from the previous round

1 v ← v + ϵ //add error from previous round ;
2 for each component i do
3 qi ← avд+ if vi ≥ 0, avд− otherwise;
4 ϵi ← vi − qi ;
5 end
6 return q

Algorithm 2: 1bitSGD procedure.

these updates to all other nodes, and finally aggregates the re-
ceived updates and applies them to its local model.We have added
encoding and decoding steps for the gradients before and after
send/receive in lines 1 and 7. In the following, we assume the
above pattern. Whenever describing a communication-efficient
variant of SGD, we only specify the encode/decode functions. Note
that these encoding process is often lossy that only recover an
approximate gradient.

When the encoding and decoding steps are trivial (i.e., no en-
coding/decoding), we refer to this algorithm as full-precision (par-
allel) SGD. In this case, at each processor, if xt was the value of x
that the processors held before iteration t , then the updated value
ofx by the end of this iteration isxt+1 = xt−(ηt /K )

∑K
ℓ=1 д̃

ℓ (xt ),
where each д̃ℓ is a stochastic gradient. The speedup comes from
the fact that all the updates are computed in parallel.

2.2 One-Bit Stochastic Gradient Descent
We describe the 1bitSGD quantization scheme, introduced by
Seide et al. [39]. We denote the quantization function by Q1b (v ),
mapping a vector v to its quantized version. The procedure first
splits the vector v into its positive and negative components, re-
spectively, and computes the average over positive values, which
we denote by avд+, and the average over negative values, which
we denote by avд−. Then,

Q1b
i (v ) =

{
avд+ if vi ≥ 0 ;
avд− otherwise.

Simply put, the procedure replaces each component with the
average corresponding to its respective sign. Critically, the pro-
cedure also maintains an error correction vector ϵ , associated to
the model. In each iteration, the error from the previous iteration
is added to the current value, before the value is quantized. This
error correction step is critical to preserve accuracy [39]. The re-
sulting algorithm works as Algorithm 2, which can be used as
the Encode function of standard SGD (Algorithm 1).
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2.3 SGD with Stochastic Quantization
We present the QSGD stochastic quantization scheme, following
the description from the original paper [5]. We denote the quan-
tization function by Qs (v ), where s ≥ 1 is a tuning parameter,
corresponding to the number of “quantization levels”. Intuitively,
s will define uniformly distributed levels between 0 and 1, to
which each real value is quantized such that: 1) the value is
preserved in expectation, and 2) minimal variance is introduced.

Given a non-zero vectorv ∈ Rn , Qs (v ) is defined as

Qs (vi ) = ∥v ∥2 · sgnvi · ξi (v, s ) , (1)

where ξi (v, s )’s are independent random variables defined as
follows. Let 0 ≤ ℓ < s be an integer such that |vi |/∥v ∥2 ∈
[ℓ/s, (ℓ+1)/s]. That is, [ℓ/s, (ℓ+1)/s] is the quantization interval
corresponding to |vi |/∥v ∥2. Then

ξi (v, s ) =


ℓ/s with probability 1 − p

(
|vi |
∥v ∥2
, s
)
;

(ℓ + 1)/s otherwise.

Here, p (a, s ) = as − ℓ for any a ∈ [0, 1]. If v = 0, then we
define Q (v, s ) = 0. The quantization distribution ξi (v, s ) is de-
fined to have minimal variance over distributions with support
{0, 1/s, . . . , 1}. Its expectation satisfies E[Qs (vi )] = vi . The quan-
tizer is an unbiased estimator of the original gradient, thus en-
sures convergence [5, 14].

The above algorithm assumes quantization levels are uni-
formly distributed. There are algorithms in which quantization
levels are distributed to further minimize variance, and they can,
in some cases, significantly improve accuracy for model compres-
sion [50]. We implemented this for gradient but does not observe
significant improvement.

2.4 Communication Primitives
The major communication bottleneck in the parallel SGD algo-
rithm is in line 4 of Algorithm 1, where the gradient is broadcast
to all other machines. Since the operation just needs to collec-
tively add all gradients and produce the output at each node, this
can be implemented using a standard instance of the allreduce
operator, the optimized version of which has been studied for
decades [32]. This operation can be implemented differently in
standard CNTK: via a reduce-and-broadcast pattern implemented
on top of MPI, which is the default in CNTK, and via NVIDIA’s
NCCL extensions, which provide an allreduce-sum operation
implementation.

2.4.1 MPI Reduce-and-Broadcast. The first aggregation al-
gorithm is an MPI implementation of the classic reduce-and-
broadcast pattern. More precisely, given a set of K nodes, the
model of dimension n is split into n/K consecutive ranges, where
the ith processor is logically assigned range i ⌊n/K⌋. At the end
of each processing batch, each processor has a full set of gradi-
ents, and the goal of the procedure is to aggregate (sum) all these
gradients so that each processor has the same global gradient
value at the end of the procedure.

The first step in the aggregation process is that a processor
sends each range in its current gradient to the corresponding pro-
cessor. Thus, each processor sums up the values for its assigned
range locally. In the final step, each processor broadcasts its ag-
gregated range to all other processors. Note that, in the actual
implementation, the gradients may be transmitted in quantized
form. (That is, we add quantization and un-quantization steps
before communication, and after the message is received.) This
does not affect the pattern.

2.4.2 NCCL Accumulation. NCCL [7] (pronounced “Nickel")
is an open-source communication library provided by NVIDIA,
that is designed to provide efficient multi-GPU collective opera-
tions in a topology-aware way. In particular, NCCL provides a
sum collective operation, which can be used to implement gradi-
ent aggregation. Internally, NCCL works by building a system-
aware communication efficient ring topology, on top of which
the collective operation is applied in a step-by-step manner. To
minimize the memory impact of storing multiple copies, NCCL
splits large data buffers into small slices (4-16KB), and uses effi-
cient peer-to-peer access to push data between GPUs. NCCL cur-
rently supports several collective types (e.g., all-gather, all-reduce,
broadcast) and a few binary operations (e.g., sum, product).

3 SYSTEM DESCRIPTION
We implemented our system on top of the Microsoft Cognitive
Toolkit (CNTK) [3], version 2.0 beta 9. Our code is released both
as open-source and as a docker instance at github.com/ZipML/
CNTK. We first provide a brief technical overview of CNTK, and
then focus on the additions brought by our artefact.

3.1 CNTK
The Microsoft Cognitive Toolkit (CNTK) is a computational plat-
form optimized for deep learning. One general principle behind
CNTK is that neural network operations are described by a di-
rected computation graph, in which leaf nodes represent input
values or network parameters, and internal nodes represent ma-
trix operations on their children. CNTK supports and imple-
ments several popular network architecture types, such as feed-
forward DNNs, convolutional nets (CNNs), and recurrent net-
works (RNNs/LSTMs). To train such networks, CNTK implements
stochastic gradient descent (SGD) with automatic differentiation.
CNTK supports parallelization across multiple GPUs and servers,
with efficient MPI-based communication.

CNTK provides MPI-based GPU-to-GPU communication, and
implements a CUDA-optimized version of the 1bit-SGD algo-
rithm [39], as presented in Section 2.2. CNTK is optimized for
usage with multi-server multi-GPU systems. CNTK exports APIs
for C++, Python and C#/.NET. Additionally, CNTK specifies and
implements a BrainScript scripting language, which can be used
to define models such as neural networks, as well as to train and
evaluate models without employing any lower-level program-
ming languages. CNTK comes with many preinstalled scripts for
training state-of-the art models for different tasks, of which one
of the most documented is image classification. Futhermore, it
offers a number of pre-trained state-of-the-art models.

3.2 Low-Precision Support
CNTK implements 1bitSGD, which is used by default in multi-
GPU environments with SGD. We now describe CNTK’s 1bitSGD
implementation. Low-precision commununication betweenGPUs
is implemented using MPI reduce-and-broadcast.

3.2.1 Data Representation and 1bitSGD. CNTK stores the
computation intensive data (model and minibatch samples) in
the GPU memory, to ensure fast access and to avoid expensive
data copying between host (main) and device (GPU) memory. In
synchronized SGD, after every GPU is finished with the computa-
tion of gradients using backpropagation for its batch of samples,
GPUs collectively aggregate gradients, so that each is left with a
coherent copy of the model.
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Gradients are stored using a matrix datatype in GPU memory.
Aggregation is performed using the MPI Reduce-and-Broadcast
technique described above. Sending gradient matrices is done
separately for each gradient. To reduce communication, each
GPU performs quantization and un-quantization on eachmessage
sent/received.

Quantization is done over columns. That is, the gradient is
divided into columns, and each column is quantized separately.
Thus, each quantized column is represented by two numbers
avд+ and avд−, as well as an array of bits of size equal to number
of elements in the column. That array of bits is represented as
an integer array, where 8 quantized values, each consisting of
1 bit, are packed into 1 byte of memory. For instance, if there
are n rows in a gradient matrix, then the quantized column is
represented by two floating-point numbers and ⌈n/8⌉ bytes of
memory.

In order for GPU memory to be aligned, if single-precision
float-point numbers are used for calculations in a network, then
avд+ and avд− are represented as a float data type, and n bits
are packed in ⌈n/32⌉ C++ unsigned integers. If double-precision
float-point numbers are used, avд+ and avд− are doubles and n
bits are packed inside ⌈n/64⌉ C++ unsigned long long integers.

The quantization of a column is divided into 2 phases. The first
phase launches GPU threads in order to calculate the numbers
avд+ and avд−, where the number of threads is tuned for per-
formance. The second phase uses calculated numbers avд+ and
avд− to quantize values and pack bits into integers. For each inte-
ger in the quantized array, a new GPU thread is launched, which
means that each thread in second phase quantizes exactly 32 or 64
elements of a column, depending on the precision employed. All
of a gradient’s columns are quantized in parallel on the GPU. To
optimize the performance, the double buffering techique is used,
by which, while some gradients are being quantized, gradients
that are finished with quantization are already being sent. That
way communication overlaps with computation and GPU and
CPU resources are maximally used. The current CNTK imple-
mentation uses MPI to exchange data between GPUs. Because of
that, an additional transfer of the gradient between GPU device
memory and host memory is required.

3.2.2 QSGD Implementation. In order to implement theQSGD
quantization technique, we started from the 1bitSGD implemen-
tation.We re-wrote the quantization function, such that it follows
the algorithm in Section 2.3. As in a case of 1bitSGD, we pack
quantizated values in integers, but we stored only one additional
floating point number (for scaling) instead of two. The algorithm
works such that the number of bits used for quantization is speci-
fied asдBits , and each gradient matrix values are quantize into an
integer range with a specified number of bits. We implemented
two different quantization methods, which differ in terms of the
distribution of quantization levels. The first method follows faith-
fully the described algorithm: we use one out ofдBits bits to store
the sign, and the rest of the bits is used for the quantized value.
A second approach was to divide the interval [−∥v ∥2, ∥v ∥2] into
2дBits − 1 intervals of equal size, where the quantization levels
are the endpoints of those intervals.

Since the dimensions of the gradient matrix could be large,
and the variance introduced by quantization depends on the di-
mension, we implemented a variant which splits the vector into
buckets of consecutive scalar values, where each bucket is quan-
tized independently. The bucket size will be tuned for accuracy.

Dataset # Training # Validation Size # classes Tasksamples samples
ImageNet 1.3M 50k 145GB 1000 Image
CIFAR-10 50k 10k 1GB 100 Image

AN4 948 130 64MB NA Speech

Figure 1: Statistics of datasets.

Instance # CPU GPU TFLOPS $/hourcores (single)

Amazon
p2.xlarge 4 1 × K80 1 × 8.73 $0.9
p2.8xlarge 32 8 × K80 8 × 8.73 $7.2
p2.16xlarge 64 16 × K80 16 × 8.73 $14.4

DGX1 2 × 16 8 × P100 8 × 10.6 $50 (Nimbix)

Figure 2: Statistics of machines

Importantly, the whole matrix is reshaped such that each col-
umn has a specified number of elements, where we always try
to place consequtive elements from the same column in original
matrix in the same bucket. Using this bucketing approach, we are
able to control quantization variance and get significant accuracy
improvements.

We also implemented possibility to specify how the scaling
factor for a vector is done. Currently, we support normalization
by 2-norm and maximal element of a vector (infinity norm). The
former is useful if we wish to obtain sparse quantized vectors,
while the latter introduces smaller variance. In our experiments,
normalizing by the maximal element gave better results in terms
of accuracy, since more information is preserved. We used the
NVIDIA cuRAND library with a different seed for each thread to
generate random numbers.

Additional improvement was not to quantize matrices with
small number of elements compared to total number of learning
parameters in the model, since for those matrices we lose time
by setting GPU threads and quantizing. We use full precision
pipeline to send those matrices. We choose a threshold for small
matrices in such way so we always quantize more than 99% of
all parameters.
Reshaped 1bitSGD.We noted that some of the design choices
made in the CNTK implementation of 1BitSGD can adversely
affect the performance of this algorithm. For objects without
dynamic dimensions, the first tensor dimension is the “row,” while
the other dimensions are flattened onto “columns.” The CNTK
implementation of 1BitSGD always quantizes per column.

Practically, on networks with many convolutional layers, this
can lead to the following performance artefact: quantization is
often applied to a column of very small dimension (1–3), which
is computationally expensive, and leads to practically no com-
munication reduction. (At the same time, this artefact leads to
practically no accuracy loss for this version of the algorithm,
since the gradients are almost unchanged.) Given this artefact,
the standard implementation of 1BitSGD can be slower than even
the full-precision version on heavily convolutional networks such
as ResNet and Inception.

We correct this issue by always reshaping tensors with a re-
shaping technique applied in QSGD.We observe up to 4× speedup
compared with the original CNTK implementation. In all experi-
ments we will denote this version of 1bitSGD with 1bitSGD*.

4 EXPERIMENTAL SETUP
4.1 DataSets
We test various quantization techniques on two types of tasks:
image classification, and automated speech recognition.
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Task Network Dataset Params.
# epochs Initial

to run Learning
Rate

Image

AlexNet ImageNet 62M 112 0.07
BN-Inception ImageNet 11M 300 3.6
ResNet50 ImageNet 25M 120 1
ResNet110 CIFAR-10 1M 160 0.1
ResNet152 ImageNet 60M 120 1
VGG19 ImageNet 143M 80 0.1

Speech LSTM AN4 13M 20 0.5

Figure 3: Statistics of networks.

1 GPU 2 GPUs 4 GPUs 8 GPUs 16 GPUs
AlexNet 256 256 256 256 256

BN-Inception 64 128 256 256 256
VGG19 32 64 128 128 128
ResNet50 32 64 128 256 256
ResNet152 16 32 64 128 256
ResNet110 128 128 128 128 128
LSTM 16 16 NA NA NA

Figure 4: Batch sizes used for each network and # GPUs.
See Section 4.4 for the tuning protocol that results in these
choices.

ImageNet. The ILSRVC 2015 dataset [37] (ImageNet) consists
of 1.3 million images, each labelled into one of 1000 categories
(classes), which cover a wide variety of objects, animals, scenes,
or geometric concepts. To evaluate our models, we consider a
standard scenario where validation set that consists of 100K im-
ages is used. The classifier has to predict either a single label
(top-1) or five labels (top-5); an image is considered to be correct
if at least one of the outputs matches the ground truth.
CIFAR-10. We also consider the small-scale CIFAR-10 object
classification dataset [26]. The training set consists of 50,000
32×32 images. Images are labelled into 10 categories. The classi-
fier has to output a single label (top-1); an image is considered to
be correct if the prediction matches the ground truth.
AN4. For speech recognition, we use the CMU Alphanumeric
(AN4) dataset [2]. AN4 consists of recordings of subjects spelling
out their census data (name, address), as well as randomly gener-
ated sequences. It contains 948 training utterances, and 130 test
utterances, sampled at 16 kHz, with 16-bit linear sampling.

4.2 Networks
We conducted our experiments on state-of-the-art networks for
image classification and speech recognition.

For image classification we tested all the winning entries from
the ImageNet competition from 2012 to 2015: AlexNet, VGG, BN-
Inception, and ResNet. These architectures are state-of-the-art
for this task. For experiments with VGG we used an instance
with 19 layers, called VGG19. We performed experiments on
the ImageNet dataset using ResNet networks with 50 and 152
layers (called ResNet50 and ResNet152), and used an instance of
ResNet110 for the CIFAR10 dataset. All of these networks have
different properties and different types of layers. BN-Inception
is optimized for low number of parameters in network, whereas
ResNet is built entirely of convolutional layers. For automated
speech recognition we used a network that consists of 3 long
short-term memory (LSTM) components. In all experiments we
used architectures built and optimized by CNTK. More details
about each network are in Figure 3.

4.3 Machines
For experiments, we used Amazon AWS EC2 P2 instances, de-
signed for high-performance computing using GPUs. Instances
we used are p2.xlarge with 1 GPU, p2.x8large with 8 GPUs on
a single machine and p2.x16large with 16 GPUs on a single ma-
chine. The above instances have Nvidia Tesla K80 GPUs, based on
the Kepler architecture. These GPUs support GPUDirect, which
enables peer-to-peer GPU communication without using CPU.

Another machine we used is DGX1 that consists of 8×P100
GPUs. These GPUs are based on Pascal architecture and have
NVlink high-bandwidth interconnection between GPUs. This
results in highly-optimized GPU communication. The DGX ma-
chine also benefits from a customized interconnect, which pro-
vides high throughput and low latency.

4.4 Tuning and Experimental Protocol
We used nvidia-docker to conduct our experiments. One compli-
cating factor of benchmarking deep learning systems is a large set
of hyperparameters one needs to tune to conduct fair comparison.
In this paper, we use the following tuning protocol.
Batch Size. The principle behind our hyperparameters tuning
protocol is to always start from CNTK’s default hyperparameters,
which have already been optimized by the CNTK developers for
a specific network. For each configuration that we run, if CNTK
does not run with the default hyperparameter setting, we vary
the hyperparameter until it runs. For example, with the default
batch size and 1GPU, CNTK cannot run ResNet because thewhole
batch does not fit in memory. In this case, we decrease the batch
size until CNTK runs. Figure 4 shows the batch sizes we used.
Learning Rate. We always use the default learning rate, which
is fine tuned by CNTK for 32-bit full precision. We use an SGD
optimizer with default momentum (0.9 for most architectures).
Note that, because we focus on synchronous communication,
the number of GPUs has negligible impact on the convergence
rate and final quality given a fixed value of the learning rate and
momentum. This has been observed previously, in e.g. [24].
Bucket Size. QSGD and 1bitSGD with reshaped matrices intro-
duce new hyperparameters, such as bucket size and normaliza-
tion scaling factor. We picked these parameters that optimize for
accuracy on these networks. We used QSGD 2bit with bucket
size 128, QSGD 4bit and 8bit with bucket sizes 512, and QSGD
16bit with bucket size 8192. Also, for our version of 1bitSGD with
reshaped matrices we tried multiple bucket sizes and used bucket
size 64 for all performance and scalability numbers.
NCCL Simulation. CNTK uses NCCL only for full-precision
data parallel SGD. When trying to twist it for low-precision,
we find that its sum primitive only supports full precision and
therefore, cannot be used for low-precision communication (as
scaling factors cannot be taken into account). Thus, we imple-
ment a version where we simulated gradient aggregation with
NCCL calls—we send the same number of bits using NCCL as we
would if NCCL would have had support for low-precision. In the
NCCL experiments, we use this simulated version to compare
the performance of different low-precision setups.

5 ANALYSIS
We now analyze the experiment results and discuss the insights.

5.1 Accuracy
Does low-precision always hurt accuracy?
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Figure 5: Accuracy results for various networks and datasets. Cyan = 32bit.

In the first set of experiments, we study the impact of training
deep neural networks with low precision communication on the
training accuracy. For each network and data set, we vary the
precision and report the test accuracy1 for each epoch. Figure 5
illustrates the result for AlexNet, ResNet50 and ResNet152 on
ImageNet, ResNet110 on CIFAR, and an LSTM network on AN4.
Accuracy: Positives. There always exist settings of parame-
ters for which quantized variants converge to the same or bet-
ter final accuracy, compared to the full-precision version. For
ResNet50/ImageNet, the full precision variant converges to 59.90%
top-5 accuracy, whereas 1bitSGD converges to 60.31% accuracy.
Similarly, QSGD with 4bit and 8bit quantization converge to
60.37% and 60.05% final accuracy, respectively. The accuracy im-
provement, of up to 0.47% is statistically significant. The reason
for this small, but statistically significant, accuracy gain is not
clear. We suspect it is caused by similar reasons with recent work
observing that adding noise during the training process can im-
prove accuracy [35]. Additional experiments show that, for this
dataset, quantization also improves training loss (see Figure 5e),
which is perhaps surprising. It is not clear what is the definitive
reason of this behavior.
Accuracy: Negatives. It is also important to note that quantizing
too aggresively can lead to significant accuracy loss. For example,
QSGD where gradient values are quantized to two bits (levels
0, 1, and −1) has accuracy loss of at least 1 percentage point,
consistently across image classification datasets.We note that this
is not the case for non-convolutional networks (LSTMs), which
appear to be able to handle quantization to very low precision.
This finding is consistent with the theory [5, 50]: aggressive
quantization increases the variance of the convergence process,
and as such, the theory predicts that one would have to run for
more iterations in order to converge to the same quality results.
Convergence Rate. Another aspect of accuracy is the conver-
gence rate, i.e., howmany epoches do the system need to converge
to the same accuracy. We observe that 8bit bit QSGD with 512
bucket size is always enough, on all data sets considered, to guar-
antee effectively the same convergence rate. For 1bitSGD, we
note that the reshaped variant requires relatively small bucket
size (64) to converge to the same target accuracy. Even so, we
note that the convergence rate of 1bitSGD (i.e., training error
versus epoch) is lower per epoch compared to that of the full
precision variant, but the best accuracy achieved across at the
end of the training process is comparable for the two processes.

1We also conduct similar experiments for training accuracy. We leave the result to
the full version as it does not change any claims.

Impact of Layer Types. We also find convolutional layers are
more “sensitive" to the noise induced by quantization. This phe-
nomenon becomes apparent when we study the accuracy of two
variants: (1) only quantize convolutional layers, and (2) quantize
all layers. For example, on AlexNet, we can compare the accuracy
of 1bitSGD with reshaping, which quantizes all layers, with the
accuracy of standard 1bitSGD, which effectively does not quan-
tize convolutional layers, as previously discussed. We observe
that the reshaped variant has end accuracy that is lower; a closer
examination of the loss-per-epoch graph shows that the reshaped
version has consistently lower accuracy throughout the training
process, although it almost catches up in terms of final accuracy
across all epochs. The accuracy difference is starker (1 accuracy
point) if we examine reshaped 1bitSGD with 512 bucket size.
Impact of Bucket Size. Another factor that has impact on the
training accuracy is the bucket size of quantization, an additional
parameter which we implemented for reshaped 1bitSGD and
QSGD, and tuned for accuracy. For QSGD, this parameter can be
used to directly throttle the added variance of the quantization
process, at the cost of extra communication (sincewe need to send
an extra floating-point number per each bucket). We observed
that this can make a significant difference in terms of accuracy.
For instance, on AlexNet / ImageNet, 4bit QSGDwith 8192 bucket
size has end accuracy that is > 0.6% inferior to the full-precision
variant. Adjusting the bucket size to 512 allows it to improve
accuracy over the full precision variant.
Further Lowering Accuracy. We also experimented with vari-
ants of QSGD with even lower communication overhead (such as
1-bit per location, or two-norm nomalization). These variants are
theoretically justified, in that they will eventually converge to a
local optimum, at the cost of additional running time. However,
in our experiments, these variants did not provide good accu-
racy results when run for the same number of epochs as the full
precision version. These accuracy results are therefore omitted.
Discussion. One final observation we make is the impressive
accuracy of the 1bitSGD error-correction techniques. It is worth
emphasizing that this technique only sends the signs of the com-
ponents, plus two scaling factors. On large-scale image classifica-
tion datasets, it only loses relatively small amounts of accuracy
(< 0.3%). It is interesting future work to develop the theoretically
foundation of its convergence and correctness, which is still an
open question [39].

5.2 Performance
Does low-precision always help performance?

We now study the impact of low-precision training on end-
to-end training time. We measure the time per iteration for the
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Figure 6: Performance: Amazon EC2 Instance with MPI. QN = QSGD with N bits. 1b = 1bitSGD, 1b* = 1bitSGD with reshap-
ing.
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Figure 7: Performance: Amazon EC2 Instance with NCCL. QN = QSGD with N bits. 1b = 1bitSGD, 1b* = 1bitSGD with
reshaping.
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Figure 8: Performance: NVIDIA DGX-1 with MPI.
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Figure 9: Performance: NVIDIA DGX-1 with NCCL.

full-precision version (32bit), the standard CNTK implementation
of 1bitSGD, our variant with reshaping and 64 bucket size (whose
parameters are chosen so as to guarantee no accuracy loss), and
QSGD with 2, 4 and 8-bit precision. (As observed, 512 bucket size
guarantees state-of-the-art accuracy across all networks for the
QSGD 4bit and 8bit variants. Even lowering the bucket size down
to 32 for 2bit QSGD does not recover the full precision accuracy.).
We break down the epoch time into communication time (bottom
of each bar), and computation time (top of each bar, which also
includes time spent compressing and uncompressing gradients).
Figure 6 and Figure 7 show the result on the 16GPU Amazon
instance, and Figure 8 and Figure 9 show the results on the 8GPU
NVIDIA DGX-1. (Recall that DGX-1 machine has newer Pascal
GPUs, as well as a faster, custom interconnect.)
Slow Inter-connections with Slow Primitives.We start with
a setting that favors low precision communication the most —
Amazon instances have 16 GPUs and all communications are
conducted over MPI/PCIe. Figure 6 illustrates the result of using
MPI as the communication primitives. We see that, in this setting,
using low-precision communication significantly improves the
performance — with 8GPUs on VGG network, the speedup of
using 2-bit / 4-bit precision is almost 3× compared with using
32-bit full precision. On 16GPUs, the speedup is of > 5×.

This speedup does not hold across all network types, as these
networks have different ratio between communication and com-
putation: there are communication-dominated networks (such as

AlexNet and VGG), and computation-dominated networks (such
as BN-Inception and ResNet50). ResNet152 balances these two.
Impact on Communication Overhead.We observe that on all
networks, lowering the precision of communication significantly
decreases the communication time. On AlexNet, the reduction
in communication time with 4-bit quantization is almost 5×. For
other networks, we observer similar speedups.
Impact onEnd-to-endPerformance.As the computation time
stays the same across different precision settings, the end-to-
end performance speedup is smaller that our amount of savings
we have in communication. For example, on AlexNet, the 5×
speedup on communication results in 2× speedup overall. For
computation-dominating network such as BN-Inception, we get
only 1.3× speedup when lowering the precision by 16×.
Extremely Low Precision. This “diminishing returns” phenom-
enon implies that, even on machines with slow connection and
slow communication, we rarely observe a case where using 1-2bit
precision resulting in significant performance benefit as using
8-bits and 4-bits. In practice, this suggests that it may be reason-
able to only lower the precision up to 8-bit gradients, since that
going even lower does not really provide significant performance
benefit on the model sizes we trained.
Precision versus Bucket Size.We observe that in many cases
1bitSGD is actually slower than 2bit QSGD. This is because, to
preserve accuracy, we have to significantly decrease bucket size
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AlexNet ImageNet
Setup Samples per second (MPI)

Precision Bucket size 1 GPU 2 GPUs 4 GPUs 8 GPUs 16 GPUs
32bit / 240.80 301.45 328.00 272.90 192.10

QSGD 16bit 8192 / 388.80 508.80 500.90 335.60
QSGD 8bit 512 / 424.90 544.60 739.10 535.00
QSGD 4bit 512 / 466.50 598.70 964.90 748.50
QSGD 2bit 128 / 449.20 609.15 1076.50 889.80
1bitSGD / / 424.05 564.30 971.10 849.40
1bitSGD* 64 / 370.80 476.50 761.20 712.70
1bitSGD* 512 / / / / /

ResNet50 ImageNet
Setup Samples per second (MPI)

Precision Bucket size 1 GPU 2 GPUs 4 GPUs 8 GPUs 16 GPUs
32bit / 47.20 80.80 142.40 247.90 272.30

QSGD 16bit 8192 / 90.20 156.30 275.80 348.70
QSGD 8bit 512 / 92.60 162.70 313.70 416.80
QSGD 4bit 512 / 93.90 165.70 326.10 461.20
QSGD 2bit 128 / 93.30 178.35 330.45 472.25
1bitSGD / / 45.10 81.70 160.15 155.20
1bitSGD* 64 / 88.10 156.50 296.70 442.40

ResNet110 CIFAR10
Setup Samples per second (MPI)

Precision Bucket size 1 GPU 2 GPUs 4 GPUs 8 GPUs 16 GPUs
32bit / 343.70 555.00 957.70 1229.10 831.60

QSGD 16bit 8192 / 551.00 942.70 1164.20 763.40
QSGD 8bit 512 / 550.20 960.10 1193.10 759.70
QSGD 4bit 512 / 571.10 957.40 1257.10 784.30
QSGD 2bit 128 / 557.20 973.10 1227.90 780.40
1bitSGD / / 465.60 643.30 610.90 406.90
1bitSGD* 64 / 550.40 884.80 1156.70 757.70

ResNet152 ImageNet
Setup Samples per second (MPI)

Precision Bucket size 1 GPU 2 GPUs 4 GPUs 8 GPUs 16 GPUs
32bit / 16.90 26.10 45.00 73.90 113.50

QSGD 16bit 8192 / 31.20 54.50 95.50 151.00
QSGD 8bit 512 / 32.80 62.70 109.20 182.50
QSGD 4bit 512 / 33.60 60.20 121.90 203.20
QSGD 2bit 128 / 33.50 64.35 123.55 208.50
1bitSGD / / 10.55 22.10 41.40 63.15
1bitSGD* 64 / 30.40 55.50 108.10 193.50

VGG19 ImageNet
Setup Samples per second (MPI)

Precision Bucket size 1 GPU 2 GPUs 4 GPUs 8 GPUs 16 GPUs
32bit / 12.40 20.40 36.30 53.95 40.60

QSGD 16bit 8192 / 24.80 46.40 35.80 67.80
QSGD 8bit 512 / 24.20 47.50 119.50 106.60
QSGD 4bit 512 / 27.00 52.30 151.65 143.80
QSGD 2bit 128 / 24.60 49.35 160.35 170.50
1bitSGD / / 22.20 43.15 117.35 120.60
1bitSGD* 64 / 22.90 44.80 99.15 134.30

BN-Inception ImageNet
Setup Samples per second (MPI)

Precision Bucket size 1 GPU 2 GPUs 4 GPUs 8 GPUs 16 GPUs
32bit / 88.30 164.80 316.75 473.75 500.40

QSGD 16bit 8192 / 171.80 337.10 482.70 592.30
QSGD 8bit 512 / 173.60 342.50 552.90 696.30
QSGD 4bit 512 / 174.80 346.90 593.40 743.30
QSGD 2bit 128 / 173.40 343.70 591.80 747.50
1bitSGD / / 127.60 236.25 336.15 321.30
1bitSGD* 64 / 170.30 335.10 480.50 700.40

Figure 10: Speed of using MPI on Amazon EC2 instance.

for the reshaped 1bitSGD algorithm. This renders it both more
expensive in terms of communication, and increases the compu-
tational complexity of the GPU encoding/decoding operations.
Slow Inter-connections with Fast Primitives. Another way
to implement the communication is to use NCCL instead of MPI.
In our experiment, for the primitives we used in training, NCCL
provides significantly faster communication. The reasons are
two-fold: NCCL provides faster messaging, but also less memory
overhead. Figure 7 shows the result of using NCCL on EC2.
Implementation Notes. We note the following caveats when
using NCCL. First, NCCL does not currently support more than
8 GPUs, and we therefore only report numbers on up to 8 GPUs.
Second, the current allreduce primitive in NCCL does not sup-
port low-precision and therefore all low-precision numbers of

AlexNet ImageNet
Setup Samples per second (NCCL)

Precision Bucket size 1 GPU 2 GPUs 4 GPUs 8 GPUs
32bit / 240.80 458.20 625.00 1138.30

QSGD 16bit 8192 / 462.80 632.10 1157.60
QSGD 8bit 512 / 458.40 641.80 1214.80
QSGD 4bit 512 / 471.90 659.40 1247.70
QSGD 2bit 128 / 471.00 661.60 1229.70

ResNet50 ImageNet
Setup Samples per second (NCCL)

Precision Bucket size 1 GPU 2 GPUs 4 GPUs 8 GPUs
32bit / 47.20 93.80 164.80 291.10

QSGD 16bit 8192 / 93.70 164.50 324.20
QSGD 8bit 512 / 94.00 165.80 297.40
QSGD 4bit 512 / 95.60 167.90 298.40
QSGD 2bit 128 / 95.50 168.20 304.10

ResNet152 ImageNet
Setup Samples per second (NCCL)

Precision Bucket size 1 GPU 2 GPUs 4 GPUs 8 GPUs
32bit / 16.90 33.60 60.10 112.10

QSGD 16bit 8192 / 33.40 59.80 112.20
QSGD 8bit 512 / 33.70 60.80 115.10
QSGD 4bit 512 / 34.20 62.10 118.70
QSGD 2bit 128 / 34.30 62.20 119.90

VGG19 ImageNet
Setup Samples per second (NCCL)

Precision Bucket size 1 GPU 2 GPUs 4 GPUs 8 GPUs
32bit / 12.40 24.90 48.70 163.10

QSGD 16bit 8192 / 24.90 49.10 168.00
QSGD 8bit 512 / 25.50 50.50 175.20
QSGD 4bit 512 / 25.60 51.00 179.50
QSGD 2bit 128 / 25.60 51.10 177.80

BN-Inception ImageNet
Setup Samples per second (NCCL)

Precision Bucket size 1 GPU 2 GPUs 4 GPUs 8 GPUs
32bit / 88.30 175.30 342.00 486.70

QSGD 16bit 8192 / 174.30 342.70 497.10
QSGD 8bit 512 / 174.50 345.30 510.10
QSGD 4bit 512 / 178.60 349.00 598.90
QSGD 2bit 128 / 177.20 349.00 608.20

Figure 11: Speed of using NCCL on Amazon EC2 instance.

Figure 7 are simulated by using the NCCL allreduce primitive
to send the same amount of data that would be sent in a low-
precision implementation using NCCL. (The rest of the algorithm
remains the same; in this case, the GPUs will converge at a lower
rate or could diverge, but this is irrelevant for the experiment.)
NCCL vs. MPI. We draw the reader’s attention to the perfor-
mance difference between MPI (Figure 6) and NCCL (Figure 7). It
is clear that the MPI implementation is slower than the NCCL —
the computation time stays the same but the communication time
differs significantly. One result we found especially surprising is
that NCCL with full precision can be faster than MPI with low
precision. Thus, on systems where NCCL is available, the fastest
approach may be simply to run full precision with NCCL.
Super-Linear Scaling. The attentive reader may have noticed
that, for the VGG19 network, the scaling is super-linear at 8GPUs.
This phenomenon appears to be an artefact due to the minibatch
size: at 8 GPUs, the batch for VGG19 consists of just 16 images,
which the K80 GPUs are able to process in less than half of the
time needed to process batches of 32 images. We were able to
reproduce this behaviour on a single GPU with the same batch
size, and we speculate that it may be due to better caching and
less data movement at smaller sample size.
End-to-end Performance. Since NCCL could be modified to
supports a low-precision allreduce in the future, we might be
able to take advantage of low-precision communication to get
even faster systems. As illustrated in Figure 7, on communication-
dominated networks such as VGG, we get up to 1.5× speedup
with 4-bit or 8-bit precision NCCL. This end-to-end speedup is
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Figure 12: Scalability: Amazon EC2 Instance with MPI.
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Figure 13: Scalability: Amazon EC2 Instance with NCCL.
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Figure 14: Scalability: NVIDIA DGX-1 with MPI.
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Figure 15: Scalability: NVIDIA DGX-1 with NCCL.

considerably lower than what we got in the MPI implementation,
due to the balanced communication-to-computation ratio.
Fast Interconnect with Slow/Fast Primitives. On NVIDIA
DGX-1, all GPUs are connected by a custom interconnect, which
is significantly faster than PCIe. Further, the GPU is about 40%
faster than in the Amazon instances. In this case, we observe simi-
lar results as the Amazon instances —when using slow primitives
such as MPI, we get significant speedup by lowering the precision
of communication, sometimes by up to 5× (VGG). However, with
NCCL, the achievable speedup is again limited significantly. In
fact, with NCCL, on VGG, we get up only 1.6× speedup when
using 4-bits precision and relatively minor speedups for other
networks and precision levels. It is interesting to note by exam-
ining the scalability graphs that the low precision brings the
implementations close to linear scalability.

5.3 Scalability
Do we really need 16 GPUs on a single

instance?
We now study scalability: how does the performance change

with respect to the number GPUs we use? We define scalability
as the number of samples per second in a certain configuration,
divided by the number of samples per second processed by a
single GPU for a training epoch. Figure 12-15 shows the result.

Scalability of Full Precision.We see that, using 32-bit full pre-
cision is able to scale, to some extent. For computation-dominated
networks, 32-bit full precision is able to scale up to 6× with MPI
and 7× with NCLL on 8 GPUs. However, for communication
dominated networks, 32-bit suffers. For example, for AlexNet,
32-bit full precision with MPI only achieves 2× scale up with 16
GPUs. Comparing NCCL with MPI, NCCL scales up better than
MPI for 32-bit full precision — This is not surprising, as NCCL is
more efficient in dealing with communications.
Impact of Low Precision Communication.We see that using
low-precision quantized communication consistently improves
the scalability over 32-bit for all experiments. When using MPI
on Amazon instances, the scalability for AlexNet is improved
from < 3× to 8× by using 1bitSGD. Networks such as ResNet152
scale almost linearly once quantization is applied even with MPI:
with quantization, scalability at 16GPUs is 2×, and 5× without.

When using NCCL, the difference between quantized commu-
nication and full precision decreases significantly. As shown in
Figure 13 and Figure 15, quantization only introduces at most
50% scale up compared with full precision. The only exception is
for VGG, which has the most number of parameters, in which
32-bit saturated the memory bandwidth. On the other hand, on
AlexNet, we note that 32bit NCCL is faster than the 4bit vari-
ant. This explanation for this perhaps surprising result is the
following: the computational overhead of AlexNet is relatively
low; 4bit quantization adds to it, since we need to compress and
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Figure 16: Left: Price and accuracy of training different
neural networks with different # epochs on Amazon EC2
with 8-bit and NCCL. Right: The performance improve-
ment of using low-precision communication w.r.t. the
communication and computation ratio.

de-compress the data. This overhead is not compensated by the
reduction in communication for this network.
Impact on Reshaping. One optimization we did to improve
OneBitSGD is reshaping. The scalability of the reshaped version
of 1bitSGD is initially lower than the original on e.g. AlexNet, due
to the higher computational cost of quantizing into buckets, but
this cost is amortized at higher thread counts. We note however
that overall the less computationally expensive QSGD variant
may perform better, although it sends more data per iteration.

5.4 Discussion
Accuracy vs. Cost. The experimental results we get in this pa-
per also allow us to understand a tradeoff between the model
accuracy and the dollar cost of training. Such tradeoff could be
useful for scenarios like the following: assume a user with a large
dataset (e.g., ImageNet), wishing to train a large-scale neural net-
work to full precision, but on a limited budget. What is the most
cost-effective way to do so, assuming current Amazon pricing?

Figure 16 illustrates the results of the price and accuracy for
training different networks to full accuracy, according to its pub-
lished recipe (accuracy and # of epochs to convergence). We use
the cheapest EC2 solution for each network, which we derive
from the scalability graphs. We see that there is an almost mono-
tonic correlation between $ cost and accuracy — the more $ the
user spent, the higher the quality s/he can expect. On the other
hand, it is also clear that there exists a diminishing return phe-
nomenon — spending $600 to switch from AlexNet to ResNet-50
bumps the accuracy by 15 percentage points, but another $1500
to switch to ResNet-152 only gets 2 percentage points improve-
ment. It would be interesting to study an automatic management
system that is both budget-aware and error tolerance-aware.
MPI vs. NCCL. The answer to this question may be now ob-
vious to the reader. While low-precision techniques can render
the MPI implementation competitive, the gap in performance
is clear, since the NCCL implementation is heavily optimized.
One issue is that NCCL is currently not fully supported for large
GPU deployments, such as multi-node or supercomputer setups.
In these cases, an MPI-based implementation is necessary. An
interesting topic for future work would be to add or improve
MPI support for such reduction operations, as well as support
for low-precision data representations.
1bitSGD vs QSGD. Given our experiments, there is no clear
winner between the two quantized methods. However, it is worth
noting that the 8bit QSGD variant provides stable accuracy and

performance for all the architectures we consider, and therefore
may be a good entry-level compressor. Further, we note that
QSGD wins in most of the head-to-head comparisons, albeit by
small margins. The 1bitSGD algorithm communicates the least
data of all the methods we tried, and can provide impressive
accuracy results. Thus, in a setting where tuning is possible or
minimal communication is necessary, 1bitSGD may be a good
alternative. Unfortunately, there is no easy way of predicting
whether a quantized method will achieve the target accuracy for
a network without actually running it.

6 OUTLOOK
One general way to interpret our results is that the neural
network training workloads we considered are currently not
communication-bottlenecked. More precisely, either by using com-
pressed communication, NCCL, or both, all the networks we
considered can achieve significant speedup on multiple GPUs.

What would happen to scalability if we extrapolate the trend
of increasing the model size? In particular, in what model-size-to-
GFLOPS regime would the scalability impact of quantization be sig-
nificant? These are the questions we address in Figure 16, where
we examine the performance improvement (in terms of speedup)
of the 8-bit quantized variant over the full-precision one, as we
(artificially) increase model size for the AlexNet architecture, for
the 8GPU NCCL version, on which we only noted minimal im-
provements using quantization. The experiment shows that, the
performance improvement due to low-precision communication
depends on a key factor, i.e., the ratio between communication
and computation (MB/GFLOPS). As the MB/GFLOPS ratio in-
creases, running time becomes driven by the cost of communi-
cation, and hence the speedup because of quantization is more
apparent. Notice that the overall speedup will always be upper
bounded by the difference in bandwidth usage, which is 4×.

Another trend is the increased computational power of GPUs,
and the presence of increasingly many GPUs on a single machine.
The first factor decreases the computational cost of networks,
while the second increases the overall communication bandwidth
of the workload. We can therefore speculate that these factors
will bring quantizedmethods closer to the fore in terms of ways to
reduce total running time, although it is also likely that the speed
of communication between GPUs will improve in the future.

7 RELATEDWORK
Changing the precision of data representation is machine learn-
ing systems has received tremendous interest recently [5, 13, 14,
16–18, 20, 23, 28, 29, 33, 36, 39, 45, 50, 51]. These works cover
a whole spectrum of machine learning tasks, from training to
inference, as well as models, from deep learning to linear models.
This paper builds upon this prior art, but focuses on the system
perspective, to understand to what extent these approaches help.
Low-Precision Deep Learning Training The research area
closest to our work is training deep learning models with low pre-
cision [3, 5, 18, 23, 39]. Most algorithms use quantizing different
data channels to lower the precision of the data representation.

One of the first references to recognize the performance impact
of gradient communication when training large speech models
was 1BitSGD [39]. This algorithm is inspired by delta-sigma mod-
ulation [38] for analog-to-digital conversion. In further work,
variants of the same algorithm are benchmarked and refined
on large-scale Amazon proprietary datasets by Strom [42]. The
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1BitSGD algorithm is available by default in the Microsoft Cog-
nitive Toolkit (CNTK) [3]. Another algorithm we consider is
QSGD [5], based on the idea of stochastically rounding floating-
point values to a small set of integer levels. For both algorithms,
it is not clear how well they generalize to other deep learning
models and what are their system tradeoffs; if fact, 1BitSGD is
even observed to diverge in some large-scale experiments by the
original authors. The goal of this paper is to provide such a fair
and well-optimized system benchmark.

Recent work considered alternative quantization strategies.
Aji and Heafield [4] proposed to truncate the gradients to only
the top few percentage of components–sorted by magnitude–and
to store the remaining components locally, in an accumulation
vector. This enables sparse communication to be employed, and
the authors show that extremely small densities (<0.5%) are suffi-
cient for convergence for neural machine translation tasks. This
scheme is promising, and can be theoretically justified by re-
lating it to asynchronous SGD. However, we believe that this
method requires further research to be widely applicable, for
the following two reasons. First, in ImageNet experiments on
the Inception architecture, we noticed that the density levels
required for convergence to the same accuracy level as the full
communication variant were large (>10%); due to the extra cost of
transmitting indices, it is not clear that the reduction in commu-
nication is sufficient to ensure scalability on such tasks. Second,
sparse communication is not efficiently supported by communi-
cation primitives such as NCCL or MPI.

Another approach to reduced communication is to factorize
large network layers, and communicate the factors instead of
large matrices [11, 47]. These methods are effective at reducing
communication for fully-connected layers, but are less useful for
conv layers, where weights are typically smaller than activations.
As many modern architectures, e.g. ResNet, are almost entirely
convolutional, this could limit the usefulness of this approach.
Distributed Machine Learning There is certainly no shortage
of distributed systems for machine learning, and deep learning
in particualar, such as TensorFlow [1], CNTK [3], Theano [44],
Torch [12], Caffe [25], and MXNet [9]. The database community
has also been contributing to this list intensively, and examples
include MLlib [31] built upon Spark [48], KeystoneML [41], Sys-
temML [8], and GraphLab [30]. However, only a few of these
systems support low precision training. We hope our study helps
clarify the system tradeoff introduced by low precision commu-
nication and that the insights can help to improve these systems.
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